Numerical Modeling of Steel Fiber Reinforced Recycled Concrete Filled Steel Tube Column Under Cyclic Loading
DOI:
https://doi.org/10.56748/ejse.24548Keywords:
Cyclic loading, Concrete-filled steel tube (CFST) Columns, Steel fiber reinforced recycled concrete, FE modeling,Abstract
A finite element model (FEM) was created with the aim of analyzing the behavior of steel fiber reinforced recycled concrete (SFRRC)-filled steel tube columns under combined cyclic loading and monotonic axial load. The FEM considered the effect of steel tube confinement on the inner concrete behavior under cyclic loading. The numerical model was described in detail, with a focus on modeling the materials involved (normal concrete, SFRRC, and steel) under cyclic loading. A constitutive concrete model - with and without considering confinement - was based on utilizing a concrete damaged plasticity (CDP) model. The steel tube - concrete core interface was modeled by a surface-to-surface contact. A stress-strain constitutive concrete model, confined by circular steel tubes, was implemented, and validated using experimental results from the literature. The developed FEM considered various parameters: steel tube thickness, volume ratios of steel fibers, besides strengths of both concrete core and the steel tube. The FEM results showed great similarity to the under- cyclic- loading tested columns. The results indicated that the concrete confining pressure must be considered in CDP model. A good correlation between numerical and experimental findings was obvious, including failure modes, and hysteretic curves of load-displacement.
Downloads
References
ACI, A. (2014). Building code requirements for structural concrete and commentary. ACI 318, 14.
ACI Committee. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.
Aksoylu, C., Özkılıç, Y. O., Hadzima-Nyarko, M., Işık, E., & Arslan, M. H. (2022). Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires. Sustainability, 14(20), 13360. DOI: https://doi.org/10.3390/su142013360
Amin, M., Agwa, I. S., Mashaan, N., Mahmood, S., & Abd-Elrahman, M. H. (2023). Investigation of the physical mechanical properties and durability of sustainable ultra-high-performance concrete with recycled waste glass. Sustainability, 15(4), 3085. DOI: https://doi.org/10.3390/su15043085
Chaboche, J.-L. (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of plasticity, 2(2), 149-188. DOI: https://doi.org/10.1016/0749-6419(86)90010-0
Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of plasticity, 5(3), 247-302. DOI: https://doi.org/10.1016/0749-6419(89)90015-6
Chang, X., Fu, L., Zhao, H.-B., & Zhang, Y.-B. (2013). Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes. Thin-Walled Structures, 73, 273-280. DOI: https://doi.org/10.1016/j.tws.2013.08.018
Chang, Y., Chen, W., Xiao, Q., Rong, E., & Peng, L. (2021). Theoretical and experimental study on axial compression concrete-filled tubes with different confinements. Journal of constructional steel research, 185, 106862. DOI: https://doi.org/10.1016/j.jcsr.2021.106862
Chen, J., Wang, J., Xie, F., & Jin, W.-l. (2016). Behavior of thin-walled dodecagonal section double skin concrete-filled steel tubes under bending. Thin-Walled Structures, 98, 293-300. DOI: https://doi.org/10.1016/j.tws.2015.10.002
Choi, C. S., Jung, H. S., & Choi, H. K. (2013). The behavior of concrete filled steel square-tube stub column with steel-fiber reinforced high strength concrete. Advanced Materials Research, 663, 125-129. DOI: https://doi.org/10.4028/www.scientific.net/AMR.663.125
Desayi, P., & Krishnan, S. (1964). Equation for the stress-strain curve of concrete. Paper presented at the Journal Proceedings.
Di, J., Fan, J., Zhou, X., Zhao, L., Han, B., Qin, F., & Zhang, Z. (2022). The hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance. Engineering Structures, 251, 113532. DOI: https://doi.org/10.1016/j.engstruct.2021.113532
Di, J., Han, B., Zhou, X., Hu, L., Qi, Y., & Qin, F. (2022). Experimental investigation into cyclic working performances of prefabricated CFST columns with improved column-footing connections. Journal of Building Engineering, 46, 103772. DOI: https://doi.org/10.1016/j.jobe.2021.103772
ELWakkad, N. Y., Heiza, K. M., & Mansour, W. (2023). Experimental study and finite element modelling of the torsional behavior of self-compacting reinforced concrete (SCRC) beams strengthened by GFRP. Case Studies in Construction Materials, 18, e02123. DOI: https://doi.org/10.1016/j.cscm.2023.e02123
Emad, W., Mohammed, A. S., Kurda, R., Ghafor, K., Cavaleri, L., Qaidi, S. M., . . . Asteris, P. G. (2022). Prediction of concrete materials compressive strength using surrogate models. Paper presented at the Structures. DOI: https://doi.org/10.1016/j.istruc.2022.11.002
Européen, C. (2004). Eurocode 2: Design of concrete structures—part 1-1: General rules and rules for buildings. London: British Standard Institution.
Fam, A., Qie, F. S., & Rizkalla, S. (2004). Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. Journal of structural engineering, 130(4), 631-640. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
Fantilli, A. P., Vallini, P., & Chiaia, B. (2011). Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression. Cement and Concrete Composites, 33(4), 520-527. DOI: https://doi.org/10.1016/j.cemconcomp.2011.02.007
Fayed, S., Badr el-din, A., Basha, A., & Mansour, W. (2022). The shear behavior of RC pile cap beams strengthened using ultra high- performance concrete reinforced with steel mesh fabric. Case Studies in Construction Materials, 17, e01532. DOI: https://doi.org/10.1016/j.cscm.2022.e01532
Fayed, S., Madenci, E., Bahrami, A., Özkiliç, Y. O., & Mansour, W. (2023). Experimental study on using recycled polyethylene terephthalate and steel fibers for improving behavior of RC columns. Case Studies in Construction Materials, 19, e02344. DOI: https://doi.org/10.1016/j.cscm.2023.e02344
Fayed, S., Madenci, E., Özkiliç, Y. O., & Mansour, W. (2023). Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement. Construction and Building Materials, 369, 130452. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130452
Fayed, S., Madenci, E., Özkiliç, Y. O., & Tawfik, T. A. (2024). Effect of Block Size on Bearing Strength of Steel Fiber-Reinforced Recycled Aggregate Concrete. Arabian Journal for Science and Engineering, 49(4), 5287-5303. DOI: https://doi.org/10.1007/s13369-023-08344-0
Ge, H., & Usami, T. (1996). Cyclic tests of concrete-filled steel box columns. Journal of structural engineering, 122(10), 1169-1177. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1169)
Gopal, S. R., & Manoharan, P. D. (2006). Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete. Journal of constructional steel research, 62(5), 513-520. DOI: https://doi.org/10.1016/j.jcsr.2005.09.004
Hajjar, J. F., & Gourley, B. C. (1997). A cyclic nonlinear model for concrete-filled tubes. I: Formulation. Journal of structural engineering, 123(6), 736-744. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(736)
Han, L.-H., Huang, H., Tao, Z., & Zhao, X.-L. (2006). Concrete-filled double skin steel tubular (CFDST) beam–columns subjected to cyclic bending. Engineering Structures, 28(12), 1698-1714. DOI: https://doi.org/10.1016/j.engstruct.2006.03.004
Han, L.-H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of constructional steel research, 100, 211-228. DOI: https://doi.org/10.1016/j.jcsr.2014.04.016
Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. University of Illinois. Engineering Experiment Station. Bulletin; no. 399.
Hu, H.-T., Huang, C.-S., Wu, M.-H., & Wu, Y.-M. (2003). Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of structural engineering, 129(10), 1322-1329 DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
Ibañez, C., Hernández-Figueirido, D., & Piquer, A. (2021). Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment. Engineering Structures, 230, 111687. DOI: https://doi.org/10.1016/j.engstruct.2020.111687
Jaf, D. K. I., Abdulrahman, P. I., Mohammed, A. S., Kurda, R., Qaidi, S. M., & Asteris, P. G. (2023). Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete. Construction and Building Materials, 400, 132604. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132604
Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the structural division, 97(7), 1969-1990. DOI: https://doi.org/10.1061/JSDEAG.0002957
Lai, M. H., & Ho, J. (2015). Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets. Thin-Walled Structures, 97, 11-21. DOI: https://doi.org/10.1016/j.tws.2015.09.002
Liang, Q. Q. (2009). Performance-based analysis of concrete-filled steel tubular beam–columns, Part I: Theory and algorithms. Journal of constructional steel research, 65(2), 363-372. DOI: https://doi.org/10.1016/j.jcsr.2008.03.007
Liu, J., Zhou, X., & Zhang, S. (2008). Seismic behaviour of square CFT beam–columns under biaxial bending moment. Journal of constructional steel research, 64(12), 1473-1482. DOI: https://doi.org/10.1016/j.jcsr.2008.01.013
Liu, X., Liu, J., Yang, Y., Cheng, G., & Lanning, J. (2020). Resistance of special-shaped concrete-filled steel tube columns under compression and bending. Journal of constructional steel research, 169, 106038. DOI: https://doi.org/10.1016/j.jcsr.2020.106038
Liu, Z., Lu, Y., Li, S., & Liao, J. (2019). Axial behavior of slender steel tube filled with steel-fiber-reinforced recycled aggregate concrete. Journal of constructional steel research, 162, 105748. DOI: https://doi.org/10.1016/j.jcsr.2019.105748
Liu, Z., Lu, Y., Li, S., & Liao, J. (2021). Shear response of steel fiber reinforced recycled concrete-filled steel tube columns. Advances in Structural Engineering, 24(12), 2684-2704. DOI: https://doi.org/10.1177/13694332211009322
Liu, Z., Lu, Y., Li, S., Zong, S., & Yi, S. (2020). Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. Journal of cleaner production, 274, 122724. DOI: https://doi.org/10.1016/j.jclepro.2020.122724
Lu, Y.-y., Li, N., Li, S., & Liang, H.-j. (2015). Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns. Journal of Central South University, 22(6), 2287-2296. DOI: https://doi.org/10.1007/s11771-015-2753-x
Lu, Y., Li, N., Li, S., & Liang, H. (2015). Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, 95, 74-85. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.114
Lue, D. M., Liu, J.-L., & Yen, T. (2007). Experimental study on rectangular CFT columns with high-strength concrete. Journal of constructional steel research, 63(1), 37-44. DOI: https://doi.org/10.1016/j.jcsr.2006.03.007
Madenci, E., Fayed, S., Mansour, W., & Özkılıç, Y. O. (2022). Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression. Steel and Composite Structures, An International Journal, 45(5), 653-663.
Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
Mansour, W., Li, W., Wang, P., & Badawi, M. (2024). Experimental and numerical evaluations of the shear performance of recycled aggregate RC beams strengthened using CFRP sheets. Engineering Structures, 301, 117368. DOI: https://doi.org/10.1016/j.engstruct.2023.117368
Morishita, Y. (1982). Experimental Studies on Bond Strength between Square Steel Tube in Concrete Filled and Encased Concrete Core under Cyclic Shearing Force and Constant Axial Force. Transactions of the Japan Concrete Institute, 4, 363-370.
Nguyen, T.-T., Thai, H.-T., Ngo, T., Uy, B., & Li, D. (2021). Behaviour and design of high strength CFST columns with slender sections. Journal of constructional steel research, 182, 106645. DOI: https://doi.org/10.1016/j.jcsr.2021.106645
Osama, B., & Sakr, M. (2023). Modeling of Ultra-high Performance Fiber Reinforced Concrete Filled Steel Tube Columns under Eccentric Loading. Periodica Polytechnica Civil Engineering, 67(1), 10-23. DOI: https://doi.org/10.3311/PPci.20593
Probst, A. D., Kang, T. H.-K., Ramseyer, C., & Kim, U. (2010). Composite flexural behavior of full-scale concrete-filled tubes without axial loads. Journal of structural engineering, 136(11), 1401-1412. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000241
Qu, X., Xie, Y., Sun, G., Liu, Q., & Wang, H. (2023). Seismic Behavior of Assembly Joint with CFST Column and H-shaped Steel Beam. KSCE Journal of Civil Engineering, 27(2), 670-683. DOI: https://doi.org/10.1007/s12205-022-0781-2
Richart, F. E., Brandtzæg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. University of Illinois. Engineering Experiment Station. Bulletin; no. 185.
Saad, A. G., Sakr, M. A., Khalifa, T. M., & Darwish, E. A. (2023). Numerical analysis of rubberized engineered cementitious composite (RECC) RC beams under impact loads. Construction and Building Materials, 409, 134162. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134162
Sakr, M. A., El-Khoriby, S. R., Seleemah, A. A., Aboelnour, M. M., & Osama, B. (2021). Experimental and numerical investigation on cyclic behavior of masonry infilled RC frames retrofitted with partially bonded CFRP strips. Structures, 33, 2238-2252. DOI: https://doi.org/10.1016/j.istruc.2021.05.087
Sakr, M. A., Saad, A. G., & El-korany, T. M. (2022). Analysis of exterior beam-column joints under varying column axial load and code comparisons. Advances in Structural Engineering, 25(4), 837-863. DOI: https://doi.org/10.1177/13694332211050979
Simulia, A. U. M. (2007). Abaqus Version 6.7. 1. Dassault Systémes.
Simulia, D. S. (2013). ABAQUS 6.13 User’s manual. Dassault Systems, Providence, RI, 305, 306.
Song, P., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669-673. DOI: https://doi.org/10.1016/j.conbuildmat.2004.04.027
Tam, L.-h., Minkeng, M. A. N., Lau, D., Mansour, W., & Wu, C. (2023). Molecular interfacial shearing creep behavior of carbon fiber/epoxy matrix interface under moisture condition. Engineering Fracture Mechanics, 282, 109177. DOI: https://doi.org/10.1016/j.engfracmech.2023.109177
Tao, Z., Wang, Z.-B., & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of constructional steel research, 89, 121-131. DOI: https://doi.org/10.1016/j.jcsr.2013.07.001
Theofanous, M., Chan, T. M., & Gardner, L. (2009). Structural response of stainless-steel oval hollow section compression members. Engineering Structures, 31(4), 922-934. DOI: https://doi.org/10.1016/j.engstruct.2008.12.002
Tokgoz, S., & Dundar, C. (2010). Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete. Thin-Walled Structures, 48(6), 414-422. DOI: https://doi.org/10.1016/j.tws.2010.01.009
Tu, C., Shi, Y., Liu, D., Wang, W., & Ban, H. (2021). Behavior and general design method of concrete-filled high-strength steel tube (CFHST) columns. Engineering Structures, 243, 112506. DOI: https://doi.org/10.1016/j.engstruct.2021.112506
Wang, M., Shi, Y., Wang, Y., & Shi, G. (2013). Numerical study on seismic behaviors of steel frame end-plate connections. Journal of constructional steel research, 90, 140-152. DOI: https://doi.org/10.1016/j.jcsr.2013.07.033
Xiao, J., & Xiao, J. (2018). Recycled aggregate concrete: Springer. DOI: https://doi.org/10.1007/978-3-662-53987-3
Xu, S., Wu, C., Liu, Z., & Shao, R. (2019). Experimental investigation on the cyclic behaviors of ultra-high-performance steel fiber reinforced concrete filled thin-walled steel tubular columns. Thin-Walled Structures, 140, 1-20. DOI: https://doi.org/10.1016/j.tws.2019.03.008
Yıldızel, S. A., Özkılıç, Y. O., Bahrami, A., Aksoylu, C., Başaran, B., Hakamy, A., & Arslan, M. H. (2023). Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres. Case Studies in Construction Materials, 19, e02227. DOI: https://doi.org/10.1016/j.cscm.2023.e02227
Yildizel, S. A., Özkılıç, Y. O., & Yavuz, A. (2024). Optimization of waste tyre steel fiber and rubber added foam concretes using Taguchi method and artificial neural networks. Paper presented at the Structures. DOI: https://doi.org/10.1016/j.istruc.2024.106098
Yu, X. Q., Lin, M., Geng, G. L., Wei, N., & Jia, L. (2013). Study on mechanical properties of steel fiber reinforced concrete. Applied Mechanics and Materials, 252, 280-284. DOI: https://doi.org/10.4028/www.scientific.net/AMM.252.280
Yuan, F., Huang, H., & Chen, M. (2019). Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns. Thin-Walled Structures, 135, 196-209. DOI: https://doi.org/10.1016/j.tws.2018.11.015
Zeybek, Ö., Özkılıç, Y. O., Çelik, A. İ., Deifalla, A. F., Ahmad, M., & Sabri Sabri, M. M. (2022). Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire. Frontiers in Materials, 9, 1057128. DOI: https://doi.org/10.3389/fmats.2022.1057128
Zhao, P., Huang, Y., Liu, Z., Wang, H., & Lu, Y. (2022). Experimental research on seismic performance of steel fiber-reinforced recycled concrete-filled circular steel tube columns. Journal of Building Engineering, 54, 104683. DOI: https://doi.org/10.1016/j.jobe.2022.104683
Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of constructional steel research, 134, 17-27. DOI: https://doi.org/10.1016/j.jcsr.2017.03.003
Zhu, H., Zhang, H., & Liu, L. (2021). Experimental Study on Cyclic Lateral Loaded Circular CFST Members with Initial Imperfections. KSCE Journal of Civil Engineering, 25(8), 3064-3074. DOI: https://doi.org/10.1007/s12205-021-1931-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohamed A. Sakr , Ayman A. Seleemah , Omnia F. Kharoob , Mostafa Aboelnour
This work is licensed under a Creative Commons Attribution 4.0 International License.