An Overview of Microwave Assisted Pyrolysis for Waste Management, with Some Thoughts about Processing Industrial Hemp and Other Woody Wastes

Authors

DOI:

https://doi.org/10.56748/ejse.24534

Keywords:

Waste Management, Microwave Assisted Pyrolysis, Organic waste, Biochar, Bio-oil, Syngas

Abstract

The generation of waste is significantly influenced by the increase in population and industrialization, thereby compelling the increased demand for waste management and resource recovery. This paper investigates the potential opportunities presented by the utilization of microwave-assisted pyrolysis for processing plastic and organic waste materials, with a particular focus on industrial hemp leaves, hurds, and root materials, and other feedstocks. Drawing from a range of published studies, it is suggested that microwave-assisted pyrolysis has the potential to achieve energy neutrality or even energy generation, if all byproducts are used. Depending on factors such as recoverable volumes and the associated recovery costs of commercially significant chemicals like vinegars and bio-oils, the microwave-assisted pyrolysis of industrial hemp leaves, hurds, and root materials may prove to provide high return of the yield and profits. Additionally, this paper explores the production of other valuable byproducts such as syngas and biochar from alternative feedstocks, particularly when data related to hemp processing is not readily available.

Downloads

Download data is not yet available.

References

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.071

Akter, M., Kabir, M. H., Alam, M. A., Al Mashuk, H., Rahman, M. M., Alam, M. S., Brodie, G., Islam, S. M. M., Gaihre, Y. K., & Rahman, G. K. M. M. (2023). Geospatial Visualization and Ecological Risk Assessment of Heavy Metals in Rice Soil of a Newly Developed Industrial Zone in Bangladesh. Sustainability, 15(9), 7208. https://www.mdpi.com/2071-1050/15/9/7208 DOI: https://doi.org/10.3390/su15097208

Allende, S., Brodie, G., & Jacob, M. V. (2023). Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. Environmental Research, 226, 115619. https://doi.org/https://doi.org/10.1016/j.envres.2023.115619 DOI: https://doi.org/10.1016/j.envres.2023.115619

Annamalai, K., M. Sweeten, J., & C. Ramalingam, S. (1987). Technical Notes: Estimation of Gross Heating Values of Biomass Fuels. Transactions of the ASAE, 30(4), 1205-1208. https://doi.org/https://doi.org/10.13031/2013.30545 DOI: https://doi.org/10.13031/2013.30545

Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2017). Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Management, 203, Part 1, 264-272. https://doi.org/https://doi.org/10.1016/j.jenvman.2017.07.071 DOI: https://doi.org/10.1016/j.jenvman.2017.07.071

Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2018). Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129, 93-100. https://doi.org/https://doi.org/10.1016/j.jaap.2017.11.023 DOI: https://doi.org/10.1016/j.jaap.2017.11.023

Antunes, E., Schumann, J., Brodie, G., Jacob, M. V., & Schneider, P. A. (2017). Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal. Journal of Environmental Management, 196, 119-126. https://doi.org/http://dx.doi.org/10.1016/j.jenvman.2017.02.080 DOI: https://doi.org/10.1016/j.jenvman.2017.02.080

Bhatta Kaudal, B., Aponte, C., & Brodie, G. (2018). Biochar from biosolids microwaved-pyrolysis: Characteristics and potential for use as growing media amendment. Journal of Analytical and Applied Pyrolysis, 130, 181-189. https://doi.org/https://doi.org/10.1016/j.jaap.2018.01.011 DOI: https://doi.org/10.1016/j.jaap.2018.01.011

Briassoulis, D., Hiskakis, M., & Babou, E. (2013). Technical specifications for mechanical recycling of agricultural plastic waste. Waste management (Elmsford), 33(6), 1516-1530. https://doi.org/10.1016/j.wasman.2013.03.004 DOI: https://doi.org/10.1016/j.wasman.2013.03.004

Brodie, G. (2007). Simultaneous heat and moisture diffusion during microwave heating of moist wood. Applied Engineering in Agriculture, 23(2), 179-187. DOI: https://doi.org/10.13031/2013.22597

Brodie, G. (2008). The influence of load geometry on temperature distribution during microwave heating. Transactions of the American Society of Agricultural and Biological Engineers, 51(4), 1401-1413. DOI: https://doi.org/10.13031/2013.25224

Brodie, G., Duan, A., Doronila, A., Antunes, E., & Jacob, M. (2018). Bio-Oil from Microwave Assisted Pyrolysis of Sewage Biosolid AMPERE Newsletter(96), 1-7.

Buckley, T. J. (2010). EVALUATION OF DATA ON HIGHER HEATING VALUES AND ELEMENTAL ANALYSIS FOR REFUSE-DERIVED FUELS.

Carus, M., & Sarmento, L. (2016). The European Hemp Industry: Cultivation, processing and applications for fibres, shivs, seeds and flowers. E. I. H. Association.

Duque Schumacher, A. G., Pequito, S., & Pazour, J. (2020). Industrial hemp fiber: A sustainable and economical alternative to cotton. Journal of Cleaner Production, 268, 122180. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122180 DOI: https://doi.org/10.1016/j.jclepro.2020.122180

Holman, J. P. (1997). Heat Transfer (10th ed.). McGraw-Hill.

Kabir, M. H., Brodie, G., Gupta, D., & Pang, A. (2021). Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies, 14(23), 8140. https://www.mdpi.com/1996-1073/14/23/8140 DOI: https://doi.org/10.3390/en14238140

Kaudal, B. B., Chen, D., Madhavan, D. B., Downie, A., & Weatherley, A. (2015). Pyrolysis of urban waste streams: Their potential use as horticultural media. Journal of Analytical and Applied Pyrolysis, 112, 105-112. https://doi.org/http://dx.doi.org/10.1016/j.jaap.2015.02.011 DOI: https://doi.org/10.1016/j.jaap.2015.02.011

Khudyakova, G. I., Kozlov, A. N., Svishchev, D. A., & Penzik, M. V. (2018). Thermal analysis of wood fuel pyrolysis process. Journal of Physics: Conf. Series 1128 (2018) 012080

LeBlanc, R. J., Matthews, P., & Richard, R. P. (2008). Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Use of a Global Resource. United Nations Human Settlements Programme. DOI: https://doi.org/10.2175/193864709793846402

Luque, R., Menendez, J. A., Arenillas, A., & Cot, J. (2012). Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [10.1039/C1EE02450G]. Energy & Environmental Science, 5(2), 5481-5488. https://doi.org/10.1039/C1EE02450G DOI: https://doi.org/10.1039/C1EE02450G

Mohan, D., Charles U. Pittman, J., & Steele, P. H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels, 20(3), 848-889. DOI: https://doi.org/10.1021/ef0502397

Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191-202. https://doi.org/https://doi.org/10.1016/j.biortech.2014.01.120 DOI: https://doi.org/10.1016/j.biortech.2014.01.120

Neeson, R. (2008). Going Organic—Organic Rice & Soybean Production—A guide to convert to organic production. Rural Industries Research and Development Corporation

Nikitina, G., Kozlov, A. N., Svishchev, D., & Penzik, M. (2018). Thermal analysis of wood fuel pyrolysis process. Journal of Physics: Conference Series, 1128, 012080. https://doi.org/10.1088/1742-6596/1128/1/012080 DOI: https://doi.org/10.1088/1742-6596/1128/1/012080

Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683. https://doi.org/https://doi.org/10.1016/j.cej.2020.126683 DOI: https://doi.org/10.1016/j.cej.2020.126683

Peng, Z., Hwang, J.-Y., Mouris, J., Hutcheon, R., & Huang, X. (2010). Microwave Penetration Depth in Materials with Non-zero Magnetic Susceptibility. ISIJ International, 50(11), 1590-1596. DOI: https://doi.org/10.2355/isijinternational.50.1590

Pritchard, D. L., Penney, N., McLaughlin, M. J., Rigby, H., & Schwarz, K. (2010). Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops [Article]. Water Science & Technology, 62(1), 48-57. https://doi.org/10.2166/wst.2010.274 DOI: https://doi.org/10.2166/wst.2010.274

Robinson, J. P., Kingman, S. W., Barranco, R., Snape, C. E., & Al-Sayegh, H. (2010). Microwave Pyrolysis of Wood Pellets. Industrial & Engineering Chemistry Research, 49(2), 459-463. https://doi.org/10.1021/ie901336k DOI: https://doi.org/10.1021/ie901336k

Salami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., & Lappalainen, R. (2021). A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots. Molecules, 26(11), 3167. https://www.mdpi.com/1420-3049/26/11/3167 DOI: https://doi.org/10.3390/molecules26113167

Schmidt, H.-P., Hagemann, N., Draper, K., & Kammann, C. (2019). The use of biochar in animal feeding. PeerJ. https://doi.org/10.7717/peerj.7373 DOI: https://doi.org/10.7717/peerj.7373

Shirvanimoghaddam, K., Czech, B., Abdikheibari, S., Brodie, G., Kończak, M., Krzyszczak, A., Al-Othman, A., & Naebe, M. (2022). Microwave synthesis of biochar for environmental applications. Journal of Analytical and Applied Pyrolysis, 161, 105415. https://doi.org/https://doi.org/10.1016/j.jaap.2021.105415 DOI: https://doi.org/10.1016/j.jaap.2021.105415

Shirvanimoghaddam, K., Czech, B., Yadav, R., Gokce, C., Fusco, L., Delogu, L. G., Yilmazer, A., Brodie, G., Al-Othman, A., Al-Tamimi, A. K., Grout, J., & Naebe, M. (2022). Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. Sustainability, 14(2), 1-30. DOI: https://doi.org/10.3390/su14020737

Shuttleworth, P., Budarin, V., Gronnow, M., Clark, J. H., & Luque, R. (2012). Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks. Journal of Natural Gas Chemistry, 21(3), 270-274. https://doi.org/10.1016/s1003-9953(11)60364-2 DOI: https://doi.org/10.1016/S1003-9953(11)60364-2

Speratti, A. B., Johnson, M. S., Sousa, H. M., Dalmagro, H. J., & Couto, E. G. (2018). Biochar feedstock and pyrolysis temperature effects on leachate: DOC characteristics and nitrate losses from a Brazilian Cerrado Arenosol mixed with agricultural waste biochars [Article]. Journal of Environmental Management, 211, 256-268. https://doi.org/10.1016/j.jenvman.2017.12.052 DOI: https://doi.org/10.1016/j.jenvman.2017.12.052

Tomczyk, A., Sokolowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In (Vol. 19, pp. 191-215). DOI: https://doi.org/10.1007/s11157-020-09523-3

Torgovnikov, G. I. (1993). Dielectric Properties of Wood and Wood-Based Materials. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-77453-9

Yanik, J., Stahl, R., Troeger, N., & Sinag, A. (2013). Pyrolysis of algal biomass. Journal of Analytical and Applied Pyrolysis, 103, 134-141. https://doi.org/https://doi.org/10.1016/j.jaap.2012.08.016 DOI: https://doi.org/10.1016/j.jaap.2012.08.016

Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32-40. https://doi.org/http://doi.org/10.1016/j.chemosphere.2016.08.036 DOI: https://doi.org/10.1016/j.chemosphere.2016.08.036

Downloads

Published

2024-04-29

How to Cite

Brodie, G. and Jacob, M. V. (2024) “An Overview of Microwave Assisted Pyrolysis for Waste Management, with Some Thoughts about Processing Industrial Hemp and Other Woody Wastes”, Electronic Journal of Structural Engineering, 24, pp. 7–11. doi: 10.56748/ejse.24534.