Laboratory study on the properties of concrete pavement containing blast furnace slag and Gilsonite
DOI:
https://doi.org/10.56748/ejse.234413Keywords:
Gilsonite, Blast Furnace Slag (BFS), Concrete Pavement, Abrasion test, Mechanical PropertiesAbstract
This study evaluated the mechanical properties and abrasion resistance of the concrete pavement when cement was replaced by the blast furnace slag (BFS) and Gilsonite at levels of 20%, 25%, and 30%, as well as 5%, 7%, and 9%, respectively. For this purpose, a total of ten mixing designs were made and cured for 28 days. The results showed that the compressive strength of mixtures containing two additives decreased. In contrast, the BFS20-G7 mixture satisfied the proposed minimum compressive strength. However, the flexural strength and tensile splitting of the BFS20-G7 containing 20% BFS and 7% Gilsonite increased by about 4 and 7 percent. The Wide Wheel Abrasion Test results showed that the mixture containing 20% BFS-7% Gilsonite increased the abrasion resistance by about 5% and 17% in 100 and 300 revolutions, respectively. Conclusively, using BFS20-G7 in low-traffic areas such as parks and driveways can be suggested.
Downloads
References
Adewuyi, A. P., Sulaiman, I. A., & Akinyele, J. O. (2017). Compressive strength and abrasion resistance of concretes under varying exposure conditions. Open Journal of Civil Engineering, 7(1), 82-99. DOI: https://doi.org/10.4236/ojce.2017.71005
Ameri, M., Mansourian, A., Ashani, S. S., & Yadollahi, G. (2011). Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction. Construction and Building Materials, 25(3), 1379-1387. DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.005
ASTM, C33/C33M-16e1A. (2016). Standard specification for concrete aggregates. ASTM International, West Conshohocken, Pennsylvania, United States.
ASTM C 39. (2012). Standard test method for compressive strength of cylindrical concrete specimens. Annual book of ASTM standards 4.02. West Conshohocken (PA).
ASTM, C. 127-88 (1992).. Test method for specific gravity and adsorption of coarse aggregate. USA: Annual Book of ASTM Standards.
ASTM C 128-88. (1992). Test method for specific gravity and adsorption of fine aggregate. USA: Annual Book of ASTM Standards.
ASTM C136. (2014). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, West Conshohocken, PA.
ASTM C 143. (1997). Standard test method for slump of hydraulic-cement concrete. West Conshohocken.
ASTM C293. (2015). Standard test method for flexural strength of concrete (using simple beam with center-point loading. American Society for Testing and Materials, Philadelphia.
ASTM. C496. (2011). Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM C496, West Conshohocken, PA.
ASTM C779 / C779M-12, (2012). Standard test method for abrasion resistance of horizontal concrete surfaces, ASTM International, West Conshohocken, PA, www.astm.org,
ASTM C944 / C944M-12, (2012), Standard test method for abrasion resistance of concrete or mortar surfaces by the rotating-cutter method, ASTM International, West Conshohocken, PA, www.astm.org
ASTM C1138M-12, (2012), Standard test method for abrasion resistance of concrete (Underwater method), ASTM International, West Conshohocken, PA, www.astm.org,
ASTM D1557. (2002). Standard test methods for laboratory compaction characteristics of soil using modified effort. American Society for Testing and Materials, West Conshohocken, PA.
ASTM D2419. (2014). ASTM D2419-14: Standard test method for sand equivalent value of soils and fine aggregate. https://www.astm.org/Standards/D2419.
Barati, M., Zarei, M., Zahedi, M., & Akbarinia, F. (2020). Evaluating the effect of carbon nanotubes (CNTs) and recycled glass powder (RGP) on the rheological and mechanical properties of bitumen and hot mix asphalt (HMA). Advances in Materials and Processing Technologies, 1-19. DOI: https://doi.org/10.1080/2374068X.2020.1833400
Berndt, M. L. (2009). Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and building materials, 23(7), 2606-2613. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.011
Bilim, C., & Atiş, C. D. (2012). Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708-712. DOI: https://doi.org/10.1016/j.conbuildmat.2011.10.018
Cement Statistics and Information (USGS, 2018).
http://minerals.usgs.gov/minerals/pubs/commodity/cement/index.html
Chen, X., Wang, H., Najm, H., Venkiteela, G., & Hencken, J. (2019). Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. Journal of Cleaner Production, 237, 117714. DOI: https://doi.org/10.1016/j.jclepro.2019.117714
European Committee for Standardization. (2003). BS EN 1338: Concrete Paving Blocks. Requirements and Test Methods. European Committee for Standardization, Brussels.
Fatemi, S., Zarei, M., Ziaee, S. A., Shad, R., Saadatjoo, S. A., & Tabasi, E. (2023). Low and intermediate temperatures fracture behavior of amorphous poly alpha olefin (APAO)-modified hot mix asphalt subjected to constant and variable temperatures. Construction and Building Materials, 364, 129840. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129840
García, A., Castro-Fresno, D., Polanco, J. A., & Thomas, C. (2012). Abrasive wear evolution in concrete pavements. Road materials and pavement design, 13(3), 534-548. DOI: https://doi.org/10.1080/14680629.2012.694094
Holman, K. R., Volz, J. S., & Myers, J. J. (2013). Comparative study on the mechanical and durability behavior of high-volume fly ash concrete versus conventional concrete. In First international conference on concrete sustainability (ICCS 2013).
Huang, Y. H. (2004). Pavement analysis and design.
Jalal-Kamali, M. H., Hasani, A., & Sodagari, J. (2019). Introduction and Application of Rotational Abrasion Device to Determine Concrete Pavement Abrasion. Civil Engineering Infrastructures Journal, 52(2), 295-308.
Kandiri, A., Golafshani, E. M., & Behnood, A. (2020). Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Construction and Building Materials, 248, 118676. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118676
Lam M. N. T., Le, D. H., & Jaritngam, S. (2018). Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Construction and Building Materials, 191, 912-922. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.080
Laskar, A. I., & Talukdar, S. (2008). Rheological behavior of high performance concrete with mineral admixtures and their blending. Construction and Building materials, 22(12), 2345-2354. DOI: https://doi.org/10.1016/j.conbuildmat.2007.10.004
Madandoust, R., Ranjbar, M. M., Moghadam, H. A., & Mousavi, S. Y. (2011). Mechanical properties and durability assessment of rice husk ash concrete. Biosystems engineering, 110(2), 144-152. DOI: https://doi.org/10.1016/j.biosystemseng.2011.07.009
Mirvalad, S., & Nokken, M. (2015). Minimum SCM requirements in mixtures containing limestone cement to control thaumasite sulfate attack. Construction and Building Materials, 84, 19-29. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.074
Nehrani, M. M., Kordani, A. A., Zarei, M., Akbarinia, F., (2021). The Effect of Rice Husk Ash and Gilsonite on the Properties of Concrete Pavement. Advances in Materials and Processing Technologies.
Öz, H. Ö. (2018). Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials, 166, 601-609. doi:10.1016/j.conbuildmat.2018.02.010 DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.010
Qu, Z. Y., & Yu, Q. L. (2018). Synthesizing super-hydrophobic ground granulated blast furnace slag to enhance the transport property of lightweight aggregate concrete. Construction and Building Materials, 191, 176-186. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.018
Rahman, M. E., Muntohar, A. S., Pakrashi, V., Nagaratnam, B. H., & Sujan, D. (2014). Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate. Materials & Design, 55, 410-415. DOI: https://doi.org/10.1016/j.matdes.2013.10.007
Ramezanianpour, A. A., Kazemian, A., Moghaddam, M. A., Moodi, F., & Ramezanianpour, A. M. (2016). Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Materials and Structures, 49(7), 2597-2609. DOI: https://doi.org/10.1617/s11527-015-0670-y
Rassafi, A. A., Zarei, M., & Dadashi, A. (2021). Application of Multi-Criteria Decision-Making in Achieving the Right Mix Asphalt Mixtures. Electronic Journal of Structural Engineering, 21, 55-63. DOI: https://doi.org/10.56748/ejse.21291
Rezaei Lori, A., Bayat, A., & Azimi, A. (2019). Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete. Road Materials and Pavement Design, 1-17. DOI: https://doi.org/10.1080/14680629.2019.1648311
Rezaei, M. R., Abdi Kordani, A., & Zarei, M. (2020). Experimental investigation of the effect of Micro Silica on roller compacted concrete pavement made of recycled asphalt pavement materials. International Journal of Pavement Engineering, 1-15. DOI: https://doi.org/10.1080/10298436.2020.1802024
Sadek, D. M., & El Nouhy, H. A. (2014). Properties of paving units incorporating crushed ceramic. HBRC Journal, 10(2), 198-205. DOI: https://doi.org/10.1016/j.hbrcj.2013.11.006
Saha, A. K., & Sarker, P. K. (2016). Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Construction and Building Materials, 123, 135-142. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.144
Siddique, R., & Mehta, A. (2020). Utilization of industrial by-products and natural ashes in mortar and concrete development of sustainable construction materials. In Nonconventional and Vernacular Construction Materials (pp. 247-303). Wood head Publishing. DOI: https://doi.org/10.1016/B978-0-08-102704-2.00011-1
Sobhi, S., Yousefi, A., & Behnood, A. (2020). The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures. Construction and Building Materials, 238, 117676. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117676
Tabasi, E., Zarei, M., Alaei, H., Tarafdar, M., Alyousuf, F. Q. A., & Khordehbinan, M. W. (2023a). Evaluation of long-term fracture behavior of hot mix asphalt modified with Nano reduced graphene oxide (RGO) under freeze–thaw damage and aging conditions. Construction and Building Materials, 374, 130875. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130875
Tabasi, E., Zarei, M., Mobasheri, Z., Naseri, A., Ghafourian, H., & Khordehbinan, M. W. (2023b). Pre-and post-cracking behavior of asphalt mixtures under modes I and III at low and intermediate temperatures. Theoretical and Applied Fracture Mechanics, 124, 103826. DOI: https://doi.org/10.1016/j.tafmec.2023.103826
Tataranni, P. (2019). Recycled Waste Powders for Alkali-Activated Paving Blocks for Urban Pavements: A Full Laboratory Characterization. Infrastructures, 4(4), 73. DOI: https://doi.org/10.3390/infrastructures4040073
Teng, S., Lim, T. Y. D., & Divsholi, B. S. (2013). Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag. Construction and Building Materials, 40, 875-881. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.052
Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.023
Wawrzeńczyk, J., Molendowska, A., & Kłak, A. (2016). Effect of ground granulated blast furnace slag and polymer microspheres on impermeability and freeze-thaw resistance of concrete. Procedia engineering, 161, 79-84. DOI: https://doi.org/10.1016/j.proeng.2016.08.501
Xiong, F., Zarei, M., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Kh, T. I. (2023). Effect of nano-reduced graphene oxide (NRGO) on long-term fracture behavior of Warm Mix Asphalt (WMA). Construction and Building Materials, 392, 131934. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131934
Yüksel, İ., Bilir, T., & Özkan, Ö. (2007). Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment, 42(7), 2651-2659. DOI: https://doi.org/10.1016/j.buildenv.2006.07.003
Zaetang, Y., Sata, V., Wongsa, A., & Chindaprasirt, P. (2016). Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials, 111, 15-21. doi:10.1016/j.conbuildmat.2016.02.060. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.060
Zahedi, M., Barati, M., & Zarei, M. (2017). Evaluation the effect of carbon nanotube on the rheological and mechanical properties of bitumen and Hot Mix Asphalt (HMA). Electron. J. Struct. Eng, 17(1), 76-84. DOI: https://doi.org/10.56748/ejse.17221
Zahedi M, Zarei M (2016) Studying the simultaneous effect of black Nano carbon and polyester fibers with high stability on mechanical properties of asphalt mixture. Turk Online J Des Art Communication 6(Special Edition):188–195. DOI: https://doi.org/10.7456/1060ASE/019
Zahedi, M., Zarei, A., Zarei, M., & Janmohammadi, O. (2020). Experimental determination of the optimum percentage of asphalt mixtures reinforced with Lignin. SN Applied Sciences, 2(2), 258.https://doi.org/10.1007/s42452-020-2041-8 DOI: https://doi.org/10.1007/s42452-020-2041-8
Zahedi, M., Zarei, M., Manesh, H. A., Kalam, A. S., & Ghadiri, M. (2017). Technical-economic studies about polyester fibers with high strength on asphalt mixtures with solid granulation. Journal of Civil Engineering and Urbanism, 7(2), 30-35.
Zarei, A., Zarei, M., & Janmohammadi, O. (2019). Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures. Arabian journal for Science and engineering, 44(5), 4085-4094. DOI: https://doi.org/10.1007/s13369-018-3273-4
Zarei, M., & Zahedi, M. (2016). Effect of nano-carbon black on the mechanical properties of asphalt mixtures. Journal of Fundamental and Applied Sciences, 8(3S), 2996-3008.
Zarei, M., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020a). Economical and technical study on the effect of carbon fiber with high strength on hot mix asphalt (HMA). Electronic Journal of Structural Engineering, 20, 6-12. DOI: https://doi.org/10.56748/ejse.20240
Zarei, M., Kordani, A. A., Salehikalam, A., Akbarinia, F., Karimi, M., & Javadi, S. (2021). The Application of the Best-Worst Method to Gain the Premier Modified Asphalt Mixtures. Electronic Journal of Structural Engineering, 21, 64-70. DOI: https://doi.org/10.56748/ejse.21292
Zarei, M., Mirbaha, B., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020b). Application of concordance analysis method (CA) for optimal selection of asphalt mixtures reinforced with rubber powder and carbon fiber. Electronic Journal of Structural Engineering, 20, 53-62. DOI: https://doi.org/10.56748/ejse.20246
Zarei, M., Naseri, A., Salehikalam, A., Ghandehari, M., Nasrollahi, M., & Dadashi, A. (2022a). Technical-economic studies about the effect of Nano-carbon black on asphalt mixtures. Electronic Journal of Structural Engineering, 22(2), 33-41. DOI: https://doi.org/10.56748/ejse.223212
Zarei, M., Salehikalam, A., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Negahban, M. (2022b). Pure mode I fracture resistance of hot mix asphalt (HMA) containing nano-SiO2 under freeze–thaw damage (FTD). Construction and Building Materials, 351, 128757. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128757
Zarei, M., Tabasi, E., Ghandehari, M., Rezaie, M., Khordehbinan, M. W., & Al-Bahrani, M. (2022c). Effect of hospital waste pyrolysis hydrocarbon (HWPHC) on fracture behavior of Warm Mix asphalt (WMA) under freeze–thaw damage (FTD). Construction and Building Materials, 359, 129473. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129473
Zarei, M., Rahmani, Z., Zahedi, M., & Nasrollahi, M. (2020c). Technical, economic, and environmental investigation of the effects of rubber powder additive on asphalt mixtures. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019039. DOI: https://doi.org/10.1061/JPEODX.0000142
Zhao, H., Sun, W., Wu, X., & Gao, B. (2015). The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. Journal of Cleaner Production, 95, 66-74. DOI: https://doi.org/10.1016/j.jclepro.2015.02.050
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohsen Zahedipoor, Ali Abdi Kordani, Mohammad Zarei
This work is licensed under a Creative Commons Attribution 4.0 International License.