Spilt Tensile Strength of Fiber-Reinforced Recycled Aggregate Concrete Simulation Employing Tunned Random Forests Trees

Authors

DOI:

https://doi.org/10.56748/ejse.24756

Keywords:

recycled aggregate concrete, fibers, spilt tensile strength, random forests, sensitivity analysis

Abstract

A significant quantity of waste concrete is produced each year due to the demand for concrete manufacturing, which drives the yearly need for raw materials. Recycled aggregate concrete has become a viable remedy as a result. It is vulnerable to breaking and has less strength since the hardened mortar is affixed to natural aggregates, which presents a problem. The goal of this research is to employ random forests (RF) frameworks to project the split tensile strength (STS) of fiber-reinforced recycled aggregate concrete (RAC). The RF framework uses the Chimp optimization algorithm (CHOA) and artificial hummingbird optimization (ARHA) to tweak hyperparameters and select the best-performing combination. A data set including 257 data points and 10 input variables was taken from peer-reviewed published research and arbitrarily split into three phases: testing, validating, and training. The RF-AR approach exhibited high reliability, with R2  of 0.9942, 0.9824, and 0.9913 throughout the learning, validating, and assessment stages. RF-AR had higher results than RF-CH, with R2 of 0.9796, 0.9566, and 0.9694, respectively. Considering the values of the Theil inequality coefficient (TIC), RF-AR depicted the lowest values at 0.0128, 0.0213, and 0.0171 concerning 0.0241, 0.0333, and 0.0318 related to RF-CH for the train, validation as well as test phases, in that order. The RF-AR strategy performed better, even if the RF-CH method was dependable in forecasting the STS of fiber-reinforced RAC, according to the previously stated reasoning and the data.

Downloads

Download data is not yet available.

References

Afkhami Hoor, S., & Esmaeili-Falak, M. (2024). Innovative Approaches for Mitigating Soil Liquefaction: A State-of-the-Art Review of Techniques and Bibliometric Analysis. Indian Geotechnical Journal. DOI: https://doi.org/10.1007/s40098-024-01120-3

Aghayari Hir, M., Zaheri, M., & Rahimzadeh, N. (2023). Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County). Journal of Transportation Research (Tehran), 20(4), 367–386.

Akça, K. R., Çakır, Ö., & İpek, M. (2015). Properties of polypropylene fiber reinforced concrete using recycled aggregates. Construction and Building Materials, 98, 620–630. DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.133

Alabduljabbar, H., Farooq, F., Alyami, M., & Hammad, A. W. A. (2024). Assessment of the split tensile strength of fiber reinforced recycled aggregate concrete using interpretable approaches with graphical user interface. Materials Today Communications, 38, 108009. DOI: https://doi.org/10.1016/j.mtcomm.2023.108009

Alarfaj, M., Qureshi, H. J., Shahab, M. Z., Javed, M. F., Arifuzzaman, M., & Gamil, Y. (2024). Machine learning based prediction models for spilt tensile strength of fiber reinforced recycled aggregate concrete. Case Studies in Construction Materials, 20, e02836. DOI: https://doi.org/10.1016/j.cscm.2023.e02836

Ali, B., & Qureshi, L. A. (2019). Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. Construction and Building Materials, 228, 116783. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116783

Ali, M. A. S., PP, F. R., & Salama Abd Elminaam, D. (2022). A feature selection based on improved artificial hummingbird algorithm using random opposition-based learning for solving waste classification problem. Mathematics, 10(15), 2675. DOI: https://doi.org/10.3390/math10152675

Alnaggar, O., Jagadale, B. N., & Narayan, S. H. (2022). MRI brain tumor detection using boosted crossbred random forests and chimp optimization algorithm based convolutional neural networks. Int J Intell Eng Syst, 15(2), 36–46. DOI: https://doi.org/10.22266/ijies2022.0430.04

Amin, M. N., Ahmad, A., Khan, K., Ahmad, W., Nazar, S., Faraz, M. I., & Alabdullah, A. A. (2022). Split tensile strength prediction of recycled aggregate-based sustainable concrete using artificial intelligence methods. Materials, 15(12), 4296. DOI: https://doi.org/10.3390/ma15124296

Andreu, G., & Miren, E. (2014). Experimental analysis of properties of high performance recycled aggregate concrete. Construction and Building Materials, 52, 227–235. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.054

Babak, A., Shayan, R., P, S. M., Navid, C., S, F. A., & Mazdak, T. (2024). Cold-Formed Cross-Sectional Folds with Optimal Signature Curve. Journal of Engineering Mechanics, 150(8), 04024045. DOI: https://doi.org/10.1061/JENMDT.EMENG-7708

Bagherabad, M. B., Rivandi, E., & Mehr, M. J. (2025). Machine Learning for Analyzing Effects of Various Factors on Business Economic. Authorea Preprints. DOI: https://doi.org/10.36227/techrxiv.174429010.09842200/v1

Bayrami, B. (2021). Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms. Available at SSRN 3992623. DOI: https://doi.org/10.2139/ssrn.3992623

Benemaran, R. S. (2023). Application of extreme gradient boosting method for evaluating the properties of episodic failure of borehole breakout. Geoenergy Science and Engineering, 226, 211837. DOI: https://doi.org/10.1016/j.geoen.2023.211837

Benemaran, R. S., Esmaeili-Falak, M., & Kordlar, M. S. (2024). Improvement of recycled aggregate concrete using glass fiber and silica fume. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(3), 1895–1914. DOI: https://doi.org/10.1007/s41939-023-00313-2

Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. ed. DOI: https://doi.org/10.1023/A:1010933404324

Butler, L., West, J. S., & Tighe, S. L. (2013). Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Construction and Building Materials, 47, 1292–1301. DOI: https://doi.org/10.1016/j.conbuildmat.2013.05.074

Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44, 205–220. DOI: https://doi.org/10.1617/s11527-010-9620-x

Chen, S., Lu, P., Li, B., Wang, L., Guo, L., & Zhang, J. (2022). Influence and evaluation analysis of different fibers on the performance of recycled aggregate pervious concrete. J. Basic Sci. Eng, 30, 208–218.

Chen, Y., Hu, Y., & Hu, X. (2022). Quasi-brittle fracture analysis of large and small wedge splitting concrete specimens with size from 150 mm to 2 m and aggregates from 10 to 100 mm. Theoretical and Applied Fracture Mechanics, 121, 103474. DOI: https://doi.org/10.1016/j.tafmec.2022.103474

Das, C. S., Dey, T., Dandapat, R., Mukharjee, B. B., & Kumar, J. (2018). Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Construction and Building Materials, 189, 649–659. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.036

Dawei, Y., Bing, Z., Bingbing, G., Xibo, G., & Razzaghzadeh,doi B. (2023). Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models. Structural Engineering and Mechanics, An Int’l Journal, 86(5), 673–686.

Dong, J. F., Wang, Q. Y., & Guan, Z. W. (2017). Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Construction and Building Materials, 130, 241–251. DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.118

Duan, Z. H., & Poon, C. S. (2014). Properties of recycled aggregate concrete are made with recycled aggregates with different amounts of old adhered mortars. Materials & Design, 58, 19–29. DOI: https://doi.org/10.1016/j.matdes.2014.01.044

Esmaeili-Falak, M., & Benemaran, R. S. (2023). Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles. Geomechanics and Engineering, 32(6), 583.

Esmaeili-Falak, M., & Benemaran, R. S. (2024). Ensemble Extreme Gradient Boosting based models to predict the bearing capacity of micropile group. Applied Ocean Research, 151, 104149. DOI: https://doi.org/10.1016/j.apor.2024.104149

Esmaeili-Falak, M., Katebi, H., Vadiati, M., & Adamowski, J. (2019). Predicting triaxial compressive strength and Young’s modulus of frozen sand using artificial intelligence methods. Journal of Cold Regions Engineering, 33(3), 04019007. DOI: https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188

Esmaeili‐Falak, M., & Sarkhani Benemaran, R. (2024). Application of optimization‐based regression analysis for evaluation of frost durability of recycled aggregate concrete. Structural Concrete, 25(1), 716–737. DOI: https://doi.org/10.1002/suco.202300566

Etxeberria, M., Marí, A. R., & Vázquez, E. (2007). Recycled aggregate concrete as structural material. Materials and Structures, 40, 529–541. DOI: https://doi.org/10.1617/s11527-006-9161-5

Fang, S.-E., Hong, H.-S., & Zhang, P.-H. (2018). Mechanical property tests and strength formulas of basalt fiber reinforced recycled aggregate concrete. Materials, 11(10), 1851. DOI: https://doi.org/10.3390/ma11101851

Fathifazl, G., Razaqpur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2011). Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cement and Concrete Composites, 33(10), 1026–1037. DOI: https://doi.org/10.1016/j.cemconcomp.2011.08.004

Folino, P., & Xargay, H. (2014). Recycled aggregate concrete–Mechanical behavior under uniaxial and triaxial compression. Construction and Building Materials, 56, 21–31. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.073

Fonseca, N., De Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33(6), 637–643. DOI: https://doi.org/10.1016/j.cemconcomp.2011.04.002

Gao, D., & Zhang, L. (2018). Flexural performance and evaluation method of steel fiber reinforced recycled coarse aggregate concrete. Construction and Building Materials, 159, 126–136. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.073

Ghosh, D. (2009). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning by IZENMAN, AJ. Oxford University Press. DOI: https://doi.org/10.1111/j.1541-0420.2009.01315_2.x

Gómez-Soberón, J. M. V. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cement and Concrete Research, 32(8), 1301–1311. DOI: https://doi.org/10.1016/S0008-8846(02)00795-0

Hassankhani, E., & Esmaeili-Falak, M. (2024). Soil–Structure Interaction for Buried Conduits Influenced by the Coupled Effect of the Protective Layer and Trench Installation. Journal of Pipeline Systems Engineering and Practice, 15(2), 04024012. DOI: https://doi.org/10.1061/JPSEA2.PSENG-1547

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2). Springer. DOI: https://doi.org/10.1007/978-0-387-84858-7

Hu, X., Li, Q., Wu, Z., & Yang, S. (2022). Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics. Engineering Fracture Mechanics, 259, 108158. DOI: https://doi.org/10.1016/j.engfracmech.2021.108158

Ibrahm, H. A., & Abbas, B. J. (2017). Mechanical behavior of recycled self-compacting concrete reinforced with polypropylene fibres. Journal of Architectural Engineering Technology, 6(2), 1–7. DOI: https://doi.org/10.4172/2168-9717.1000207

Iwanaga, T., Usher, W., & Herman, J. (2022). Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, 18155. DOI: https://doi.org/10.18174/sesmo.18155

Katkhuda, H., & Shatarat, N. (2017). Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Construction and Building Materials, 140, 328–335. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.128

Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338. DOI: https://doi.org/10.1016/j.eswa.2020.113338

Kinga, D., & Adam, J. B. (2015). A method for stochastic optimization. International Conference on Learning Representations (ICLR), 5, 6.

Kou, S. C., Poon, C. S., & Chan, D. (2007). Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. Journal of Materials in Civil Engineering, 19(9), 709–717. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)

Kou, S. C., Poon, C. S., & Chan, D. (2008). Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures, 41, 1191–1201. DOI: https://doi.org/10.1617/s11527-007-9317-y

Kuijpers, M. (2020). Concrete is one of the most polluting materials in the world. Here’s how we can make it sustainable. The Correspondent. September 9, 2020.

Kumarawadu, H., Weerasinghe, P., & Perera, J. S. (2024). Evaluating the Performance of Ensemble Machine Learning Algorithms over Traditional Machine Learning Algorithms for Predicting Fire Resistance in FRP Strengthened Concrete Beams. Electronic Journal of Structural Engineering, 24(3), 47–53. DOI: https://doi.org/10.56748/ejse.24661

Liang, R., & Bayrami, B. (2023). Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms. Steel and Composite Structures, 49(1), 91–107.

Liu, H., Yang, J., Kong, X., & Xue, X. (2017). Basic mechanical properties of basalt fiber reinforced recycled aggregate concrete. The Open Civil Engineering Journal, 11(1). DOI: https://doi.org/10.2174/1874149501711010043

Meesala, C. R. (2019). Influence of different types of fiber on the properties of recycled aggregate concrete. Structural Concrete, 20(5), 1656–1669. DOI: https://doi.org/10.1002/suco.201900052

Mohammadi Yaychi, B., & Esmaeili-Falak, M. (2024). Estimating Axial Bearing Capacity of Driven Piles Using Tuned Random Forest Frameworks. Geotechnical and Geological Engineering. DOI: https://doi.org/10.1007/s10706-024-02952-9

Moradi, G., Hassankhani, E., & Halabian, A. M. (2022). Experimental and numerical analyses of buried box culverts in trenches using geofoam. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 175(3), 311–322. DOI: https://doi.org/10.1680/jgeen.19.00288

Neshatfar, S., Magner, A., & Sekeh, S. Y. (2023). Promise and Limitations of Supervised Optimal Transport-Based Graph Summarization via Information Theoretic Measures. IEEE Access, 11, 87533–87542. DOI: https://doi.org/10.1109/ACCESS.2023.3302830

Neshatfar, S., & Sekeh, S. Y. (2024). Robust Subgraph Learning by Monitoring Early Training Representations. ArXiv Preprint ArXiv:2403.09901.

Pan, X., Xiao, Y., Suhail, S. A., Ahmad, W., Murali, G., Salmi, A., & Mohamed, A. (2022). Use of artificial intelligence methods for predicting the strength of recycled aggregate concrete and the influence of raw ingredients. Materials, 15(12), 4194. DOI: https://doi.org/10.3390/ma15124194

Pedro, D., De Brito, J., & Evangelista, L. (2015). Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process. Materials and Structures, 48, 3965–3978. DOI: https://doi.org/10.1617/s11527-014-0456-7

Pereira, P., Evangelista, L., & De Brito, J. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. DOI: https://doi.org/10.1016/j.cemconcomp.2012.06.009

Rivandi, E., & Jamili Oskouie, R. (2024). A Novel Approach for Developing Intrusion Detection Systems in Mobile Social Networks. Available at SSRN 5174811. DOI: https://doi.org/10.2139/ssrn.5174811

Saffari, A., Zahiri, S. H., Khishe, M., & Mosavi, S. M. (2022). Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition. Iranian Journal of Marine Technology, 9(1), 1–14.

Sun, X., Gao, Z., Cao, P., Zhou, C., Ling, Y., Wang, X., Zhao, Y., & Diao, M. (2019). Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam. Construction and Building Materials, 225, 788–800. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.244

Thomas, C., Setién, J., Polanco, Ja., Alaejos, P., & De Juan, M. S. (2013). Durability of recycled aggregate concrete. Construction and Building Materials, 40, 1054–1065. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.106

Thomas, C., Sosa, I., Setién, J., Polanco, J. A., & Cimentada, A. I. (2014). Evaluation of the fatigue behavior of recycled aggregate concrete. Journal of Cleaner Production, 65, 397–405. DOI: https://doi.org/10.1016/j.jclepro.2013.09.036

Umba, L. N., Amir, I. Y., Gelete, G., Gökçekuş, H., & Uwanuakwa, I. D. (2024). Artificial hummingbird algorithm-optimized boosted tree for improved rainfall-runoff modelling. Journal of Hydroinformatics, 26(1), 203–213. DOI: https://doi.org/10.2166/hydro.2023.187

Wang, Y., Hughes, P., Niu, H., & Fan, Y. (2019). A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica. Journal of Cleaner Production, 236, 117602. DOI: https://doi.org/10.1016/j.jclepro.2019.07.077

Yang, K.-H., Chung, H.-S., & Ashour, A. (2008). Influence of Type and Replacement Level of Recycled Aggregates on Concrete Properties.

Younis, K. H., & Pilakoutas, K. (2013). Strength prediction model and methods for improving recycled aggregate concrete. Construction and Building Materials, 49, 688–701. DOI: https://doi.org/10.1016/j.conbuildmat.2013.09.003

Yuan, F., Cheng, L., Shao, X., Dong, Z., Zhang, L., Wu, G., & He, X. (2020). Full-field measurement and fracture and fatigue characterizations of asphalt concrete based on the SCB test and stereo-DIC. Engineering Fracture Mechanics, 235, 107127. DOI: https://doi.org/10.1016/j.engfracmech.2020.107127

Zarei, M., Mohseni, F., & Sohrabi, P. (2024). Correlates of spatial structure variability in Bushehr port-city: A comprehensive analysis using fuzzy cognitive mapping methodology. J. Infrastruct. Policy Dev, 8, 8789. DOI: https://doi.org/10.24294/jipd.v8i11.8789

Zega, C. J., & Di Maio, A. A. (2011). Recycled concrete is made with waste ready-mix concrete as coarse aggregate. Journal of Materials in Civil Engineering, 23(3), 281–286. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000165

Zhang, X. B., Kuang, C. G., Fang, Z., Liu, X. H., Wang, G. Q., & Lai, S. (2014). Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete. J. Build. Mater, 17, 677–684.

Zhao, W., Wang, L., & Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering, 388, 114194. DOI: https://doi.org/10.1016/j.cma.2021.114194

郭磊, 刘思源, 陈守开, 汪伦焰, & 薛志龙. (2019). 纤维改性再生骨料透水混凝土力学性能透水性和耐磨性研究. Transactions of the Chinese Society of Agricultural Engineering, 35(2).

Downloads

Published

2025-06-20

How to Cite

Chen, X., Xi, C., Xiao, M. and Wu, L. (2025) “Spilt Tensile Strength of Fiber-Reinforced Recycled Aggregate Concrete Simulation Employing Tunned Random Forests Trees”, Electronic Journal of Structural Engineering, 25(2), pp. 17–25. doi: 10.56748/ejse.24756.

Issue

Section

Articles