Evaluation of the Effect of De-icing Chemicals on Performance of Airport Concrete Pavement under Freeze-Thaw Cycles

Authors

DOI:

https://doi.org/10.56748/ejse.24492

Keywords:

British Pendulum Tester, Compressive Strength, Freezing and Thawing Cycle, Road Test Machine, Skid Resistance

Abstract

Weather conditions such as rainfall and freeze-thaw cycles affect the pavement performance of airports; therefore, methods such as using de-icing chemicals are considered in order to maintain the normal condition of the airport runway. In addition to the above factors, de-icing chemicals play an important role in pavement performance and the damage caused to it due to their chemical nature. Therefore, investigating the effect of de-icing chemicals and determining the appropriate material to maintain the airport's pavement is a priority for engineers. In this study, the effect of three de-icing chemicals, sodium chloride, potassium acetate, and ethylene glycol (at concentrations of 23.3%, 49%, and 69.07%, respectively) on skid resistance (The British Pendulum Test (BPT) and The Road Test Machine (RTM)) and the mechanical properties (Compressive Strength Test) of the concrete under Freezing and Thawing Cycle were investigated. The BPT test results showed that sodium chloride resulted in better skid resistance than other chemicals when the number of cycles is more than 100 cycles. This result was also obtained for all cycles in the RTM test. Also, ethylene glycol was not suitable for improving skid resistance based on BPT and RTM tests. Furthermore, the results of the compressive strength of concrete mixtures showed that the de-icing chemicals reduced the compressive strength of concrete mixtures. Based on all the results, sodium chloride had better results than other chemicals.

Downloads

Download data is not yet available.

References

Algin, Z., & Gerginci, S. (2020). Freeze-thaw re-sistance and water permeability properties of roll-er compacted concrete produced with macro syn-thetic fibre. Construction and Building Materials, 234, 117382.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2019.117382

Amini, B., & Tehrani, S. S. (2011). Combined ef-fects of saltwater and water flow on deterioration of concrete under freeze–thaw cycles. Journal of Cold Regions Engineering, 25(4), 145-161.‏ DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000029

ASTM C33/C33M-16e1. (2016). Standard Specifica-tion for Concrete Aggregates, ASTM International, West Conshohocken, PA.

ACI (American Concrete Institute). (2009). Standard practice for selecting proportions for normal, heavyweight, mass concrete. ACI Committee211, Farmington Hills, MI.

ASTM, Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester, 93, ASTM Int., 2013, pp. 1–5. http://dx.doi.org/10.1520/E0303-93R13.2.

ASTM-C666. (2008). Standard Test Method for Re-sistance of Concrete to Rapid Freezing and Thaw-ing. American Society for Testing and Materials, Washington, DC.

ASTM C39/C39M-01. (2001). Standard test method for compressive strength of cylindrical concrete specimens, Philadelphia.

Barati, M., Zarei, M., Zahedi, M., & Akbarinia, F. (2020). Evaluating the effect of carbon nanotubes (CNTs) and recycled glass powder (RGP) on the rheological and mechanical properties of bitumen and hot mix asphalt (HMA). Advances in Materi-als and Processing Technologies, 1-19.‏ DOI: https://doi.org/10.1080/2374068X.2020.1833400

Bernardin, S., Laforte, J. L., & Louchez, P. (1996). Runway deicer study—determination of a testing procedure. Transport Canada Airports, Final Re-port, November.‏

Besheli, A. E., Samimi, K., Nejad, F. M., & Dar-vishan, E. (2021). Improving concrete pavement performance in relation to combined effects of freeze–thaw cycles and de-icing salt. Construction and Building Materials, 277, 122273.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2021.122273

Brown, P. W., & Doerr, A. (2000). Chemical changes in concrete due to the ingress of aggressive spe-cies. Cement and concrete research, 30(3), 411-418.‏ DOI: https://doi.org/10.1016/S0008-8846(99)00266-5

Claros, B., Chitturi, M., Bill, A., & Noyce, D. (2021). Environmental, Economic, and Operational Im-pacts of Roadway Winter Maintenance: Salt Brine Field Evaluation. Journal of Cold Regions Engi-neering, 35(4), 04021013.‏ DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000259

Cordray, D. R., Kaplan, L. R., Woyciesjes, P. M., & Kozak, T. F. (1996). Solid-liquid phase diagram for ethylene glycol+ water. Fluid phase equilibria, 117(1-2), 146-152.‏ DOI: https://doi.org/10.1016/0378-3812(95)02947-8

Current Deicing Practices and Alternative Deicing Materials. Michigan Department of Transporta-tion, http://www.michigan.gov/documents/ch2-deice_51438_7.pdf, Accessed23 March 2018.

Del Bosque, I. S., Van den Heede, P., De Belie, N., de Rojas, M. S., & Medina, C. (2020). Freeze-thaw resistance of concrete containing mixed ag-gregate and construction and demolition waste-additioned cement in water and de-icing salts. Construction and Building Materials, 259, 119772.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2020.119772

Farnam, Y., Todak, H., Spragg, R., & Weiss, J. (2015a). Electrical response of mortar with differ-ent degrees of saturation and deicing salt solutions during freezing and thawing. Cement and Con-crete Composites, 59, 49-59.‏ DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.003

Farnam, Y., Wiese, A., Bentz, D., Davis, J., & Weiss, J. (2015b). Damage development in cementitious materials exposed to magnesium chloride deicing salt. Construction and Building Materials, 93, 384-392.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2015.06.004

Fatemi, S., Zarei, M., Ziaee, S. A., Shad, R., Saadat-joo, S. A., & Tabasi, E. (2023). Low and interme-diate temperatures fracture behavior of amor-phous poly alpha olefin (APAO)-modified hot mix asphalt subjected to constant and variable temperatures. Construction and Building Materi-als, 364, 129840.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2022.129840

Fay, L., & Shi, X. (2011). Laboratory investigation of performance and impacts of snow and ice con-trol chemicals for winter road service. Journal of Cold Regions Engineering, 25(3), 89-114.‏ DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000025

Fritzsche, C. (1989). CMA in Winter Maintenance: Massachusetts Confronts Environmental Issues public Works, 119(8).

Hall, J.W., Smith, K.L., Titus-Glover, L., Wambold, J.C., Yager, T.J., Rado, Z., (2009). Guide for pavement friction. NCHRP Web Document 108 (Project 01-43): Contractor's Final Report.

Han, S., Liu, M., & Fwa, T. F. (2020). Testing for low-speed skid resistance of road pavements. Road Materials and Pavement Design, 21(5), 1312-1325.‏ DOI: https://doi.org/10.1080/14680629.2018.1552619

Han, S., Liu, M., Fwa, T. F., & Chu, L. (2018). Low-Speed Skid Resistance Testing for Airport Runway Pavement (No. 18-02180).‏

Haselbach, L., Almeida, N., & Ross, M. (2021). Per-vious Concrete Chemical Degradation by Calcium Chloride Deicer. Journal of Cold Regions Engi-neering, 35(1), 04020029.‏ DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000238

Hazaree, C., Ceylan, H., & Wang, K. (2011). Influ-ences of mixture composition on properties and freeze–thaw resistance of RCC. Construction and Building Materials, 25(1), 313-319.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2010.06.023

Heukamp, F. H., Ulm, F. J., & Germaine, J. T. (2001). Mechanical properties of calcium-leached cement pastes: triaxial stress states and the influ-ence of the pore pressures. Cement and Concrete Research, 31(5), 767-774.‏ DOI: https://doi.org/10.1016/S0008-8846(01)00472-0

Heymsfield, E., Osweiler, A., Selvam, P., & Kuss, M. (2014). Developing anti-icing airfield runways us-ing conductive concrete with renewable energy. Journal of Cold Regions Engineering, 28(2), 04014001.‏ DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000064

Houle, K. M. (2008). Winter performance assess-ment of permeable pavements: A comparative study of porous asphalt, pervious concrete, and conventional asphalt in a northern climate.‏

Huang, Y. H. (1993). Pavement analysis and de-sign.2nd edition, Pearson Prentice Hall.

Kane, M., & Cerezo, V. (2015). A contribution to tire/road friction modeling: From a simplified dy-namic frictional contact model to a “Dynamic Friction Tester” model. Wear, 342, 163-171.‏ DOI: https://doi.org/10.1016/j.wear.2015.08.007

Kawamura, M., Takeuchi, K., & Sugiyama, A. (1994). Mechanisms of expansion of mortars con-taining reactive aggregate in NaCl solution. Ce-ment and concrete research, 24(4), 621-632.‏ DOI: https://doi.org/10.1016/0008-8846(94)90186-4

Kummer, H. W. (1966). Unified theory of rubber and tire friction. University Park: PA State Uni-versity, College of Engineering.

LaHucik, J. R., & Roesler, J. R. (2018). Material Constituents and Proportioning for Roller-Compacted Concrete Mechanical Properties. Illi-nois Center for Transportation/Illinois Department of Transportation.‏ DOI: https://doi.org/10.36501/0197-9191/18-016

Lee, Y. P. K., Fwa, T. F., & Choo, Y. S. (2005). Ef-fect of pavement surface texture on British pen-dulum test. Journal of the Eastern Asia Society for Transportation Studies, 6, 1247-1257.‏

Li, P., Yi, K., Yu, H., Xiong, J., & Xu, R. (2021). Ef-fect of Aggregate Properties on Long-Term Skid Resistance of Asphalt Mixture. Journal of Materi-als in Civil Engineering, 33(1), 04020413.‏ DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003539

Litvan, G. G. (1976). Frost action in cement in the presence of de-icers. Cement and Concrete Re-search, 6(3), 351-356.‏ DOI: https://doi.org/10.1016/0008-8846(76)90097-1

Liu, J., Guan, B., Chen, H., Liu, K., Xiong, R., & Xie, C. (2020). Dynamic Model of Polished Stone Value Attenuation in Coarse Aggregate. Materials, 13(8), 1875.‏ DOI: https://doi.org/10.3390/ma13081875

Liu, Y., Fwa, T. F., & Choo, Y. S. (2003). Finite-element modeling of skid resistance test. Journal of transportation engineering, 129(3), 316-321.‏ DOI: https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(316)

Mahmoudi Nehrani, M., Abdi, A., Zarei, M., & Ak-barinia, F. (2021). The effect of rice husk ash and gilsonite on the properties of concrete pavement. Advances in Materials and Processing Technolo-gies, 1-21.‏ DOI: https://doi.org/10.1080/2374068X.2021.1909360

Moore, D. F. (1972). The friction and lubrication of elastomers. Oxford: Pergamon Press.

Moore, D. F. (1975). The friction of pneumatic tires. Amsterdam: Elsevier Scientific Publishing.

Muthumani, A., Fay, L., Akin, M., Wang, S., Gong, J., & Shi, X. (2014). Correlating lab and field tests for evaluation of deicing and anti-icing chemicals: A review of potential approaches. Cold Regions Science and Technology, 97, 21-32.‏ DOI: https://doi.org/10.1016/j.coldregions.2013.10.001

Nazari, M. H., & Shi, X. (2019). Developing renew-able agro-based anti-Icers for sustainable winter road maintenance operations. Journal of Materi-als in Civil Engineering, 31(12), 04019299.‏ DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002963

Nilssen, K., Klein-Paste, A., & Wåhlin, J. (2018). The effect of additives on the low temperature ice-melting capacity of NaCl. Transportation re-search record, 2672(12), 158-166.‏ DOI: https://doi.org/10.1177/0361198118767412

Panesar, D. K., & Chidiac, S. E. (2009). Capillary suction model for characterizing salt scaling re-sistance of concrete containing GGBFS. Cement and Concrete Composites, 31(8), 570-576.‏ DOI: https://doi.org/10.1016/j.cemconcomp.2009.01.004

Purushothaman, N., Heaton, B. S., & Moore, I. D. (1988). Experimental verification of a finite ele-ment contact analysis. Journal of Testing and Evaluation, 16(6), 497–507. DOI: https://doi.org/10.1520/JTE11268J

Rassafi, A. A., Zarei, M., & Dadashi, A. (2021). Ap-plication of Multi-Criteria Decision-Making in Achieving the Right Mix Asphalt Mixtures. Elec-tronic Journal of Structural Engineering, 21, 55-63.‏ DOI: https://doi.org/10.56748/ejse.21291

Rezaei, M. R., Abdi Kordani, A., & Zarei, M. (2020). Experimental investigation of the effect of Micro Silica on roller compacted concrete pavement made of recycled asphalt pavement materials. In-ternational Journal of Pavement Engineering, 1-15.‏ DOI: https://doi.org/10.1080/10298436.2020.1802024

Rodin III, H., Nassiri, S., AlShareedah, O., Yekkalar, M., & Haselbach, L. (2019). Evaluation of skid resistance of pervious concrete slabs under vari-ous winter conditions for driver and pedestrian users. Road Materials and Pavement Design, 1-19.‏ DOI: https://doi.org/10.1080/14680629.2019.1688175

Sajid, H. U., Naik, D. L., & Kiran, R. (2021). Im-proving the ice-melting capacity of traditional deicers. Construction and Building Materials, 271, 121527.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2020.121527

Salt, G. F. (1977). Research on skid-resistance at the Transport and Road Research Laboratory (1927-1977). Transportation Research Record, 622, 26-38.‏

Shi, X. (2008). Impact of airport pavement deicing products on aircraft and airfield infrastructure (Vol. 6). Transportation Research Board.‏

Tabasi, E., Zarei, M., Alaei, H., Tarafdar, M., Alyousuf, F. Q. A., & Khordehbinan, M. W. (2023a). Evaluation of long-term fracture behav-ior of hot mix asphalt modified with Nano re-duced graphene oxide (RGO) under freeze–thaw damage and aging conditions. Construction and Building Materials, 374, 130875.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2023.130875

Tabasi, E., Zarei, M., Mobasheri, Z., Naseri, A., Ghafourian, H., & Khordehbinan, M. W. (2023b). Pre-and post-cracking behavior of asphalt mix-tures under modes I and III at low and intermedi-ate temperatures. Theoretical and Applied Frac-ture Mechanics, 124, 103826.‏ DOI: https://doi.org/10.1016/j.tafmec.2023.103826

Valenza, J. J., & Scherer, G. W. (2006). Mechanism for salt scaling. Journal of the American Ceramic Society, 89(4), 1161-1179.‏ https://doi.org/10.1111/j.1551 -2916.2006.00913.x DOI: https://doi.org/10.1111/j.1551-2916.2006.00913.x

Wang, K., Nelsen, D. E., & Nixon, W. A. (2006). Damaging effects of deicing chemicals on con-crete materials. Cement and Concrete Composites, 28(2), 173-188.‏ DOI: https://doi.org/10.1016/j.cemconcomp.2005.07.006

Xiong, F., Zarei, M., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Kh, T. I. (2023). Effect of nano-reduced graphene oxide (NRGO) on long-term fracture behavior of Warm Mix Asphalt (WMA). Construction and Building Materials, 392, 131934.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2023.131934

Yu, M., You, Z., Wu, G., Kong, L., Liu, C., & Gao, J. (2020). Measurement and modeling of skid re-sistance of asphalt pavement: a review. Construc-tion and building materials, 260, 119878.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2020.119878

Zahedi, M., Barati, M., & Zarei, M. (2017a). Evalua-tion the effect of carbon nanotube on the rheolog-ical and mechanical properties of bitumen and Hot Mix Asphalt (HMA). Electron. J. Struct. Eng, 17(1), 76-84.‏ DOI: https://doi.org/10.56748/ejse.17221

Zahedi M, Zarei M (2016) Studying the simultaneous effect of black Nano carbon and polyester fibers with high stability on mechanical properties of as-phalt mixture. Turk Online J Des Art Communica-tion 6(Special Edition):188–195. DOI: https://doi.org/10.7456/1060ASE/019

Zahedi, M., Zarei, A., Zarei, M., & Janmohammadi, O. (2020). Experimental determination of the op-timum percentage of asphalt mixtures reinforced with Lignin. SN Applied Sciences, 2(2), 258.‏https://doi.org/10.1007/s42452-020-2041-8 DOI: https://doi.org/10.1007/s42452-020-2041-8

Zahedi, M., Zarei, M., Manesh, H. A., Kalam, A. S., & Ghadiri, M. (2017b). Technical-economic stud-ies about polyester fibers with high strength on asphalt mixtures with solid granulation. Journal of Civil Engineering and Urbanism, 7(2), 30-35.‏

Zahedipoor, M., Abdi, A., Zarei, M., & Akbarinia, F. (2022). Laboratory study on the properties of concrete pavement containing blast furnace slag and Gilsonite. Electron. J. Struct. Eng., In-press.‏ DOI: https://doi.org/10.56748/ejse.234413

Zarei, A., Zarei, M., & Janmohammadi, O. (2019). Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures. Arabian journal for Science and engineering, 44(5), 4085-4094.‏ DOI: https://doi.org/10.1007/s13369-018-3273-4

Zarei, M., & Zahedi, M. (2016). Effect of nano-carbon black on the mechanical properties of as-phalt mixtures. Journal of Fundamental and Ap-plied Sciences, 8(3S), 2996-3008.‏

Zarei, M., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020a). Economical and technical study on the effect of carbon fiber with high strength on hot mix asphalt (HMA). Electronic Journal of Structural Engineering, 20, 6-12.‏ DOI: https://doi.org/10.56748/ejse.20240

Zarei, M., Kordani, A. A., Salehikalam, A., Akbarin-ia, F., Karimi, M., & Javadi, S. (2021). The Appli-cation of the Best-Worst Method to Gain the Premier Modified Asphalt Mixtures. Electronic Journal of Structural Engineering, 21, 64-70.‏ DOI: https://doi.org/10.56748/ejse.21292

Zarei, M., Mirbaha, B., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020a). Application of concordance analysis method (CA) for optimal se-lection of asphalt mixtures reinforced with rubber powder and carbon fiber. Electronic Journal of Structural Engineering, 20, 53-62.‏ DOI: https://doi.org/10.56748/ejse.20246

Zarei, M., Naseri, A., Salehikalam, A., Ghandehari, M., Nasrollahi, M., & Dadashi, A. (2022a). Tech-nical-economic studies about the effect of Nano-carbon black on asphalt mixtures. Electronic Journal of Structural Engineering, 22(2), 33-41.‏ DOI: https://doi.org/10.56748/ejse.223212

Zarei, M., Salehikalam, A., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Negahban, M. (2022b). Pure mode I fracture resistance of hot mix asphalt (HMA) containing nano-SiO2 under freeze–thaw damage (FTD). Construction and Building Mate-rials, 351, 128757.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2022.128757

Zarei, M., Tabasi, E., Ghandehari, M., Rezaie, M., Khordehbinan, M. W., & Al-Bahrani, M. (2022c). Effect of hospital waste pyrolysis hydrocarbon (HWPHC) on fracture behavior of Warm Mix as-phalt (WMA) under freeze–thaw damage (FTD). Construction and Building Materials, 359, 129473.‏ DOI: https://doi.org/10.1016/j.conbuildmat.2022.129473

Zarei, M., Rahmani, Z., Zahedi, M., & Nasrollahi, M. (2020c). Technical, economic, and environmental investigation of the effects of rubber powder ad-ditive on asphalt mixtures. Journal of Transporta-tion Engineering, Part B: Pavements, 146(1), 04019039.‏ DOI: https://doi.org/10.1061/JPEODX.0000142

Downloads

Published

2024-03-06

How to Cite

Sadeghi, S. S., Abdi Kordani, A. and Zarei, M. (2024) “Evaluation of the Effect of De-icing Chemicals on Performance of Airport Concrete Pavement under Freeze-Thaw Cycles”, Electronic Journal of Structural Engineering, 24(1), pp. 25–32. doi: 10.56748/ejse.24492.

Issue

Section

Articles