
 

 

 

 

 
Cite this: DOI:10.56748/ejse.26835 
 
 
Received Date: 3 June 2025 
Accepted Date: 28 November 2025 
 
1443-9255 
https://ejsei.com/ejse 
Copyright: © The Author(s).  
Published by Electronic Journals 
for Science and Engineering 
International (EJSEI).  
This is an open access article 
under the CC BY license. 
https://creativecommons.org/licens
es/by/4.0/ 
 

 

Buckling of Multi-Span Frames with Newmark 
Method 
Ashraf Badir a* 
 
a
 Department of Bioengineering, Civil Engineering and Environmental Engineering U.A. Whitaker College of Engineering, Florida Gulf Coast 

University, Fort Myers, FL 33965, USA 
*Corresponding author: abadir@fgcu.edu 

Abstract 

Newmark’s numerical method of computing deflections, moments and buckling loads of isolated columns is 
extended for the analysis of elastic buckling loads and buckling modes of prismatic and non-prismatic single story, 
multi-span frames with combinations of hinged and fixed columns. Step-by-step description of the developed 
procedure is presented, using statics equilibrium, slope deflection equations and boundary conditions. The elastic 
line of the buckling mode is determined as a major part of the solution, and the numerical procedure is used to 
calculate the buckling loads and the columns’ effective length factor for multi-span frames. The most favorable 
variation of cross-section of tapered frame columns is calculated, giving the maximum possible elastic critical 
load of the frame for constant columns’ volume. 
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1. Introduction 

Structures are commonly designed to achieve both economic and 
safety goals. For ordinary structures, economy frequently imposes the 
selection of standard steel sections or regular reinforced concrete shapes. 
However, for other structures, such as more complicated, unique, or large 
ones, using non-prismatic or tapered members may enhance structural 
efficiency and reduce overall cost. 

Studies in column buckling go back to the eighteenth century, with the 
experimental work of Musschenbroek (1729), constituting apparently the 
first study in the literature on column buckling (Godoy and Elishakoff, 
2020), and the mathematical work of Euler (1778). In the Nineteenth 
century, accelerated metal construction raised interest in buckling 
investigations, and the study of elastic stability continued with the 
twentieth century classical work of Timoshenko and Gere (1964), among 
others. 

Although numerical or approximate methods, such as the finite 
element method and the finite difference method play an important role 
in the solution of stability problems, the effective length method has been 
widely used for stability evaluation and design of compression members 
for many years. Columns are considered in isolation with end restraints, 
and the effective length factor is evaluated based on the joint stiffness ratio 
at each end of the column (Julian and Lawrence, 1959). This procedure is 
currently adopted by the American Concrete Institute, ACI 318 (2025) and 
the American Institute of Steel Construction, AISC (2023). Efforts have 
been made to improve the accuracy of the method and extend its range of 
validity by considering the difference in the boundary conditions of top 
and bottom columns by Duan and Chen (1988, 1989, 1999) and Kishi et al. 
(1997), among others. 

The non-contradictory complementary information (NCCI) document 
SN008a (Oppe et al., 2005) to BS EN 1993-1 (BSI, 2005) rely on the 
effective length method to assess the stability of multi-story frames and 
provides erroneous results in certain situations (Webber et al 2015) 
because it omits the contribution made to the rotational stiffness of the 
end restraints by columns above and below, and to the translational 
stiffness of end restraints by other columns in the same story. 

Many studies have been conducted on the design of columns with 
variable cross-section in single-span gable frames. A mathematical 
analytical method was presented for determining the effective length 
factor for non-prismatic columns in two-span gable frames (Behjati-Avval 
and Vahidreza, 2015). A formulation of the stability of non-prismatic 
frames with flexible connections and elastic supports (Rezaiee-Pajand et 
al. 2016) was presented based on the solutions of the governing 
differential equations for buckling. Studies aimed at the interaction effect 
among sway-permitted stepped columns to develop a practical approach 
to consider this effect have been presented by Tian et al (2021a, b). These 
studies were based on the slope-deflection method and the concept of 
story-based buckling.  

In a comprehensive historical review, Pomares et al. (2021) examined 
the evolution of buckling models used in the design of steel structures over 
the past 275 years. Their study highlighted the limitations of traditional 

analytical methods and emphasized the need for improved accuracy in 
predicting buckling behavior, especially in light of catastrophic failures 
such as the Dee Bridge, 1847, Tay Bridge, 1879, Quebec Bridge, 1907, and 
Tacoma Bridge, 1940. By comparing historical models with finite element 
simulations of compressed steel columns, the authors demonstrated 
significant discrepancies in safety predictions and advocated for the 
integration of modern computational techniques to enhance structural 
reliability. 

Buckling and stability analysis of structural frames has long been a 
central concern in structural engineering. The classical theory of buckling 
began with Euler’s formulation for slender columns, which laid the 
foundation for understanding critical load behavior under axial 
compression. Over time, this theory was extended to more complex 
systems such as plates, shells, and multi-member frames. 

In frame structures, buckling can occur in two primary modes: column 
buckling of individual members and global frame buckling, where the 
entire frame undergoes lateral displacement. These modes are influenced 
by member stiffness, joint rigidity, and load eccentricities. Traditional 
design approaches, such as the effective length method and P-Δ analysis, 
have been widely used to estimate buckling loads. However, these 
methods often rely on simplifications that may not capture the true 
behavior of complex frames under combined loading conditions (Schilling, 
1983). Recent developments have emphasized the importance of second-
order effects and the interaction between vertical and lateral loads. 
Schilling (1983) proposed a conservative method for estimating frame 
buckling loads using first-order analysis, incorporating correction factors 
for P-Δ effects.  

The literature on frame buckling has evolved from simplified hand 
calculations to sophisticated computational models. The finite element 
method (FEM) has become a powerful tool for analyzing buckling in 
advanced materials and structural systems. Recent studies have focused 
on functionally graded materials (FGMs), carbon nanotube-reinforced 
composites (CNTRCs), and porous structures, which offer enhanced 
mechanical properties and design flexibility. Tati (2021) developed a four-
node FEM model based on high-order shear deformation theory to analyze 
thermal and mechanical buckling of functionally graded (FG) plates. The 
model avoids shear locking and does not require correction factors, 
making it efficient and accurate for complex loading scenarios. Rayhan et 
al. (2025) combined FEM with machine learning to predict buckling 
strength in additively manufactured lattice stiffened panels. Their study 
demonstrated that simple cubic lattice structures outperform other 
configurations in buckling resistance, and polynomial regression models 
can accurately predict critical loads. Belabed et al. (2024) contributed 
extensively to FEM-based analysis of FG-CNTRC beams and plates, 
addressing free and forced vibration, elastic stability, and the effects of 
porosity and foundation types. Their quasi-3D and p-version FEM models 
have been validated against experimental and analytical benchmarks. 

Tounsi et al. (2024) and Lakhdar et al. (2024) explored the dynamic 
behavior of porous FG nanocomposite beams and shells using advanced 
FEM formulations, including third-order shear deformation theory and 
viscoelastic foundation modeling. 
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Bentrar et al. (2023) and Katiyar et al. (2022) investigated the 
influence of porosity distribution and geometric imperfections on 
buckling and vibration behavior in FG sandwich plates and bi-directional 
FG plates, respectively, using FEM. 

These studies collectively highlight the versatility of FEM in capturing 
the complex interactions between geometry, material gradation, and 
loading conditions. The integration of machine learning further enhances 
predictive capabilities, offering new avenues for design optimization and 
real-time structural assessment. 

An optimization of no sway plane rigid frames against buckling 
centered on either maximizing the buckling load or minimizing the weight 
of the structures, or both was presented by Naidoo and Li (2019), it proved 
successful for no-sway multi-story rigid frames. An improved method for 
simplified frame stability analysis that accounts for the vertical interaction 
effects of columns was presented by Li et al. (2016). The governing 
equation for the elastic buckling load of the sub-assemblage is derived. The 
method is applicable to both sway-permitted and sway-prevented frames. 
The applicability and accuracy of the method were demonstrated using a 
series of examples with a wide variation of parameters including numbers 
of story, boundary conditions, stiffness of beam-to-column connections, 
column length and stiffness, and axial force level. 

Buckling of tapered heavy columns with constant volume under self-
weight and tip load has been recently presented by Lee and Lee (2021). 
The differential equation governing the buckling shapes of the column was 
derived based on the equilibrium equations of the buckled column 
elements. A new approach of the buckling analysis of non-prismatic 
columns was proposed by Nikolić and Šalinić (2017), using a rigid element 
method. An approximate computation of buckling loads for plane steel 
frames with tapered members was proposed by Bazeos and Karabalis 
(2006). The method was based on a series of dimensionless charts which 
have been developed using the exact solution of the Bernoulli-Euler beam 
theory and a wide range of steel profiles.  

The critical elastic buckling load of an isolated bar with uniform or 
non-uniform cross section can be calculated by Newmark’s (1943) 
numerical method of double integration. When the bar has a cross section 
varying along the span, a numerical procedure of successive 
approximation is useful. Instead of assuming deflection y as some function 
of x, the bar is divided into segments, and a numerical value of deflection 
is assumed for each division point, or station along the beam. The 
subsequent calculations are made in tabular form, calculating ordinates of 
the elastic load and deflections at each station. Comparing the final 
deflections with the initially assumed values determines the critical load. 
Bradford and Yazdi developed an analytical procedure based on the 
Newmark method, applicable to struts with geometric and material 
nonlinearities (1999). The Newmark method has been extended for use in 
computing buckling loads and buckling modes of single span elastic frames 
with either hinged or fixed columns, but not both (Badir 2011, 2020). 

In this study, a numerical procedure to calculate critical loads and 
buckling modes for rigidly joined elastic multi-span sway portal frames 

with combination of hinged and fixed columns is presented. The single-
story frames studied in this paper consist of sway frames having prismatic 
and non-prismatic columns, hinged or fixed directly into the foundation. 
The frames have a constant height with variable beam spans as shown in 
Fig. 1.  

The developed method is applicable to the design and analysis of steel and 
reinforced concrete frames in buildings, bridges, and industrial structures. It is 

particularly beneficial in the following scenarios: design of frames with tapered 

columns for optimal buckling resistance, irregular non-prismatic column 
geometries, evaluation of effective length factors in multi-span systems with 

mixed boundary conditions, retrofitting and strengthening of existing frames 

where accurate buckling analysis is essential, and Optimization of material 
usage by maximizing critical loads under volume constraints. These 

applications demonstrate the method’s relevance to real-world engineering 

problems. 
The accurate prediction of elastic buckling loads and modes in multi-span 

frames is a critical aspect of structural stability analysis. Many structural 

systems, such as building frames, bridge piers, and industrial structures are 
composed of multiple spans with varying support conditions. Traditional 

buckling analysis methods often focus on isolated columns or simplified frame 

configurations, which may not capture the true behavior of complex systems. 
By extending Newmark’s numerical method to multi-span frames, this research 

provides a more comprehensive and adaptable tool for engineers to assess 

buckling behavior, leading to safer and more efficient structural designs. Older 

methods like Newmark’s method offer transparent, step-by-step 

procedures that help engineers and students understand the mechanics of 

buckling. Extending such methods preserves their pedagogical value while 
adapting them to more complex systems. While finite element methods provide 

powerful computational tools, they often obscure the underlying mechanics. 

The extended Newmark method retains analytical transparency, making it 
suitable for educational and preliminary design purposes. Moreover, it 

preserves historical continuity in the structural analysis field. 
   The research presented herein extends Newmark’s numerical 

technique originally developed for isolated columns to multi-span frames 
with both prismatic and non-prismatic members. Detailed description of 
the developed numerical procedure is outlined, and sample examples are 
provided to illustrate the efficiency of the method. The method combines 
static equilibrium, slope-deflection equations, and boundary conditions to 
compute buckling loads, buckling mode shapes, and effective length 
factors in a unified approach. The procedure is introduced and used to 
determine the most favorable variation of column cross-section (tapering) 
that maximizes the elastic critical load for a given volume. The ratio 
between the depths of the top and bottom tapered rectangular columns 
yielding the maximum possible critical load of the frame is determined. 
These contributions advance the state of the art in buckling analysis and 
provide engineers with a powerful tool for structural optimization of 
irregular column shapes. 

 

 
Fig. 1 Sway buckling mode of multi-span frames. 

 

Fig. 2 Sway buckling mode of multi-span frames: end forces and rotations. 
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2. Method - Sway buckling modes of multi-
span frames 

The multi-span frame shown in Fig. 1 has a number of columns equal 
to nc. The frame is subjected to vertical concentrated loads at the top of 
the nc columns equal to P multiplied by a factor varying from n1 to nnc from 
left to right. The height of the columns is equal to Lc. The frame has (nc-1) 
spans with varying lengths from S1Lc to Snc-1Lc. The moment of inertia of the 
rafts is denoted by Ibi = Ri I in which i varies from 1 to (nc-1). 

The forces acting on each column are separately shown in Fig. 2 with 
a subscript number referring to the column by order from left to right. 

The relations between the different unknowns are obtained from the 
following conditions: 

2.1 Statics equations 

𝑛1𝑃∆ − 𝑋1 − 𝐻1𝐿𝑐 = 0 

𝑛2𝑃∆ − 𝑋2 − 𝐻2𝐿𝑐 − 𝑋2
′ = 0 

𝑛3𝑃∆ − 𝑋3 − 𝐻3𝐿𝑐 = 0 

…………………………. 

………………………….. 

𝑛𝑛𝑐𝑃∆ − 𝑋𝑛𝑐 − 𝐻𝑛𝑐𝐿𝑐 − 𝑋𝑛𝑐
′ = 0    (1)

  

By superposition of Eq (1), and noticing that ∑ 𝐻𝑖
𝑖=𝑛𝑐
𝑖=1 = 0, then 

𝑃∆ ∑ 𝑛𝑖 =𝑖=𝑛𝑐
𝑖=1 ∑ (𝑋𝑖 + 𝑋𝑖

′)𝑖=𝑛𝑐
𝑖=1           (2) 

Where 𝑋𝑖
′ is the moment at the bottom fixed support, for hinged columns, 

𝑋𝑖
′  are equal to zero. 

2.2 Slope deflection equations 

The relations between the end moments, at the top of each column (X1, 
X2, X3,…, Xnc) and the angle of rotation of each joint (φ1, φ 2, φ 3,…, φ nc) can 
be obtained by studying each horizontal beam taking into consideration 
that X2 = X b2 + (X2 – Xb2), X 3 = X b3 + (X 3 – X b3) and so on.  Thus, neglecting 
the effect of axial forces in the horizontal beams, for i = 1 to nc, we obtain 
the nc slope deflection equations 

𝑋𝑖 = 2𝑘𝑏𝑖−1𝜑𝑖−1 + 4(𝑘𝑏𝑖−1 + 𝑘𝑏𝑖)𝜑𝑖 + 2𝑘𝑏𝑖𝜑𝑖+1   (3) 

where Xi = end moment of column number i, Kbi = EIbi/Lbi = ERiI/SiLc, φi 
= angle of rotation of joint number i.  Noting that for i = 1, Kbi-1 = Kbo = 0 and 
for i = nc, Kbi = Kbnc = 0. 

2.3 Boundary conditions 

From the condition of equal sway value ∆ at the top of each column 
and from studying each fixed column separately, a set of equations is 
obtained. These equations together with static and slope deflection 
equations are sufficient to evaluate the unknowns X, H, and φ for all the 
columns, as described in detail in the following procedure: 

1. Assume elastic line 𝑦𝑎 for each column.  
2. Start by assuming equal end moments (Xi) at the top of each 

column, and Xi
′ = 0.5Xi at the bottom of each fixed column. Hence 

initial values of Xi and X’i are obtained from Eq. (2). 
3. From Eq. (1) the values of the horizontal forces (Hi) are calculated. 
4. Find internal bending moments for each column. Hinged columns 

are subjected to the three previously suggested forces obtained 
from steps 2 and 3. Fixed columns are considered by the 
superposition of the three cases shown in Fig. 3. 

5. Find elastic lines, with zero slope at column bottom for fixed 
columns, and zero slope at column top for hinged columns (will be 
corrected). This step will yield to the determination of a trial 
deflection at the top of each hinged column yt, a correction value 
yc must be added to yt. 

6. The unknown forces and rotations, namely X, H and φ at the top 
of each column, with a total number of 3nc, are obtained from 
static equilibrium equations, slope deflections equations and 
boundary conditions.   

The number of equations of static equilibrium equals (1 + nch), where 
nch is the number of hinged columns. These equations are ∑ H = 0 plus 
only hinged column equations selected from EqError! Reference source 
not found. (1). The number of slope deflection equations = nc, given by Eq 
(3). The boundary conditions are determined from the slope and sway 
equations; providing (ncf + nc - 1) equations, as shown below, in which ncf 
is the number of fixed columns. These boundary conditions are now 
discussed in detail. 

The slope at the top of each fixed column, Fig. 3, is 

𝜑𝑖 = 𝜑𝑛𝑖𝑝 + 𝑋𝑖𝜑𝑋𝑖=1 + 𝐻𝑖𝜑𝐻𝑖=1    (4) 

with a total of ncf equations. The value of the sway at the top of each 
column is 𝑦𝑖 = 𝑦𝑛𝑖𝑝 + 𝑋𝑖𝑦𝑋𝑖=1 + 𝐻𝑖𝑦𝐻𝑖=1 for fixed columns as shown in Fig. 

3, and 𝑦𝑖 = 𝑦𝑖𝑡 + 𝜑𝑖𝐿𝑐 for hinged columns, where 𝜑𝑖𝐿𝑐 is the top column 
sway correction. These values are all equal to the sway value ∆, therefore, 
for fixed columns 

𝑦𝑛𝑖𝑝 + 𝑋𝑖𝑦𝑋𝑖=1 + 𝐻𝑖𝑦𝐻𝑖=1 = ∆    (5) 

and for hinged columns 

 𝑦𝑖𝑡 + 𝜑𝑖𝐿𝑐 = ∆                    (6) 

Eqs. (5) and (6) constitute (nc – 1) equations, together with Eq (4) 
provide a total of (ncf + nc-1) boundary condition equations. Thus, from 
static, slope deflection and boundary equations, a total number of 3nc 
equations are deduced and the 3nc unknowns (X, H and φ at top of each 
column) are determined.  

7. From Eq. (1) find new X’i. 
8. Find resulting deflections y for each column. For hinged columns 

the resulting deflection is obtained by adding the trial deflection 
yit to the linear correction value, varying from zero at the bottom 
hinge to yic = 𝜑𝑖𝐿𝑐 at the top of the column. 

9. Repeat the cycle using y from step 8 as ya of step 1 in the 
subsequent cycle. 

The philosophy of the described method can be summarized as 
follows: the buckling load of the structure is the load just enough to 
maintain it in an assumed buckling configuration, provided that this load 
will in turn produce the assumed configuration. The method involves 
cycles of iteration in which a new configuration is obtained better than the 
assumed one at the end of each cycle. The calculations can be repeated 
until the required degree of accuracy is obtained. 

3. Numerical Results  

The versatility of the presented analysis can be demonstrated in 
dealing with stability problems of frames having non-prismatic column 
members, which are often encountered in both concrete and steel 
structures. Consider the anti-symmetrical mode of buckling of the frame 
shown in Fig. 4, with three spans. The span lengths are L1 = 5.0 m, L2 = 6.0 
m, and L3= L1 = 5.0 m; where L1, L2 and L3 are the distances between AD, 
DD’ and D’A’, respectively. 

 
Each column is divided into six segments with equal lengths, and the 

moments of inertia of all the columns vary as illustrated at each section for 
column AB (not shown for the other three columns). A numerical value of 
deflection is assumed for each division point, or station along the column. 
An arbitrary sidesway value of Δ = 1000 units is chosen.  Using Eq. (2), and 
following the notation given in Fig. 2, considering X1 = X4 and X2 = X3 due to 
anti-symmetry, we obtain 

𝑋1 + 𝑋2 = 2.56𝑃∆= 2560𝑃    (7) 

It has been deduced from solving many cases that it is good practice 
to begin with an equal value of the moments at the top of all the columns.  
Thus X1 = X2= 1280P are suggested values for the first cycle. These initial 
values will be altered from cycle to cycle until they reach their correct 
values. Fig. 5 shows complete calculations of the last cycle, in which both 
columns AB and DC are subjected to the different forces reached at this 
cycle. Each column is divided into 7 sections (6 segments of equal length 
λ, where λ = Lc/6). Details of each step are as follows:

 
Fig. 3 Deformation superposition of fixed columns 
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Fig. 4 Frame with non-prismatic columns 

Line 1: assumed buckling mode obtained from previous cycle (a 
comment on the first cycle is given at the end of the detailed steps and 
shown in Table 1). The suffixes 1 and 2 correspond to columns AB and DC, 
respectively. 

Line 2: moments in each column. A common factor is shown at the end 
of each line, for line 2 the common factor is P. 

Line 3: flexural rigidity EIc for both columns AB and DC. 
Line 4: angle changes  ( = M/ EIc), commonly known as the elastic 

load. 
Line 5: equivalent concentrated elastic loads 𝛼̅  acting on each section. 

The values of these concentrations are computed with sufficient accuracy 
from the formulae given in the work of Newmark (1943). 

Line 6: assumed average slopes φav beginning with zero slope at the 
column ends B and C (will be corrected). 

Line 7: trial deflections (y1t and y2t) based on the assumed average 
slopes and beginning with zero deflections at A and D. 

Line 8: correction deflections y1c and y2c for column AB and DC, 
respectively. These corrections are linear beginning from zero at A and D 
to certain values at B and C. These values are obtained from the following 
relations:  

(a) true slope = assumed slope + slope correction; hence, at B, B, 𝜑1 =
0 + 𝜑1𝑐 and at C, 𝜑2 = 0 + 𝜑2𝑐 . From slope deflection equations, 𝑋1 =
(𝐸𝐼/𝐿1)(4𝜑1 + 2𝜑2), 𝑋3 = (𝐸𝐼/𝐿1)(2𝜑1 + 4𝜑2) and 𝑋2 − 𝑋3 = (𝐸𝐼/
1.2𝐿1)6𝜑2. By superposition we get 𝑋1 + 𝑋2 = (𝐸𝐼/𝐿1)(6𝜑1 + 11𝜑2). 

Noticing that 𝐿1 = 0.5𝐿𝑐 = 3𝜆and (𝑋1 + 𝑋2) = 2560𝑃 from Eq. (7), then 

2560𝑃 =
𝐸𝐼

3𝜆
(6𝜑1 + 11𝜑2)    (8) 

(b) True deflection y1 at B, 𝑦1𝑡 + 𝑦1𝑐 = true deflection y2 at C, 𝑦2𝑡 + 𝑦2𝑐. 

Since 𝑦1𝑐 = 6𝜑1𝑐𝜆 = 6𝜑1𝜆, and 𝑦2𝑐 = 6𝜑2𝑐𝜆 = 6𝜑2𝜆, therefore, 

𝑦1𝑡⏟
at B

+ 6𝜑1𝜆 = 𝑦2𝑡⏟
at C

+ 6𝜑2𝜆    (9) 

From line 7 Fig. 5, y1t at B = 22361 Pλ2/EI and y2t at C = 25811 Pλ2/EI. 
By solving Eqs. (8) and (9) we get 𝜑1 = 823.83𝑃𝜆/𝐸𝐼 and 𝜑2 =
284.83𝑃𝜆/𝐸𝐼. Thus 𝑦1𝑐 = 4943𝑃𝜆2/𝐸𝐼 and 𝑦2𝑐 = 1493𝑃𝜆2/𝐸𝐼. Based on 
the correction values of the deflections at B and C (4943𝑃𝜆2/𝐸𝐼 and 𝑦2𝑐 =
1493𝑃𝜆2/𝐸𝐼), the linear corrections of columns AB and DC are entered in 
line 8. 

Line 9: line 7 + line 8. This line gives true deflections y1 and y2. 
Line 10: line 1/line 9. It gives ratios of the assumed and resulting 

deflections which are almost identical at all division points. 
The better ratio Σya/Σy is 0.03662 EI/Pλ2. Equating this ratio to unity, 

the value of the critical load is 1.3182 EI/Lc
2 and the effective length factor 

k of the hinged column AB is equal to 2.736; where 𝑃𝑐𝑟 = 𝜋2𝐸𝐼 (𝑘𝐿𝑐)2⁄  The 
same problem was solved analytically by deriving the slope-deflection 
equations for beam-columns made of solid bars, whose cross-sections 
varies as pyramids or truncated cone (Krynicki and Mazurkiewicz 1964) 
and a value of 1.31 EI/Lc

2 was obtained. 
The suggested starting buckling mode of the subsequent cycle (last 

two lines of Fig. 5) is almost identical to the previous one, thus the shape 
of the columns at the critical condition is already obtained with a high 
degree of accuracy. 

The previous problem was solved five times, beginning with five 
different assumed sets of deflection (ya) as shown in Table 1. In all cases, 
both the same critical load and the true buckling mode were reached. 
Special attention must be given to the last case where different shapes are 
assumed for each column of the frame, an assumption quite unreasonable, 
nevertheless the true anti-symmetrical mode of buckling was obtained. 
This investigation is in fact a severe test which demonstrates that the 
presented numerical procedure successfully converges with the correct 
solutions, even when unreasonable deflections are assumed at the 
beginning of the solution 

 

 
Fig. 5 Calculation of critical load Pcr for multi-span sway frame of Fig. 4 (last cycle) 



17  Electronic Journal of Structural Engineering, 2026, Vol 26, No.1 

Table 1. Different assumed starting deflections (first cycle) all 
converging to the same critical load Pcr and buckling mode 

 Values of Assumed 
Set of Deflection (1st 
Cycle) 

Assumed shape (1st Cycle) 

1 0    167    333    500    667    
833    1000 
Same in four columns 
(Straight line) 

 

2 0    259    500    707    866    
966    1000 
Same in four columns 
(Sine Curve) 

 
3 0   -100     0      150    450    

600    1000 
Same in four columns 

 
4 0   -500   -700     -700   -

500    0       1000 
Same in four columns 

 
5 0    167    333    500    667    

833    1000 
0    259    500    707    866    
966    1000 
0   -100     0      150   450    
600    1000 
0   -500   -700    -700   -
500     0     1000 
Different in each 
column (combination 
of sets 1 to 4 above, 
unreasonable) 

 

The sway critical load procedure described herein is used to calculate 
the buckling load for the frame shown in Fig. 6, resulting in a critical load 
of 5.04 EI/Lc2. The resulting deflections (buckling modes) at seven equally 
spaced sections of the four columns are shown in Table 2. For example, the 
value of 847 for the hinged column carrying a load of 2P is the column 
deflection for the section whose moment of inertia is equal to 2.00 I as 
shown in Fig. 6. A linear set of deflection was assumed in the first cycle, 
resulting in a first cycle critical load of 4.97 EI/Lc2 with a difference of just 
1.4% from the final answer. 

 
Fig. 6 Sway multi-span frame with non-prismatic members 

Table 2. Buckling mode for sway multi-span frame of Fig. 5 

Column Load Column Buckling mode values at seven sections 
with a top column sway ∆ = 1000 

Fixed P 0 63 230 459 698 894 1000 

Hinged 2P 0 387 670 847 946 990 1000 

Fixed 3P 0 65 236 469 709 902 1000 

Hinged 4P 0 357 624 800 907 969 1000 

The sway critical loads for multi-span frames, having 2 to 10 columns, 
with bending stiffness ratio 𝐾𝑏 𝐾𝑐⁄  ranging from 0.1 to 4, are determined 
using the presented method. In all cases the end columns carry a load P 
whereas the intermediate ones are subjected to a load 2P. The results are 
plotted in Figs. 7 and 8. The curves show that the value of the factor β, 
where 𝑃𝑐𝑟 = 𝛽 𝐸𝐼𝑐 𝐿𝑐

2⁄ , decreases as the number of columns increases. 
Nevertheless, the total critical load carried by the entire frame increases. 
The curves approach to each other more and more as nc increases, and 
become very close for nc greater than 6, especially for small ratios of 
𝐾𝑏 𝐾𝑐⁄ . The curves also show that the sway critical load increases with the 
increase of the relative bending stiffness 𝐾𝑏 𝐾𝑐⁄ . 

Since there is no difficulty in obtaining the critical loads 𝑃𝑐𝑟 of frames 
with nonprismatic column members using the numerical procedure 
described in this research, why not analyze such frames? is the critical load 
of such frames higher than the critical load of frames with prismatic 
members having equal volume? and what is the ratio of the depth at the 
top and bottom of the columns for maximum possible critical load? Fig. 9 

shows a rectangular cross section with a constant width b and varying 
depth d.  The dimension dx may be expressed by 

𝑑𝑥 = 𝑑𝑏[1 + ((𝑑𝑡/𝑑𝑏) − 1)𝑥/𝐿]    (10) 

 
Fig. 7 Sway critical load of multi-span hinged frames 

Fig. 8 Sway critical load of multi-span fixed frames 

where dx is the depth of any cross section located at distance x from 
bottom column’s section, dt is the depth of the top section, db is the depth 
of the bottom section and L is the height of the column.  For a constant 
volume column having sectional depth of dm at mid-height, where 𝑑𝑚 =
(𝑑𝑏 + 𝑑𝑡)/2, the moment of inertia at any section is given by 

𝐼𝑥 = [
1+(

𝑑𝑡
𝑑𝑏

−1)
𝑥

𝐿

0.5(
𝑑𝑡
𝑑𝑏

+1)
]

3

𝐼𝑚      (11) 
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Fig. 9 Dims notation of tapered columns 

Fig. 10 Critical sway load of two hinged frames with tapered 
columns 

where 𝐼𝑚 is the moment of inertia at the mid-section. Using Eq. (11), 
the values of moment of inertia along the columns are calculated and the 
critical load is obtained for various ratios of 𝑑𝑡/𝑑𝑏. The results are plotted 
in Figs. 10 - 12, covering the range of dt db⁄ = 1.0 to 5.0, for one, two and 
three spans, respectively.  

Figs 10-12 present the variation of the critical sway load for one-span, 
two-span, and three-span hinged frames with tapered columns as a 
function of the depth ratio dt/db where dt and db are the depths at the top 
and bottom of the column, respectively. The analysis assumes constant 
column volume, and the moment of inertia at each section is computed 
using Eq. (11), which accounts for the variation of depth along the column 
height. The developed numerical procedure applies to Newmark’s double 
integration method iteratively to determine the buckling load 
corresponding to each taper ratio. As shown in the figures, the critical load 
increases with the depth ratio up to a peak at dt/db= 2.5, beyond which the 
load begins to decrease. This behavior reflects the trade-off between 
stiffness distribution and geometric efficiency: increasing the top depth 
improves resistance to lateral displacement, but excessive tapering 
reduces stiffness near the base, which is critical for buckling resistance. 
The maximum critical load achieved at the optimal taper ratio is 
approximately 25–30% higher than that of a prismatic column with the 
same volume. These results confirm that strategic tapering can 

significantly enhance the buckling performance of multi-span frames, 
especially in systems with hinged support where lateral stability is more 
sensitive to column geometry. 

The effective length factor k is given by 𝑘 = 𝜋 √𝛽⁄  where the critical 

load, 𝑃𝑐𝑟 can be determined using 𝑃𝑐𝑟 =
𝜋2𝐸𝐼𝑚

(𝑘𝐿𝑐)2
 

 
Fig. 11 Critical sway load of two span hinged frames with tapered 
columns 

 
Fig. 12 Critical sway load of three span hinged frames with 
tapered columns. 

4. Conclusions 

The following key findings are drawn from this study (1) Newmark’s 
numerical double integration method was successfully extended for use in 
computing critical loads and buckling modes of rigidly jointed sway elastic 
multi-span portal frames with mixed hinged and fixed columns, (2) the 
method accurately computes critical buckling loads and effective length 
factors for prismatic and non-prismatic columns, (3) the elastic line of the 
mode of buckling is determined as a major part of the solution, which gives 
a clear insight of the behavior of the structure, (4) a depth ratio of 2.5 
between the top and bottom of tapered columns yields the maximum 
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critical load, (5) tapered columns with constant volume can achieve 25–
30% higher critical loads than prismatic columns, (6) the method 
converges reliably even with arbitrary initial deflection assumptions, 
demonstrating robustness, (7) the method can be used to calculate the 
column effective length factor and the buckling loads of frames with non-
prismatic members having irregular shapes, and (8) the approach is 
applicable to steel and concrete frames in buildings, bridges, and industrial 
structures. 
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