Nonlinear modeling with confidence estimation using Bayesian neural networks
DOI:
https://doi.org/10.56748/ejse.445Keywords:
Back-propagation neural network, Bayesian neural network, Deep beams, Neural network, Non-linear modeling, UncertaintyAbstract
There is a growing interest in the use of neural networks in civil engineering to model complicated nonlinearity problems. A recent enhancement to the conventional back-propagation neural network algorithm is the adoption of a Bayesian inference procedure that provides good generalization and a statistical approach to deal with data uncertainty. A review of the Bayesian approach for neural network learning is presented. One distinct advantage of this method over the conventional back-propagation method is that the algorithm is able to provide assessments of the confidence associated with the network’s predictions. Two examples are presented to demonstrate the capabilities of this algorithm. A third example considers the practical application of the Bayesian neural network approach for analyzing the ultimate shear strength of deep beams.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Electronic Journal of Structural Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.