Nonlinear finite element Analysis of laterally loaded piles in Layered Soils

Authors

DOI:

https://doi.org/10.56748/ejse.234003

Keywords:

Laterally loaded piles, ‘‘p-y’’ Curves, Elastic foundation, Finite Element, Layered soils

Abstract

This work is based on Winkler’s theory to analyze laterally loaded single piles using the finite element method. Soil nonlinearity is taken into account via nonlinear springs “p-y” curves.  Exact element displacement shape functions and stiffness matrix are used for the element in the case of linear Winkler’s modulus of subgrade reaction. In the nonlinear stage, an averaging technique for the element secant Winkler modulus is used to calculate the shape functions and stiffness matrix. An iterative technique is used to take into account the non-linearity of the soil. Few elements are required to simulate the pile efficiently. Unlike other analytical methods, the current method can be used to analyze piles with any load-transfer curves with arbitrary variation with depth.

Downloads

Download data is not yet available.

References

Amirmojahedi M., Abu-Farsakh M., Voyiadjis G., and Souri A. (2023) Development of p-y Curve Model for Sand Using Finite Element Analysis of Laterally Loaded Piles. Canadian Geotechnical Journal. https://doi.org/10.1139/cgj-2021-0014 DOI: https://doi.org/10.21203/rs.3.rs-1745746/v1

Basu D., Salgado R., and Prezzi M. (2009). A continuum-based model for analysis of laterally loaded piles in layered soils. Ge´otechnique 59, No. 2, 127–140. https://doi.org/10.1680/geot.2007.00011 DOI: https://doi.org/10.1680/geot.2007.00011

Basu, D., Salgado, R., and Prezzi, M. (2011). A new model for analysis of laterally loaded piles”, Geo-Frontiers: Advances in Geotechnical Engineering. doi.org/10.1061/41165(397)14 DOI: https://doi.org/10.1061/41165(397)14

Basu D., Salgado R., and Prezzi M. (2021) A new model for analysis of laterally loaded piles. Geo-Frontiers: Advances in Geotechnical Engineering. doi.org/10.1061/41165(397)14

Budhu M., and Davies T. G. (1987) Nonlinear analysis of laterally loaded piles in cohesionless soils. Can. Geotech. J. 24, 289–296. https://doi.org/10.1139/t87-034 DOI: https://doi.org/10.1139/t87-034

Davies T. G. and Budhu M. (1986) Non-linear analysis of laterally loaded piles in heavily overconsolidated clays. Geotechnique 36(4):527–538. https://doi.org/10.1680/geot.1986.36.4.527 DOI: https://doi.org/10.1680/geot.1986.36.4.527

Franke K. W. and Rollins K. M. (2013) Simplified Hybrid p-y Spring Model for Liquefied Soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 4, pp. 564-576. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000750 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000750

Franklin J. F., and Scott R. F. (1979) Beam equation with variable foundation coefficient. J. Eng. Mech. ASCE 105(5):811–827.https://doi.org/10.1061/JMCEA3.0002525 DOI: https://doi.org/10.1061/JMCEA3.0002525

Gupta B. K. and Basu D. (2019) Nonlinear solutions for laterally loaded piles. Can. Geotech. J., 57, 1566–1580. https://doi.org/10.1139/cgj-2019-0341 DOI: https://doi.org/10.1139/cgj-2019-0341

Lianyang Z. and Zhuchang C. (1992) Method for calculating p-y curve of cohesive soil. Ocean. Eng., 4, 50–58.

Liao J. C. and Lin S. S. (2003) An analytical model for deflection of laterally loaded piles. J. Mar. Sci. Technol. 2003, 11, 149–154. https://doi.org/10.51400/2709-6998.2274 DOI: https://doi.org/10.51400/2709-6998.2274

Psaroudakis E. G., Mylonakis G. E. and Klimis N. S. (2021) Non-linear Analysis of Laterally Loaded Piles Using ‘‘p-y’’ Curves. Geotech Geol Eng. https://doi.org/10.1007/s10706-020-01575-0 DOI: https://doi.org/10.1007/s10706-020-01575-0

Poulos H. G. and Davis E. H. (1980) Pile foundation analysis and design. Willey, Hoboken.

Reese L. C. and Robert C. (1975) Lateral loading of deep foundations in stiff clay. Journal of the Geotechnical Engineering Division, ASCE 101(GT7): 633–649. https://doi.org/10.1061/AJGEB6.0000177 DOI: https://doi.org/10.1061/AJGEB6.0000177

Reese L. C. (1977) Laterally loaded piles: program documentation. J. Geotech. Engng Div., ASCE 103, 287-305. https://doi.org/10.1061/AJGEB6.0000401 DOI: https://doi.org/10.1061/AJGEB6.0000401

Reese L. C. and William V. (2011) Single Piles and Pile Groups Under Lateral Loading. 2nd Edition, Taylor & Francis Group, LLC. DOI: https://doi.org/10.1201/b17499

Sun K. (1994) Laterally loaded piles in elastic media. J. Geotech. Engng ASCE 120, No. 8, 1324–1344. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1324)

Wei L., Wang J., Zhai S. and He Q. (2023) Analysis of Internal Forces and Deformation for a Single Pile in Layered Soil Based on the p-y Curve Method. Appl. Sci., 13, 3520. https://doi.org/10.3390/app13063520 DOI: https://doi.org/10.3390/app13063520

Xiaoling Z., Dongzhi Z., Chengshun X., and Xiuli D., (2020) Research on p-y curve of pile-soil interaction in saturated sandy soil under the condition of weakened strength. Rock Soil Mech., 41, 2252–2260.

Yin P., He W. and Yang Z. J. (2018) A Simplified Nonlinear Method for a Laterally Loaded Pile in Sloping Ground. Advances in Civil Engineering Volume 2018, Article ID 5438618, 9 pages. https://doi.org/10.1155/2018/5438618 DOI: https://doi.org/10.1155/2018/5438618

Zhang L., Zhao M. H. and Zou X. J. (2013) Elastic-plastic solutions for laterally loaded piles in layered soils. J. Eng. Mech. 139, 1653–1657. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000580 DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000580

Downloads

Published

2023-07-25

How to Cite

Saeed, H. and Saad Abed , H. . (2023) “Nonlinear finite element Analysis of laterally loaded piles in Layered Soils”, Electronic Journal of Structural Engineering, 23(3), pp. 1–5. doi: 10.56748/ejse.234003.

Issue

Section

Articles