An Introduction to High Performance Graphene Concrete

Authors

DOI:

https://doi.org/10.56748/ejse.223553

Keywords:

graphene oxide, nanomaterial, high performance concrete

Abstract

Developments in nanomaterial technology have generated a strong research interest in the construction industry aiming at enhancing the properties of concrete. Many studies have explored the use of engineered nanomaterial such as nano-silica, carbon nanotubes (CNT) and nanofibers in cementitious composites. Recently, nanomaterial studies have focused on Graphene and Graphene Oxide (GO). Graphene is the single atomic layer thick two-dimensional form of graphite and GO is the oxidized form of graphene which is synthesized by oxidation of graphite. Investigations have demonstrated that the use of GO in cementitious composites can enhance their performance. This paper outlines the development of a high-performance graphene-based concrete. Moreover, the paper presents a brief review of previous studies conducted on GO induced cementitious composites and remarkable performance enhancement enabled by GO. The findings of this study contribute towards establishing how GO can be adopted as a nanomaterial additive for concrete.

Downloads

Download data is not yet available.

References

Anwar, A., Mohammed, B. S., Wahab, M. A., & Liew, M. S. (2020). Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial-A review. Developments in the Built Environment, 1, 100002. DOI: https://doi.org/10.1016/j.dibe.2019.100002

Arole, V. M., & Munde, S. V. (2014). Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J. Mater. Sci., 1, 89-93.

Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in colloid and interface science, 170(1-2), 2-27. DOI: https://doi.org/10.1016/j.cis.2011.11.001

Bjegović, D., Serdar, M., & Štirmer, N. (2018). Nanotechnology Applied to Create a New Generation of Multifunctional Construction Materials. Annual of the Croatian Academy of Engineering, 21, 183-204.

Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duana, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 73, 113-124. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.040

Cwirzen, A. (2010). Controlling physical properties of cementitious matrixes by nanomaterials. In Advanced Materials Research (Vol. 123 (pp. 639-642). Kapellweg, Switzerland: Trans Tech Publications Ltd. DOI: https://doi.org/10.4028/www.scientific.net/AMR.123-125.639

Debia, M., Bakhiyi, B., Ostiguy, C., Verbeek, J. H., Brouwer, D. H., & Murashov, V. (2016). A systematic review of reported exposure to engineered nanomaterials. Annals of Occupational Hygiene, 60(8), 916-935. DOI: https://doi.org/10.1093/annhyg/mew041

Giannazzo, F., Sonde, S., & Raineri, V. (2011). Electronic properties of graphene probed at the nanoscale. In S. Mikhailov (Ed.), Physics and Applications of Graphene - Experiments (pp. 353-376). Rijeka, Croatia: INTECH Open Access Publisher. DOI: https://doi.org/10.5772/15258

Liu, C., Chen, F., Wu, Y., Zheng, Z., Yang, J., Yang, B., . . . Luo, Y. (2021). Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews, 10(1), 1208-1235. DOI: https://doi.org/10.1515/ntrev-2021-0080

Mohammed, A., Sanjayan, J. G., Duan, W. H., & Nazari, A. (2015). Incorporating graphene oxide in cement composites: A study of transport properties. Construction and Building Materials, 84, 341-347. DOI: https://doi.org/10.1016/j.conbuildmat.2015.01.083

Nanotechnologies, A. J. I. O. f. S. (2017). Vocabulary–Part 13: Graphene and Related Two-Dimensional (2D) Materials.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., . . . Firsov, a. J. n. (2005). Two-dimensional gas of massless Dirac fermions in graphene. 438(7065), 197-200. DOI: https://doi.org/10.1038/nature04233

Pillay, D. L., Olalusi, O. B., Awoyera, P. O., Rondon, C., Echeverría, A. M., & Kolawole, J. T. (2020). A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/marine structures. . Advances in Civil Engineering. DOI: https://doi.org/10.1155/2020/8880974

Poniatowska, A., Trzaskowski, M., & Ciach, T. (2019). Production and properties of top-down and bottom-up graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315-324561. DOI: https://doi.org/10.1016/j.colsurfa.2018.10.049

Qureshi, T. S., & Panesar, D. K. (2019). Impact of graphene oxide and highly reduced graphene oxide on cement based composites. onstruction and Building Materials, 206, 71-83. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.176

Shah, S. P., Hou, P., & Konsta-Gdoutos, M. S. (2016). Nano-modification of cementitious material: Toward a stronger and durable concrete. Journal of Sustainable Cement-Based Materials, 5((1-2)), 1-22. DOI: https://doi.org/10.1080/21650373.2015.1086286

Silvestre, J., Silvestre, N., & De Brito, J. (2016). Review on concrete nanotechnology. European Journal of Environmental and Civil Engineering, 20(4), 455-485. DOI: https://doi.org/10.1080/19648189.2015.1042070

Sobolev, K. (2016). Modern developments related to nanotechnology and nanoengineering of concrete. Frontiers of structural and civil engineering, 10(2), 131-141. DOI: https://doi.org/10.1007/s11709-016-0343-0

Thickett, S. C., & Zetterlund, P. B. (2013). Functionalization of graphene oxide for the production of novel graphene-based polymeric and colloidal materials. Current Organic Chemistry, 17(9), 956-974. DOI: https://doi.org/10.2174/1385272811317090009

Wang, J., Xu, Y., Wu, X., Zhang, P., & Hu, S. (2020). Advances of graphene-and graphene oxide-modified cementitious materials. Nanotechnology Reviews, 9(1), 465-477. DOI: https://doi.org/10.1515/ntrev-2020-0041

Xu, Y., Zeng, J., Chen, W., Jin, R., Li, B., & Pan, Z. (2018). A holistic review of cement composites reinforced with graphene oxide. . Construction and Building Materials, 171, 291-302. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.147

Yang, H., Zhou, W., Yu, B., Wang, Y., Cong, C., & Yu, T. (2012). Uniform decoration of reduced graphene oxide sheets with gold nanoparticles. Journal of Nanotechnology. DOI: https://doi.org/10.1155/2012/328565

Zhao, L., Guo, X., Song, L., Song, Y., Dai, G., & b, J. L. (2020). An intensive review on the role of graphene oxide in cement-based materials. Construction and Building Materials, 241(117939). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117939

Zhou, M., Wang, Z., & Wang, X. (2017). Carbon nanotubes for sensing applications. In Industrial applications of carbon nanotubes (pp. 129-150): Elsevier. DOI: https://doi.org/10.1016/B978-0-323-41481-4.00005-8

Downloads

Published

2022-10-28

How to Cite

Ginigaddara, T., Ekanayake, J., Mendis, P., Devapura, P., Liyanage, A. and Vaz-Serra, P. (2022) “An Introduction to High Performance Graphene Concrete”, Electronic Journal of Structural Engineering, 22(3), pp. 11–18. doi: 10.56748/ejse.223553.

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>