A Comparative Study to Assess the Thermal Behaviour of Sandwich Roof Panels with Coconut Fibre as an Alternative Core Material to Polyurethane
DOI:
https://doi.org/10.56748/ejse.234153Keywords:
Modular Panels, Insulation, Sustainability, Coir FibreAbstract
Sandwich panels (modular panels) promote optimal solutions to some major issues prevailing in the construction industry such as increased energy consumption by building elements, excessive disposal of constructional waste and unproductive time spent during construction. Hence, the inclination towards sandwich elements has been increased vastly deviating from conventional building construction materials and methods. However, the potentiality of using locally available natural materials for the development of sandwich panels is a salient sustainable approach that needs to be addressed. This study evaluates the current and potential materials used in modular panels and key properties of sandwich panels including mechanical, thermal insulation, and sound insulation properties. Moreover, various test methods followed, and standards specified to investigate the mechanical, thermal and acoustic insulation properties are also discussed. The possibility of using coconut fibre as a locally available natural alternative core material to polyurethane core of sandwich panels has been evaluated using simulations based on the material properties obtained from literature. The study identifies coconut fibre as a potential alternative core material for sandwich roof panels as it reflects nearly similar thermal behaviour to polyurethane.
Downloads
References
Alavez-Ramirez, R., Chiñas-Castillo, F., Morales-Dominguez, V. J., & Ortiz Guzman, M. (December 2012). "Thermal conductivity of coconut fibre filled ferrocement sandwich panels", Construction & Building Materials, 425-431. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.053
Bin, C., Rui, X., Hailong, L., Qie , S., & Jin, Y. (August 2019). "Pathways for sustainable energy transition", Journal of Cleaner Production, 1564-1571. DOI: https://doi.org/10.1016/j.jclepro.2019.04.372
Bunzel, F., Wisner, G., Stammen, E., & Dilger, K. (2020). "Structural sandwich composites out of wood foam core and textile reinforced concrete sheets for versatile and sustainable use in the building industry", Materials today: Proceedings, S296-S302. DOI: https://doi.org/10.1016/j.matpr.2020.01.382
Castro, O., Silva, J. M., Devezas, T., Silva, A., & Gil, L. (January 2010). "Cork agglomerates as an ideal core material in lightweight structures", Materials & Design, 425-432. DOI: https://doi.org/10.1016/j.matdes.2009.05.039
Du, Y., Yan, N., & Kortschot, M. T. (October 2012). "Lightweight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation", Composites Part B: Engineering, 2875- 2882. DOI: https://doi.org/10.1016/j.compositesb.2012.04.052
Dutra, J. R., Filho, S. L., Christoforo, A. L., Panzera, T. H., & Scarpa, F. (October 2019). "Investigations on sustainable honeycomb sandwich panels containing eucalyptus sawdust, Piassava and cement particles ", Thin-Walled Structures. DOI: https://doi.org/10.1016/j.tws.2019.106191
Herranan, H., Pabut, O., Majak, J., & Kers, J. (March 2012). "Design and Testing of Sandwich Structures with Different Core Materials, Materials Science. DOI: https://doi.org/10.5755/j01.ms.18.1.1340
Jayasinghe, M., Attalage, R., & Jayawardena, A. (2003). "Roof orientation, roofing materials and roof surface colour: their influence on indoor thermal comfort in warm humid climates", Energy for Sustainable Development. DOI: https://doi.org/10.1016/S0973-0826(08)60345-2
Korjenic, A., Petránek, V., Zach, J., & Hroudová, J. (September 2011). "Development and performance evaluation of natural thermal-insulation materials composed of renewable resources", Energy and Buildings. DOI: https://doi.org/10.1016/j.enbuild.2011.06.012
Korol, E., & Shushunova, N. (2016). "Benefits of a Modular Green Roof Technology", Procedia Engineering, 1820-1826. DOI: https://doi.org/10.1016/j.proeng.2016.08.673
Lakreb, N., Bezzazi, B., & Pereira, H. (January 2015). "Mechanical behavior of multilayered sandwich panels of wood veneer and a core of cork agglomerates", Materials & Design (1980-2015), 627-636 DOI: https://doi.org/10.1016/j.matdes.2014.09.059
Liu, L., Li, H., Lazzaretto, A., Manente, G., Tong, C., Liu, Q., & Li, N. (March 2017). "The development history and prospects of biomass-based insulation materials for buildings". DOI: https://doi.org/10.1016/j.rser.2016.11.140
Mintorogo, D. S., Widigdo, W. K., & Juniwati, A. (2015). "Application of Coconut Fibres as Outer Eco-insulation to Control Solar Heat Radiation on Horizontal Concrete Slab Rooftop", Procedia Engineering, 765-762. DOI: https://doi.org/10.1016/j.proeng.2015.11.129
Osei-Antwi, M., Castro, J., Vassilopoulos, A. P., & Keller, T. (April 2013). "Shear mechanical characterisation of balsa wood as core material of composite sandwich panels", Construction and Building Materials, 231- 238. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.009
Panyakaew, S., & Fotios, S. (July 2011). "New thermal insulation boards made from coconut husk and bagasse", Energy and Buildings, 1732-1739. DOI: https://doi.org/10.1016/j.enbuild.2011.03.015
Petrone, G., D’Alessandro, V., Franco, F., Mace, B., & De Rosa, S. (July 2014). "Modal characterisation of recyclable foam sandwich panels", Composite Structures. DOI: https://doi.org/10.1016/j.compstruct.2014.03.026
Rodriguez, N. J., Gutiérrez-Miceli, F., Matadamas, P., & Lagunez-Rivera, L. (June 2011). "Assessment of coconut fibre insulation characteristics and its use to modulate temperatures in concrete slabs with the aid of a finite element methodology", Energy and Buildings.
Rodríguez, N. J., Yáñez-Limón, M., Gutiérrez Miceli, F. A., Gomez-Guzman, O., Lagunez-Rivera, L., & Vazquez Feijoo, J. A. (June 2011). "Assessment of coconut fibre insulation characteristics and its use to modulate temperatures in concrete slabs with the aid of a finite element methodology". Energy and Buildings, 1264- 1272. DOI: https://doi.org/10.1016/j.enbuild.2011.01.005
Shashua-Bar, L., & Hoffman, M. (April 2000). "Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees", Energy and Buildings, 221-235. DOI: https://doi.org/10.1016/S0378-7788(99)00018-3
Silva, C. C., Terashima, F. J., Barbieri, N., & de Lima, K. F. (December 2019). "Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods", Applied Acoustics DOI: https://doi.org/10.1016/j.apacoust.2019.07.001
Smardzewski, J. (2015). "Furniture Design", Springer. DOI: https://doi.org/10.1007/978-3-319-19533-9
Smardzewski, J. (December 2019). "Wooden sandwich panels with prismatic core – Energy absorbing capabilities", Composite Structures. DOI: https://doi.org/10.1016/j.compstruct.2019.111535
Walker, R., & Pavía, S. (August 2014). "Moisture transfer and thermal properties of hemp– lime concretes", Construction and Building Materials. DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.081
Xing, Q., Hao, X., Lin, Y., Tan, H., & Yang, K. (January 2019). "Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter", Energy and Buildings, 105-117. DOI: https://doi.org/10.1016/j.enbuild.2018.10.038
Zenkert, D., Backlund, J., Smidt, S., Thomsen, O. T., Kepler, J., Kildegaard, A., . . . Falk, L. (1997). The Handbook of Sandwich Construction.
Zou, S., Li, H., Wang, S., Jiang, R., Zou, J., Zhang, X., . . . Zhang, G. (July 2020). "Experimental research on an innovative sawdust biomass-based insulation material for buildin gs", J ournal of Cleaner Production DOI: https://doi.org/10.1016/j.jclepro.2020.121029
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sathya Bandaranayake, Tharika Kahandawa Arachchi, Kumari Gamage
This work is licensed under a Creative Commons Attribution 4.0 International License.