An Overview of Microwave Assisted Pyrolysis for Waste Management, with Some Thoughts about Processing Industrial Hemp and Other Woody Wastes




Waste Management, Microwave Assisted Pyrolysis, Organic waste, Biochar, Bio-oil, Syngas


The generation of waste is significantly influenced by the increase in population and industrialization, thereby compelling the increased demand for waste management and resource recovery. This paper investigates the potential opportunities presented by the utilization of microwave-assisted pyrolysis for processing plastic and organic waste materials, with a particular focus on industrial hemp leaves, hurds, and root materials, and other feedstocks. Drawing from a range of published studies, it is suggested that microwave-assisted pyrolysis has the potential to achieve energy neutrality or even energy generation, if all byproducts are used. Depending on factors such as recoverable volumes and the associated recovery costs of commercially significant chemicals like vinegars and bio-oils, the microwave-assisted pyrolysis of industrial hemp leaves, hurds, and root materials may prove to provide high return of the yield and profits. Additionally, this paper explores the production of other valuable byproducts such as syngas and biochar from alternative feedstocks, particularly when data related to hemp processing is not readily available.


Download data is not yet available.


Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. DOI:

Akter, M., Kabir, M. H., Alam, M. A., Al Mashuk, H., Rahman, M. M., Alam, M. S., Brodie, G., Islam, S. M. M., Gaihre, Y. K., & Rahman, G. K. M. M. (2023). Geospatial Visualization and Ecological Risk Assessment of Heavy Metals in Rice Soil of a Newly Developed Industrial Zone in Bangladesh. Sustainability, 15(9), 7208. DOI:

Allende, S., Brodie, G., & Jacob, M. V. (2023). Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. Environmental Research, 226, 115619. DOI:

Annamalai, K., M. Sweeten, J., & C. Ramalingam, S. (1987). Technical Notes: Estimation of Gross Heating Values of Biomass Fuels. Transactions of the ASAE, 30(4), 1205-1208. DOI:

Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2017). Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Management, 203, Part 1, 264-272. DOI:

Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2018). Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129, 93-100. DOI:

Antunes, E., Schumann, J., Brodie, G., Jacob, M. V., & Schneider, P. A. (2017). Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal. Journal of Environmental Management, 196, 119-126. DOI:

Bhatta Kaudal, B., Aponte, C., & Brodie, G. (2018). Biochar from biosolids microwaved-pyrolysis: Characteristics and potential for use as growing media amendment. Journal of Analytical and Applied Pyrolysis, 130, 181-189. DOI:

Briassoulis, D., Hiskakis, M., & Babou, E. (2013). Technical specifications for mechanical recycling of agricultural plastic waste. Waste management (Elmsford), 33(6), 1516-1530. DOI:

Brodie, G. (2007). Simultaneous heat and moisture diffusion during microwave heating of moist wood. Applied Engineering in Agriculture, 23(2), 179-187. DOI:

Brodie, G. (2008). The influence of load geometry on temperature distribution during microwave heating. Transactions of the American Society of Agricultural and Biological Engineers, 51(4), 1401-1413. DOI:

Brodie, G., Duan, A., Doronila, A., Antunes, E., & Jacob, M. (2018). Bio-Oil from Microwave Assisted Pyrolysis of Sewage Biosolid AMPERE Newsletter(96), 1-7.


Carus, M., & Sarmento, L. (2016). The European Hemp Industry: Cultivation, processing and applications for fibres, shivs, seeds and flowers. E. I. H. Association.

Duque Schumacher, A. G., Pequito, S., & Pazour, J. (2020). Industrial hemp fiber: A sustainable and economical alternative to cotton. Journal of Cleaner Production, 268, 122180. DOI:

Holman, J. P. (1997). Heat Transfer (10th ed.). McGraw-Hill.

Kabir, M. H., Brodie, G., Gupta, D., & Pang, A. (2021). Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies, 14(23), 8140. DOI:

Kaudal, B. B., Chen, D., Madhavan, D. B., Downie, A., & Weatherley, A. (2015). Pyrolysis of urban waste streams: Their potential use as horticultural media. Journal of Analytical and Applied Pyrolysis, 112, 105-112. DOI:

Khudyakova, G. I., Kozlov, A. N., Svishchev, D. A., & Penzik, M. V. (2018). Thermal analysis of wood fuel pyrolysis process. Journal of Physics: Conf. Series 1128 (2018) 012080

LeBlanc, R. J., Matthews, P., & Richard, R. P. (2008). Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Use of a Global Resource. United Nations Human Settlements Programme. DOI:

Luque, R., Menendez, J. A., Arenillas, A., & Cot, J. (2012). Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [10.1039/C1EE02450G]. Energy & Environmental Science, 5(2), 5481-5488. DOI:

Mohan, D., Charles U. Pittman, J., & Steele, P. H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels, 20(3), 848-889. DOI:

Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191-202. DOI:

Neeson, R. (2008). Going Organic—Organic Rice & Soybean Production—A guide to convert to organic production. Rural Industries Research and Development Corporation

Nikitina, G., Kozlov, A. N., Svishchev, D., & Penzik, M. (2018). Thermal analysis of wood fuel pyrolysis process. Journal of Physics: Conference Series, 1128, 012080. DOI:

Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683. DOI:

Peng, Z., Hwang, J.-Y., Mouris, J., Hutcheon, R., & Huang, X. (2010). Microwave Penetration Depth in Materials with Non-zero Magnetic Susceptibility. ISIJ International, 50(11), 1590-1596. DOI:

Pritchard, D. L., Penney, N., McLaughlin, M. J., Rigby, H., & Schwarz, K. (2010). Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops [Article]. Water Science & Technology, 62(1), 48-57. DOI:

Robinson, J. P., Kingman, S. W., Barranco, R., Snape, C. E., & Al-Sayegh, H. (2010). Microwave Pyrolysis of Wood Pellets. Industrial & Engineering Chemistry Research, 49(2), 459-463. DOI:

Salami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., & Lappalainen, R. (2021). A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots. Molecules, 26(11), 3167. DOI:

Schmidt, H.-P., Hagemann, N., Draper, K., & Kammann, C. (2019). The use of biochar in animal feeding. PeerJ. DOI:

Shirvanimoghaddam, K., Czech, B., Abdikheibari, S., Brodie, G., Kończak, M., Krzyszczak, A., Al-Othman, A., & Naebe, M. (2022). Microwave synthesis of biochar for environmental applications. Journal of Analytical and Applied Pyrolysis, 161, 105415. DOI:

Shirvanimoghaddam, K., Czech, B., Yadav, R., Gokce, C., Fusco, L., Delogu, L. G., Yilmazer, A., Brodie, G., Al-Othman, A., Al-Tamimi, A. K., Grout, J., & Naebe, M. (2022). Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. Sustainability, 14(2), 1-30. DOI:

Shuttleworth, P., Budarin, V., Gronnow, M., Clark, J. H., & Luque, R. (2012). Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks. Journal of Natural Gas Chemistry, 21(3), 270-274. DOI:

Speratti, A. B., Johnson, M. S., Sousa, H. M., Dalmagro, H. J., & Couto, E. G. (2018). Biochar feedstock and pyrolysis temperature effects on leachate: DOC characteristics and nitrate losses from a Brazilian Cerrado Arenosol mixed with agricultural waste biochars [Article]. Journal of Environmental Management, 211, 256-268. DOI:

Tomczyk, A., Sokolowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In (Vol. 19, pp. 191-215). DOI:

Torgovnikov, G. I. (1993). Dielectric Properties of Wood and Wood-Based Materials. Springer-Verlag. DOI:

Yanik, J., Stahl, R., Troeger, N., & Sinag, A. (2013). Pyrolysis of algal biomass. Journal of Analytical and Applied Pyrolysis, 103, 134-141. DOI:

Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32-40. DOI:




How to Cite

Brodie, G. and Jacob, M. V. (2024) “An Overview of Microwave Assisted Pyrolysis for Waste Management, with Some Thoughts about Processing Industrial Hemp and Other Woody Wastes”, Electronic Journal of Structural Engineering, 24, pp. 7–11. doi: 10.56748/ejse.24534.