Effects of Structural Bracing on the Progressive Collapse Occurrence
DOI:
https://doi.org/10.56748/ejse.23448Keywords:
Progressive Collapse, Braced Steel Moment Frames, Steel Moment Frames, UFC-4-023-03, GSA-2003Abstract
Statistics of human losses and financial casualties induced progressive collapse, as one of the new and modern concepts in the field of civil engineering, have doubled the importance of having knowledge about this phenomenon and strategies to reduce its effect. Progressive collapse starts with a local failure with loss of local load-carrying capacity of a small portion of the structure and spreads throughout the structure from element to element. These consecutive failures may cause the collapse of either the entire structure or a major part of it. This paper studies the effect of adding a bracing system to the steel moment frames designed for seismic loads through a nonlinear dynamic method according to GSA-2003 and UFC-4-023-03 criteria. The study was conducted using computational simulation of building models with two different elevations of three and six floors located in a moderate seismicity region. The simulation results showed higher resistance against the progressive collapse of the structure in the braced steel moment frames and less sensitivity to the removal of the column in the braced spans in comparison to the spans without bracing. The prediction of possible progressive collapse in the UFC-4-023-03 criterion is more conservative than the GSA-2003 criterion. Although, generally there is no significant difference between the analysis results of these two criteria.
Downloads
References
ACI-318-08 2008. ACI 318-08: Building code requirements for structural concrete. ACI Farmington Hills, MI, USA.
ASCE7-05 2005. Minimum Design Loads for Buildings and Other Structures. Report: ASCE/SEI 7-05. American Society of Civil Engineering, Reston, VA, USA.
Asgarian, B. & Rezvani, F. H. 2012. Progressive collapse analysis of concentrically braced frames through EPCA algorithm. Journal of Constructional Steel Research, 70, 127-136. DOI:10.1016/j.jcsr.2011.10.022 DOI: https://doi.org/10.1016/j.jcsr.2011.10.022
Azad, S. K. & Topkaya, C. 2017. A review of research on steel eccentrically braced frames. Journal of constructional steel research, 128, 53-73. DOI: 10.1016/j.jcsr.2016.07.032 DOI: https://doi.org/10.1016/j.jcsr.2016.07.032
Bažant, Z. P. & Verdure, M. 2007. Mechanics of progressive collapse: Learning from World Trade Center and building demolitions. Journal of Engineering Mechanics, 133, 308-319. DOI: 10.1061/(asce)0733-9399(2007)133:3(308) DOI: https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)
Dinu, F., Marginean, I., Dubina, D. & Petran, I. 2016. Experimental testing and numerical analysis of 3D steel frame system under column loss. Engineering structures, 113, 59-70. DOI: 10.1016/j.engstruct.2016.01.022 DOI: https://doi.org/10.1016/j.engstruct.2016.01.022
Ellingwood, B. R., Smilowitz, R., Dusenberry, D. O., Duthinh, D., Lew, H. S. & Carino, N. J. 2007. Best practices for reducing the potential for progressive collapse in buildings. Gaithersburg, United States: NIST Interagency/Internal Report (NISTIR) - 7396. DOI: 10.6028/nist.ir.7396 DOI: https://doi.org/10.6028/NIST.IR.7396
Fu, F. 2009. Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65, 1269-1278. DOI: 10.1016/j.jcsr.2009.02.001 DOI: https://doi.org/10.1016/j.jcsr.2009.02.001
Griffiths, H., Pugsley, A. & Saunders, O. A. 1968. Report of the inquiry into the collapse of flats at Ronan Point, Canning Town: presented to the Minister of Housing and Local Government. Ministry of Housing and Local Government. London, United Kingdom.
Gross, J. L. & McGuire, W. 1983. Progressive collapse resistant design. Journal of Structural Engineering, 109, 1-15. DOI: 10.1061/(ASCE)0733-9445(1983)109:1(1) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1)
GSA 2003. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC. US General Services Administration
Huo, J., Hu, C., Zhang, J., Guo, Y. & Xiao, Y. 2012. Analysis of dynamic behaviors and ductility of steel moment frame connections. J. Civ. Archit. Environ. Eng, 34, 149-154.
Izzuddin, B., Vlassis, A., Elghazouli, A. & Nethercot, D. 2008. Progressive collapse of multi-story buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering structures, 30, 1308-1318. DOI: 10.1016/j.engstruct.2007.07.011 DOI: https://doi.org/10.1016/j.engstruct.2007.07.011
Kazemzadeh Azad, S., Topkaya, C. & Bybordiani, M. 2018. Dynamic buckling of braces in concentrically braced frames. Earthquake Engineering & Structural Dynamics, 47, 613-633. DOI: 10.1002/eqe.2982 DOI: https://doi.org/10.1002/eqe.2982
Khandelwal, K., El-Tawil, S. & Sadek, F. 2009. Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65, 699-708. DOI: 10.1016/j.jcsr.2008.02.007 DOI: https://doi.org/10.1016/j.jcsr.2008.02.007
Kim, H.-S., Kim, J. & An, D.-W. 2009. Development of integrated system for progressive collapse analysis of building structures considering dynamic effects. Advances in Engineering Software, 40, 1-8. DOI: 10.1016/j.advengsoft.2008.03.011 DOI: https://doi.org/10.1016/j.advengsoft.2008.03.011
Kim, J. & An, D. 2009. Evaluation of progressive collapse potential of steel moment frames considering catenary action. The structural design of tall and special buildings, 18, 455-465. DOI: 10.1002/tal.448 DOI: https://doi.org/10.1002/tal.448
Kim, J. & Kim, T. 2009. Assessment of progressive collapse-resisting capacity of steel moment frames. Journal of Constructional Steel Research, 65, 169-179. DOI: 10.1016/j.jcsr.2008.03.020 DOI: https://doi.org/10.1016/j.jcsr.2008.03.020
Kim, J., Park, J.-H. & Lee, T.-H. 2011. Sensitivity analysis of steel buildings subjected to column loss. Engineering Structures, 33, 421-432. DOI: 10.1016/j.engstruct.2010.10.025 DOI: https://doi.org/10.1016/j.engstruct.2010.10.025
Kwasniewski, L. 2010. Nonlinear dynamic simulations of progressive collapse for a multistory building. Engineering Structures, 32, 1223-1235. DOI: 10.1016/j.engstruct.2009.12.048 DOI: https://doi.org/10.1016/j.engstruct.2009.12.048
Li, G.-Q., Li, L.-L., Jiang, B. & Lu, Y. 2018. Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario. Journal of Constructional Steel Research, 147, 1-15. DOI: 10.1016/j.jcsr.2018.03.023 DOI: https://doi.org/10.1016/j.jcsr.2018.03.023
Li, K., Wood, C. & Sezen, H. Progressive collapse performance of buildings and the contribution of infill walls. Structures Congress 2017, 2017. 86-97. DOI: 10.1061/9780784480397.008 DOI: https://doi.org/10.1061/9780784480397.008
Liang, H. & Long, L. 2012. A quantification method of structural robustness. Engineering Mechanics, 29, 213-219.
Pearson, C. & Delatte, N. 2003. Lessons from the progressive collapse of the Ronan Point apartment tower. Forensic Engineering (2003). DOI: 10.1061/40692(241)21 DOI: https://doi.org/10.1061/40692(241)21
Powell, G. Progressive collapse: Case studies using nonlinear analysis. Structures Congress 2005: Metropolis and Beyond, 2005. 1-14. DOI: 10.1061/40753(171)216 DOI: https://doi.org/10.1061/40753(171)216
Ruth, P., Marchand, K. A. & Williamson, E. B. 2006. Static equivalency in progressive collapse alternate path analysis: Reducing conservatism while retaining structural integrity. Journal of Performance of Constructed Facilities, 20, 349-364. DOI: 10.1061/(ASCE)0887-3828(2006)20:4(349) DOI: https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
Skordeli, M.-A. & Bisbos, C. 2010. Limit and shakedown analysis of 3D steel frames via approximate ellipsoidal yield surfaces. Engineering Structures, 32, 1556-1567. DOI: 10.1016/j.engstruct.2010.02.004 DOI: https://doi.org/10.1016/j.engstruct.2010.02.004
Song, B. I., Giriunas, K. A. & Sezen, H. 2014. Progressive collapse testing and analysis of a steel frame building. Journal of constructional steel research, 94, 76-83. DOI: 10.1016/j.jcsr.2013.11.002 DOI: https://doi.org/10.1016/j.jcsr.2013.11.002
Starossek, U. 2007. Typology of progressive collapse. Engineering structures, 29, 2302-2307. DOI: 10.1016/j.engstruct.2006.11.025 DOI: https://doi.org/10.1016/j.engstruct.2006.11.025
Starossek, U. 2009. Progressive collapse of structures, London, United Kingdom, Thomas Telford. DOI: https://doi.org/10.1680/pcos.36109
Starossek, U. & Haberland, M. 2011. Approaches to measures of structural robustness. Structure and Infrastructure Engineering, 7, 625-631. DOI:10.1080/15732479.2010.501562 DOI: https://doi.org/10.1080/15732479.2010.501562
Tavakoli, H. & Afrapoli, M. M. 2018. Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse. Engineering Failure Analysis, 83, 88-101. DOI: 10.1016/j.engfailanal.2017.10.003 DOI: https://doi.org/10.1016/j.engfailanal.2017.10.003
UBC-97 1997. Uniform Building Code-97: Structural engineering design provisions. Whittier, California, US.
UFC-3-340-02 2008. Structures to Resist the Effects of Accidental Explosions. Washington DC, USA: US Army Corps of Engineering.
UFC-4-01-01 2003. DoD Minimum Antiterrorism Standards for Buildings. Washington DC, USA: US Army Corps of Engineering.
UFC-4-023-03 2009. Design of Buildings to Resist Progressive Collapse. Washington DC, USA: US Army Corps of Engineering.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Emad Raminfar, Ardavan Izadi
This work is licensed under a Creative Commons Attribution 4.0 International License.