Impact of composite and aluminium face sheets on the properties of the 3D-printed cores under quasi-static three-point bending
DOI:
https://doi.org/10.56748/ejse.24543Keywords:
Sandwich Panel, PLA, ABS, GFRP, Energy AbsorberAbstract
3D printers have been the focus of many researchers in recent years. Many thin-walled structures can be produced using 3D printers. One of the thin wall structures that can be made with 3D printers is the core of sandwich panels. In this research, cores with rectangular cross section have been made using Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) filaments. These cores were reinforced using aluminum and composite face sheets and subjected to a three-point bending test. Glass fibers with a density of 200 g/m2 were used to make composite shells. The results showed that the addition of aluminum and composite face sheets, although increasing the flexural strength, greatly reduces the flexibility of the core.
Downloads
References
Aamir, M., Tolouei-Rad, M., Giasin, K., & Nosrati, A. 2019. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review. The International Journal of Advanced Manufacturing Technology, 105(5), 2289-2308. DOI: https://doi.org/10.1007/s00170-019-04348-z
Alshaer, A. W., & Harland, D. J. 2021. An investigation of the strength and stiffness of weight-saving sandwich beams with CFRP face sheets and seven 3D printed cores. Composite Structures, 257, 113391. DOI: https://doi.org/10.1016/j.compstruct.2020.113391
ASTME8/E8M-09. 2011. Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009, www.astm.org.: ASTM.
Bharath, H. S., Bonthu, D., Gururaja, S., Prabhakar, P., & Doddamani, M. 2021. Flexural response of 3D printed sandwich composite. Composite Structures, 263, 113732. DOI: https://doi.org/10.1016/j.compstruct.2021.113732
Chahardoli, S., Sheikh Ahmadi, M., Tran, T. N., & Khan, A. 2021. Optimization of performance in multi-cell beams with different surface slopes for use in vehicle structure using a multi-objective evolutionary algorithm based on decomposition. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(7), 1604-1621. DOI: https://doi.org/10.1177/1464420721997845
Chahardoli, S., Tran, T. N., Hossaeini Marashi, S. M., Masoumi, F., & Tatyana Yu, S. 2021. Experimental investigation of the crushing characteristics in sandwich panels in the application of light vehicles using three-point bending tests. Engineering Failure Analysis, 129, 105725. DOI: https://doi.org/10.1016/j.engfailanal.2021.105725
Chen, X., Ji, Q., Wei, J., Tan, H., Yu, J., Zhang, P., . . . Kadic, M. 2020. Light-weight shell-lattice metamaterials for mechanical shock absorption. International Journal of Mechanical Sciences, 169, 105288. DOI: https://doi.org/10.1016/j.ijmecsci.2019.105288
Daraei, A., Sharifi, F., Qader, D. N., Hama Ali, H. F., & Kolivand, F. 2023. Prediction of the static elastic modulus of limestone using downhole seismic test in Asmari formation. Acta Geophysica, 1-9. DOI: https://doi.org/10.1007/s11600-023-01109-1
Ghazlan, A., Nguyen, T., Ngo, T., Linforth, S., & Le, V. T. 2020. Performance of a 3D printed cellular structure inspired by bone. Thin-Walled Structures, 151, 106713. DOI: https://doi.org/10.1016/j.tws.2020.106713
Kucewicz, M., Baranowski, P., & Małachowski, J. 2019. A method of failure modeling for 3D printed cellular structures. Materials & Design, 174, 107802. DOI: https://doi.org/10.1016/j.matdes.2019.107802
Kucewicz, M., Baranowski, P., Małachowski, J., Popławski, A., & Płatek, P. 2018. Modelling, and characterization of 3D printed cellular structures. Materials & Design, 142, 177-189. DOI: https://doi.org/10.1016/j.matdes.2018.01.028
Kucewicz, M., Baranowski, P., Stankiewicz, M., Konarzewski, M., Płatek, P., & Małachowski, J. 2019. Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions. Thin-Walled Structures, 145, 106385. DOI: https://doi.org/10.1016/j.tws.2019.106385
Kumar Sahu, S., Dhar Badgayan, N., & Rama Sreekanth, P. S. 2020. Numerical investigation on the effect of wall thickness on quasistatic crushing properties of nylon honeycomb structure. Materials Today: Proceedings, 27, 798-804. DOI: https://doi.org/10.1016/j.matpr.2019.12.351
Li, S., Liu, Z., Shim, V. P. W., Guo, Y., Sun, Z., Li, X., & Wang, Z. 2020. In-plane compression of 3D-printed self-similar hierarchical honeycombs – Static and dynamic analysis. Thin-Walled Structures, 157, 106990. DOI: https://doi.org/10.1016/j.tws.2020.106990
Özbayrak, A., Ali, M. K., & Çıtakoğlu, H. 2023. Buckling Load Estimation Using Multiple Linear Regression Analysis and Multigene Genetic Programming Method in Cantilever Beams with Transverse Stiffeners. Arabian Journal for Science and Engineering, 48(4), 5347-5370. DOI: https://doi.org/10.1007/s13369-022-07445-6
Özen, İ., Çava, K., Gedikli, H., Alver, Ü., & Aslan, M. 2020. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores. Thin-Walled Structures, 156, 106989. DOI: https://doi.org/10.1016/j.tws.2020.106989
Peng, C., Fox, K., Qian, M., Nguyen-Xuan, H., & Tran, P. 2021. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling. Thin-Walled Structures, 161, 107471. DOI: https://doi.org/10.1016/j.tws.2021.107471
Rebelo, H. B., Lecompte, D., Cismasiu, C., Jonet, A., Belkassem, B., & Maazoun, A. 2019. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding. International Journal of Impact Engineering, 131, 162-173. DOI: https://doi.org/10.1016/j.ijimpeng.2019.05.013
Sahu, S. K., Badgayan, N. D., Samanta, S., Sahu, D., & Sreekanth, P. S. R. 2018. Influence of cell size on out of plane stiffness and in-plane compliance character of the sandwich beam made with tunable PCTPE nylon honeycomb core and hybrid polymer nanocomposite skin. International Journal of Mechanical Sciences, 148, 284-292. DOI: https://doi.org/10.1016/j.ijmecsci.2018.08.011
Santos, F. A., Rebelo, H., Coutinho, M., Sutherland, L. S., Cismasiu, C., Farina, I., & Fraternali, F. 2021. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg. Composite Structures, 256, 113128. DOI: https://doi.org/10.1016/j.compstruct.2020.113128
Usta, F., Ertaş, O. F., Ataalp, A., Türkmen, H. S., Kazancı, Z., & Scarpa, F. 2019. Impact behavior of triggered and non-triggered crash tubes with auxetic lattices. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2(2), 119-127. DOI: https://doi.org/10.1007/s41939-018-00040-z
Usta, F., Scarpa, F., & Türkmen, H. S. 2020. Edgewise compression of novel hexagonal hierarchical and asymmetric unit cells honeycomb metamaterials. Materials Today Communications, 24, 101102. DOI: https://doi.org/10.1016/j.mtcomm.2020.101102
Usta, F., Türkmen, H. S., & Scarpa, F. 2021. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures. Thin-Walled Structures, 163, 107738. DOI: https://doi.org/10.1016/j.tws.2021.107738
Wang, S., Zhang, M., Wang, Y., Huang, Z., & Fang, Y. 2021. Experimental studies on quasi-static axial crushing of additively-manufactured PLA random honeycomb-filled double circular tubes. Composite Structures, 261, 113553. DOI: https://doi.org/10.1016/j.compstruct.2021.113553
Xu, M., Pan, L., Chen, J., Zhang, X., & Yu, X. 2019. The flexural properties of end-trabecular beetle elytron plates and their flexural failure mechanism. Journal of Materials Science, 54(11), 8414-8425. DOI: https://doi.org/10.1007/s10853-019-03488-7
Ye, G., Bi, H., & Hu, Y. 2020. Compression behaviors of 3D printed pyramidal lattice truss composite structures. Composite Structures, 233, 111706. DOI: https://doi.org/10.1016/j.compstruct.2019.111706
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Diyar N. Qader, Rzgar Sirwan, Mohammed Kamal Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.