Numerical Study on the Various Profile Sections of Concrete Filled Steel Tubular Columns Under Compression

Authors

DOI:

https://doi.org/10.56748/ejse.234083

Keywords:

Axial Load, Concrete filled steel tube (CFST), Unified formula, Numerical Analysis, ring confinement., ABAQUS

Abstract

The axial load-carrying capacity for a wide range of short concrete-filled steel tubular (CFST) members having different section profiles is evaluated in the presented work. A numerical study has been carried out through Finite-Element based demonstration and it has been accomplished in the ABAQUS package for relevancy of analytically predicted axial load carrying capacity by unified formula as suggested by Yu M. et al. (2010). To validate the results from the unified formula and the experimentally available literature, finite element-based models for hollow and solid sections of CFST columns with circular, octagonal, and square section profiles have been generated. A total of 31 hollow and 24 solid circular columns, 9 hollow, and 9 solid octagonal columns, and in the last 9 hollows and 38 solid square CFST columns are examined for the persistence of the results. After evaluation of obtained results from the modeling existing results are validated, and it is found that the proposed unified formula predicts satisfactory results when compared with the result of established models. Further, it is concluded that displacement in the direction of applied load is not uniform throughout the length of CFST columns thereby using the ring confinement technique for the region of applied force may be reasonable.

Downloads

Download data is not yet available.

References

ABAQUS (2013), Standard user’s manual, version 6.13, Dassault Systems Corp.

ACI 318-08. (2008). Building Code Requirements for Structural Concrete. Farmington Hills, MI: American Concrete Institute.

Architectural Institute of Japan, AIJ, (2008). Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures. Tokyo, Japan.

AISC LRFD. (2000). Load and Resistance Factor Design Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction.

BS5400-5 (2005). “Steel, concrete and composite bridge’s part 5” code of practice for the design of composite bridges, London (UK).

Chinese Code, D. L. T. (1999). Chinese design code for steel-concrete composite structures. DL/T 5085-1999.

CEN, European Committee for Standardization: (2002). “Eurocode—Basis of structural design” EN 1990. Brussels, Belgium: CEN.

CEN, European Committee for Standardization: (2005). “Eurocode3: Design of steel structures—Part 1-1: General rules and rules for buildings” EN 1993-1-1. Brussels, Belgium: CEN.

Dai, X. H., Lam, D., Jamaluddin, N., & Ye, J. (2014). “Numerical analysis of slender elliptical concrete filled columns under axial compression.” Thin-Walled Structures, 77, pp. 26-35. DOI: https://doi.org/10.1016/j.tws.2013.11.015

Dey, P., Gupta, R. K., & Laskar, A. I. (2019). “Numerical and experimental investigations of different cross-sectional configuration of plain concrete and CFST short columns under axial compression.” International Journal of Civil Engineering, 17(10), pp. 1585-1601. DOI: https://doi.org/10.1007/s40999-019-00427-0

Evirgen, B., Tuncan, A., & Taskin, K. (2014). “Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression.” Thin-Walled Structures, 80, pp. 46-56. DOI: https://doi.org/10.1016/j.tws.2014.02.022

Fam, A., Qie, F. S., & Rizkalla, S. (2004). “Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads.” Journal of Structural Engineering, 130 (4), pp. 631-640. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)

Giakoumelis, G., & Lam, D. (2004). “Axial capacity of circular concrete-filled tube columns.” Journal of Constructional Steel Research, 60(7), pp. 1049-1068. DOI: https://doi.org/10.1016/j.jcsr.2003.10.001

Gupta, P. K., Sarda, S. M., & Kumar, M. S. (2007). “Experimental and computational study of concrete filled steel tubular columns under axial loads.” Journal of Constructional Steel Research, 63(2), pp. 182-193. DOI: https://doi.org/10.1016/j.jcsr.2006.04.004

Gupta, P. K., Ahuja, A. K., & Khaudhair, Z. A. (2014). “Modelling, verification and investigation of behaviour of circular CFST columns.” Structural Concrete, 15(3), pp. 340-349. DOI: https://doi.org/10.1002/suco.201300045

Gupta, P. K., & Singh, H. (2014). “Numerical study of confinement in short concrete filled steel tube columns.” Latin American Journal of Solids and Structures, 11, pp. 1445-1462. DOI: https://doi.org/10.1590/S1679-78252014000800010

Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B., & Karimzade, K. (2017). “Simplified damage plasticity model for concrete.” Structural Engineering International, 27(1), pp. 68-78. DOI: https://doi.org/10.2749/101686616X1081

Han, L. H. (1997). “Theoretical analysis and experimental research for the behaviors high strength concrete-filled steel tubes.” Industrial Construction, 27 (11), pp. 39 - 44.

Han, L. H. (2000). “Tests on concrete filled steel tubular columns with high slenderness ratio.” Advances in Structural Engineering, 3(4), pp. 337-344. DOI: https://doi.org/10.1260/1369433001502265

Han, L. H., Wang, W. D., & Tao, Z. (2011). “Performance of circular CFST column to steel beam frames under lateral cyclic loading.” Journal of Constructional Steel Research, 67(5), pp. 876-890. DOI: https://doi.org/10.1016/j.jcsr.2010.11.020

He, L., Zhao, Y., & Lin, S. (2018)., “Experimental study on axially compressed circular CFST columns with improved confinement effect.” Journal of Constructional Steel Research, 140, pp. 74-81. DOI: https://doi.org/10.1016/j.jcsr.2017.10.025

Lai, M. H., & Ho, J. C. M. (2014). “Confinement effect of ring-confined concrete-filled-steel-tube columns under uniaxial load.” Engineering Structures, 67, pp. 123-141. DOI: https://doi.org/10.1016/j.engstruct.2014.02.013

Lee, S. H., Uy, B., Kim, S. H., Choi, Y. H., & Choi, S. M. (2011). “Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading.” Journal of Constructional Steel Research, 67(1), pp. 1-13. DOI: https://doi.org/10.1016/j.jcsr.2010.07.003

Li B., & Hao, R. X. (2005). “The analysis of concrete filled steel tube column carrying capacity.” Journal of Baotou University Iron Steel Technology, 24(1), pp. 5-8.

Liew, J. R. (2015). “Design guide for concrete filled tubular members with high strength materials to Eurocode 4.” Research publishing. DOI: https://doi.org/10.3850/978-981-09-3267-1

Liu, D., & Gho, W. M. (2005). “Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns.” Thin-Walled Structures, 43(8), pp. 1131-1142. DOI: https://doi.org/10.1016/j.tws.2005.03.007

Liu, D. (2005). “Tests on high-strength rectangular concrete-filled steel hollow section stub columns.” Journal of Constructional Steel Research, 61(7), pp. 902 - 911. DOI: https://doi.org/10.1016/j.jcsr.2005.01.001

Shakir-Khalil, H. (1993). “Pushout strength of concrete-filled steel hollow section tubes.” Structural Engineer, 71(13).

Shakir-Khalil, H. (1993). “Resistance of concrete-filled steel tubes to pushout forces.” Structural Engineer, 71(13).

Shanmugam, N. E. and Lakshmi, B., (2001) "State of the art report on steel–concrete composite columns", Journal of constructional steel research, 57 (10) , pp 1041-1080. DOI: https://doi.org/10.1016/S0143-974X(01)00021-9

Singh, V. K., P. K. Gupta and S. M. Ali Jawaid (2022) “Bond strength characterization of concrete filled steel tube as structural member”, Electronic Journal of Structural Engineering, 22(2), pp. 42–52. DOI: https://doi.org/10.56748/ejse.223002

Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of structural Engineering, 124(10), 1125-1138. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

Tao, Z., Han, L. H., Uy, B., & Chen, X. (2011) “post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns.” Journal of Constructional Steel Research, 67(3), pp. 484-496. DOI: https://doi.org/10.1016/j.jcsr.2010.09.006

Tao, Z., Wang, Z. B., & Yu, Q. (2013) “Finite element modelling of concrete-filled steel stub columns under axial compression.” Journal of constructional steel research, 89, pp.-121-131. DOI: https://doi.org/10.1016/j.jcsr.2013.07.001

Tao, Z., Song, T. Y., Uy, B., & Han, L. H. (2016) “Bond behavior in concrete-filled steel tubes.” Journal of Constructional Steel Research, 120, pp. 81-93. DOI: https://doi.org/10.1016/j.jcsr.2015.12.030

Thai, H. T., Uy, B., Khan, M., Tao, Z., & Mashiri, F. (2014) “Numerical modelling of concrete-filled steel box columns incorporating high strength materials.” Journal of Constructional Steel Research, 102, pp. 256-265. DOI: https://doi.org/10.1016/j.jcsr.2014.07.014

Xiong, M. X., Xiong, D. X., and Liew, J. R. (2017) "Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials." Engineering Structures 136, pp. 494-510. DOI: https://doi.org/10.1016/j.engstruct.2017.01.037

Yadav, R., Chen, B., Huihui, Y., & Lian, Z. (2016, October). “Numerical study on the seismic behavior of CFST columns.” In 11th Pacific Structural Steel Conference, Shanghai, China, October (Vol. 2931, pp. 360-369).

Yang, Y. F., & Han, L. H. (2011). “Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression.” Thin-Walled Structures, 49(2), pp. 379-395. DOI: https://doi.org/10.1016/j.tws.2010.09.024

Yu, M., Zha, X., Ye, J., & She, C. (2010). “A unified formulation for hollow and solid concrete-filled steel tube columns under axial compression.” Engineering structures, 32(4), pp. 1046-1053. DOI: https://doi.org/10.1016/j.engstruct.2009.12.031

Yu, M., Zha, X., Ye, J., & Li, Y. (2013). “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression.” Engineering structures, 49, pp. 1-10. DOI: https://doi.org/10.1016/j.engstruct.2012.10.018

Yu, Q., Tao, Z., & Wu, Y. X. (2008). “Experimental behaviour of high-performance concrete-filled steel tubular columns.” Thin-Walled Structures, 46(4), pp. 362-370. DOI: https://doi.org/10.1016/j.tws.2007.10.001

Zha X. (2010). “Hollow and solid concrete-filled steel tube structures” Beijing: Science Press, 2010.

Zhang, W., & Shahrooz, B. M. (1999). “Comparison between ACI and AISC for concrete-filled tubular columns.” Journal of structural engineering, 125(11), pp. 1213-1223. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1213)

Zhong, S. T. (2006). “Research and application achievement of concrete-filled steel tubular (CFST) structures.” Beijing: Tsinghua University Press, China.

Zhong S. T. (2003) “Concrete-filled steel tubular (CFST) structures.” Beijing: Tsinghua University Press.

Zhang, S., Guo, L., Ye, Z., & Wang, Y. (2005). “Behavior of steel tube and confined high strength concrete for concrete filled RHS tubes.” Advances in Structural Engineering, 8(2), pp. 101-116. DOI: https://doi.org/10.1260/1369433054037976

Downloads

Published

2023-07-25

How to Cite

Singh, V. K., Pramod Kumar Gupta and S M Ali Jawaid (2023) “Numerical Study on the Various Profile Sections of Concrete Filled Steel Tubular Columns Under Compression ”, Electronic Journal of Structural Engineering, 23(3), pp. 6–13. doi: 10.56748/ejse.234083.

Issue

Section

Articles