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Newmark’s numerical method of computing deflections, moments and buckling loads of isolated columns is
extended for the analysis of elastic buckling loads and buckling modes of prismatic and non-prismatic single story,
multi-span frames with combinations of hinged and fixed columns. Step-by-step description of the developed

procedure is presented, using statics equilibrium, slope deflection equations and boundary conditions. The elastic

&)

line of the buckling mode is determined as a major part of the solution, and the numerical procedure is used to
calculate the buckling loads and the columns’ effective length factor for multi-span frames. The most favorable

variation of cross-section of tapered frame columns is calculated, giving the maximum possible elastic critical
load of the frame for constant columns’ volume.
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1. Introduction

Structures are commonly designed to achieve both economic and
safety goals. For ordinary structures, economy frequently imposes the
selection of standard steel sections or regular reinforced concrete shapes.
However, for other structures, such as more complicated, unique, or large
ones, using non-prismatic or tapered members may enhance structural
efficiency and reduce overall cost.

Studies in column buckling go back to the eighteenth century, with the
experimental work of Musschenbroek (1729), constituting apparently the
first study in the literature on column buckling (Godoy and Elishakoff,
2020), and the mathematical work of Euler (1778). In the Nineteenth
century, accelerated metal construction raised interest in buckling
investigations, and the study of elastic stability continued with the
twentieth century classical work of Timoshenko and Gere (1964), among
others.

Although numerical or approximate methods, such as the finite
element method and the finite difference method play an important role
in the solution of stability problems, the effective length method has been
widely used for stability evaluation and design of compression members
for many years. Columns are considered in isolation with end restraints,
and the effective length factor is evaluated based on the joint stiffness ratio
at each end of the column (Julian and Lawrence, 1959). This procedure is
currently adopted by the American Concrete Institute, ACI 318 (2025) and
the American Institute of Steel Construction, AISC (2023). Efforts have
been made to improve the accuracy of the method and extend its range of
validity by considering the difference in the boundary conditions of top
and bottom columns by Duan and Chen (1988, 1989, 1999) and Kishi et al.
(1997), among others.

The non-contradictory complementary information (NCCI) document
SN008a (Oppe et al., 2005) to BS EN 1993-1 (BSI, 2005) rely on the
effective length method to assess the stability of multi-story frames and
provides erroneous results in certain situations (Webber et al 2015)
because it omits the contribution made to the rotational stiffness of the
end restraints by columns above and below, and to the translational
stiffness of end restraints by other columns in the same story.

Many studies have been conducted on the design of columns with
variable cross-section in single-span gable frames. A mathematical
analytical method was presented for determining the effective length
factor for non-prismatic columns in two-span gable frames (Behjati-Avval
and Vahidreza, 2015). A formulation of the stability of non-prismatic
frames with flexible connections and elastic supports (Rezaiee-Pajand et
al. 2016) was presented based on the solutions of the governing
differential equations for buckling. Studies aimed at the interaction effect
among sway-permitted stepped columns to develop a practical approach
to consider this effect have been presented by Tian et al (2021a, b). These
studies were based on the slope-deflection method and the concept of
story-based buckling.

In a comprehensive historical review, Pomares et al. (2021) examined
the evolution of buckling models used in the design of steel structures over
the past 275 years. Their study highlighted the limitations of traditional

analytical methods and emphasized the need for improved accuracy in
predicting buckling behavior, especially in light of catastrophic failures
such as the Dee Bridge, 1847, Tay Bridge, 1879, Quebec Bridge, 1907, and
Tacoma Bridge, 1940. By comparing historical models with finite element
simulations of compressed steel columns, the authors demonstrated
significant discrepancies in safety predictions and advocated for the
integration of modern computational techniques to enhance structural
reliability.

Buckling and stability analysis of structural frames has long been a
central concern in structural engineering. The classical theory of buckling
began with Euler’s formulation for slender columns, which laid the
foundation for understanding critical load behavior under axial
compression. Over time, this theory was extended to more complex
systems such as plates, shells, and multi-member frames.

In frame structures, buckling can occur in two primary modes: column
buckling of individual members and global frame buckling, where the
entire frame undergoes lateral displacement. These modes are influenced
by member stiffness, joint rigidity, and load eccentricities. Traditional
design approaches, such as the effective length method and P-A analysis,
have been widely used to estimate buckling loads. However, these
methods often rely on simplifications that may not capture the true
behavior of complex frames under combined loading conditions (Schilling,
1983). Recent developments have emphasized the importance of second-
order effects and the interaction between vertical and lateral loads.
Schilling (1983) proposed a conservative method for estimating frame
buckling loads using first-order analysis, incorporating correction factors
for P-A effects.

The literature on frame buckling has evolved from simplified hand
calculations to sophisticated computational models. The finite element
method (FEM) has become a powerful tool for analyzing buckling in
advanced materials and structural systems. Recent studies have focused
on functionally graded materials (FGMs), carbon nanotube-reinforced
composites (CNTRCs), and porous structures, which offer enhanced
mechanical properties and design flexibility. Tati (2021) developed a four-
node FEM model based on high-order shear deformation theory to analyze
thermal and mechanical buckling of functionally graded (FG) plates. The
model avoids shear locking and does not require correction factors,
making it efficient and accurate for complex loading scenarios. Rayhan et
al. (2025) combined FEM with machine learning to predict buckling
strength in additively manufactured lattice stiffened panels. Their study
demonstrated that simple cubic lattice structures outperform other
configurations in buckling resistance, and polynomial regression models
can accurately predict critical loads. Belabed et al. (2024) contributed
extensively to FEM-based analysis of FG-CNTRC beams and plates,
addressing free and forced vibration, elastic stability, and the effects of
porosity and foundation types. Their quasi-3D and p-version FEM models
have been validated against experimental and analytical benchmarks.

Tounsi et al. (2024) and Lakhdar et al. (2024) explored the dynamic
behavior of porous FG nanocomposite beams and shells using advanced
FEM formulations, including third-order shear deformation theory and
viscoelastic foundation modeling.
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Bentrar et al. (2023) and Katiyar et al. (2022) investigated the
influence of porosity distribution and geometric imperfections on
buckling and vibration behavior in FG sandwich plates and bi-directional
FG plates, respectively, using FEM.

These studies collectively highlight the versatility of FEM in capturing
the complex interactions between geometry, material gradation, and
loading conditions. The integration of machine learning further enhances
predictive capabilities, offering new avenues for design optimization and
real-time structural assessment.

An optimization of no sway plane rigid frames against buckling
centered on either maximizing the buckling load or minimizing the weight
of the structures, or both was presented by Naidoo and Li (2019), it proved
successful for no-sway multi-story rigid frames. An improved method for
simplified frame stability analysis that accounts for the vertical interaction
effects of columns was presented by Li et al. (2016). The governing
equation for the elastic buckling load of the sub-assemblage is derived. The
method is applicable to both sway-permitted and sway-prevented frames.
The applicability and accuracy of the method were demonstrated using a
series of examples with a wide variation of parameters including numbers
of story, boundary conditions, stiffness of beam-to-column connections,
column length and stiffness, and axial force level.

Buckling of tapered heavy columns with constant volume under self-
weight and tip load has been recently presented by Lee and Lee (2021).
The differential equation governing the buckling shapes of the column was
derived based on the equilibrium equations of the buckled column
elements. A new approach of the buckling analysis of non-prismatic
columns was proposed by Nikoli¢ and Salini¢ (2017), using a rigid element
method. An approximate computation of buckling loads for plane steel
frames with tapered members was proposed by Bazeos and Karabalis
(2006). The method was based on a series of dimensionless charts which
have been developed using the exact solution of the Bernoulli-Euler beam
theory and a wide range of steel profiles.

The critical elastic buckling load of an isolated bar with uniform or
non-uniform cross section can be calculated by Newmark’s (1943)
numerical method of double integration. When the bar has a cross section
varying along the span, a numerical procedure of successive
approximation is useful. Instead of assuming deflection y as some function
of x, the bar is divided into segments, and a numerical value of deflection
is assumed for each division point, or station along the beam. The
subsequent calculations are made in tabular form, calculating ordinates of
the elastic load and deflections at each station. Comparing the final
deflections with the initially assumed values determines the critical load.
Bradford and Yazdi developed an analytical procedure based on the
Newmark method, applicable to struts with geometric and material
nonlinearities (1999). The Newmark method has been extended for use in
computing buckling loads and buckling modes of single span elastic frames
with either hinged or fixed columns, but not both (Badir 2011, 2020).

In this study, a numerical procedure to calculate critical loads and
buckling modes for rigidly joined elastic multi-span sway portal frames
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with combination of hinged and fixed columns is presented. The single-
story frames studied in this paper consist of sway frames having prismatic
and non-prismatic columns, hinged or fixed directly into the foundation.
The frames have a constant height with variable beam spans as shown in
Fig. 1.

The developed method is applicable to the design and analysis of steel and
reinforced concrete frames in buildings, bridges, and industrial structures. It is
particularly beneficial in the following scenarios: design of frames with tapered
columns for optimal buckling resistance, irregular non-prismatic column
geometries, evaluation of effective length factors in multi-span systems with
mixed boundary conditions, retrofitting and strengthening of existing frames
where accurate buckling analysis is essential, and Optimization of material
usage by maximizing critical loads under volume constraints. These
applications demonstrate the method’s relevance to real-world engineering
problems.

The accurate prediction of elastic buckling loads and modes in multi-span
frames is a critical aspect of structural stability analysis. Many structural
systems, such as building frames, bridge piers, and industrial structures are
composed of multiple spans with varying support conditions. Traditional
buckling analysis methods often focus on isolated columns or simplified frame
configurations, which may not capture the true behavior of complex systems.
By extending Newmark’s numerical method to multi-span frames, this research
provides a more comprehensive and adaptable tool for engineers to assess
buckling behavior, leading to safer and more efficient structural designs. Older
methods  like Newmark’s method offer transparent, step-by-step
procedures that help engineers and students understand the mechanics of
buckling. Extending such methods preserves their pedagogical value while
adapting them to more complex systems. While finite element methods provide
powerful computational tools, they often obscure the underlying mechanics.
The extended Newmark method retains analytical transparency, making it
suitable for educational and preliminary design purposes. Moreover, it
preserves historical continuity in the structural analysis field.

The research presented herein extends Newmark’s numerical
technique originally developed for isolated columns to multi-span frames
with both prismatic and non-prismatic members. Detailed description of
the developed numerical procedure is outlined, and sample examples are
provided to illustrate the efficiency of the method. The method combines
static equilibrium, slope-deflection equations, and boundary conditions to
compute buckling loads, buckling mode shapes, and effective length
factors in a unified approach. The procedure is introduced and used to
determine the most favorable variation of column cross-section (tapering)
that maximizes the elastic critical load for a given volume. The ratio
between the depths of the top and bottom tapered rectangular columns
yielding the maximum possible critical load of the frame is determined.
These contributions advance the state of the art in buckling analysis and
provide engineers with a powerful tool for structural optimization of
irregular column shapes.
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Fig. 1 Sway buckling mode of multi-span frames.
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Fig. 2 Sway buckling mode of multi-span frames: end forces and rotations.
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2. Method - Sway buckling modes of multi-
span frames

The multi-span frame shown in Fig. 1 has a number of columns equal
to nc. The frame is subjected to vertical concentrated loads at the top of
the nc columns equal to P multiplied by a factor varying from n; to nn. from
left to right. The height of the columns is equal to L.. The frame has (nc-1)
spans with varying lengths from SiLc to Spc-1L. The moment of inertia of the
rafts is denoted by I»i= Ril in which i varies from 1 to (nc-1).

The forces acting on each column are separately shown in Fig. 2 with
a subscript number referring to the column by order from left to right.

The relations between the different unknowns are obtained from the
following conditions:

21
n,PA— X, — HyL, = 0
n,PA—X, —H,L, — X, =0
ngPA— Xy — Hyl, = 0

Statics equations

nncPA - ch - anLc - X;LL‘ =0 (1)
By superposition of Eq (1), and noticing that ¥!=%¢ H; = 0, then
PARIZI n = BT + X)) (2)

Where X; is the moment at the bottom fixed support, for hinged columns,
X; are equal to zero.

2.2

The relations between the end moments, at the top of each column (X3,
X2, X3,..., Xnc) and the angle of rotation of each joint (@1, @ 2, @ 3,..., ¢ nc) can
be obtained by studying each horizontal beam taking into consideration
that Xz = X p2 + (X2 - Xb2), X 3= X b3 + (X 3 - X»3) and so on. Thus, neglecting
the effect of axial forces in the horizontal beams, for i = 1 to nc, we obtain
the nc slope deflection equations
Xi = 2kpi19i-1 + 4Ckpiq + kp) @i + 2kpi 9144 (3)

where Xi = end moment of column number i, Kyi = Elyi/Lyi = ERil /SiLc, ¢i

= angle of rotation of joint number i. Noting that fori =1, Kpi.1 = Kso = 0 and
for i = nc, Kvi = Konc = 0.
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From the condition of equal sway value A at the top of each column
and from studying each fixed column separately, a set of equations is
obtained. These equations together with static and slope deflection
equations are sufficient to evaluate the unknowns X, H, and ¢ for all the
columns, as described in detail in the following procedure:

1.  Assume elastic line y, for each column.

2. Start by assuming equal end moments (Xi) at the top of each
column, and X{ = 0.5X; at the bottom of each fixed column. Hence
initial values of Xi and X’ are obtained from Eq. (2).

From Eq. (1) the values of the horizontal forces (H;) are calculated.

4.  Find internal bending moments for each column. Hinged columns
are subjected to the three previously suggested forces obtained
from steps 2 and 3. Fixed columns are considered by the
superposition of the three cases shown in Fig. 3.

5. Find elastic lines, with zero slope at column bottom for fixed
columns, and zero slope at column top for hinged columns (will be
corrected). This step will yield to the determination of a trial
deflection at the top of each hinged column y; a correction value
yc must be added to y.

6.  The unknown forces and rotations, namely X, A and ¢ at the top
of each column, with a total number of 3nc, are obtained from
static equilibrium equations, slope deflections equations and

boundary conditions.
Ynp
Faip /
n; P

Slope deflection equations

Boundary conditions

w

=4

@ ‘{]
; b
l

(2) Forces and deformation of fixed column

Case (a) = Case (b) +

Fig. 3 Deformation superposition of fixed columns

(b) Deformation due to M=mn; P(A-3,;)

The number of equations of static equilibrium equals (1 + nci), where
ncn is the number of hinged columns. These equations are ), H = 0 plus
only hinged column equations selected from EqError! Reference source
not found. (1). The number of slope deflection equations = nc, given by Eq
(3). The boundary conditions are determined from the slope and sway
equations; providing (ncs+ nc - 1) equations, as shown below, in which ncy
is the number of fixed columns. These boundary conditions are now
discussed in detail.

The slope at the top of each fixed column, Fig. 3, is
O = QPnp + Xi@x=1 + HiPp;=1 (4)

with a total of ncrequations. The value of the sway at the top of each
columnis y; =y, + X;yx,=1 + H;Yn,=1 for fixed columns as shown in Fig.
3, and y; = y;; + ;L. for hinged columns, where ¢;L, is the top column
sway correction. These values are all equal to the sway value A, therefore,
for fixed columns

Yp + XiVx=1 + HYg=1 = A (5)
and for hinged columns
Yie t @ile=A (6)

Egs. (5) and (6) constitute (nc - 1) equations, together with Eq (4)
provide a total of (ncs+ nc-1) boundary condition equations. Thus, from
static, slope deflection and boundary equations, a total number of 3nc
equations are deduced and the 3nc unknowns (X, H and ¢ at top of each
column) are determined.

7.  From Eq. (1) find new X’

8.  Find resulting deflections y for each column. For hinged columns
the resulting deflection is obtained by adding the trial deflection
yit to the linear correction value, varying from zero at the bottom
hinge to yic = ¢; L. at the top of the column.

9. Repeat the cycle using y from step 8 as y. of step 1 in the
subsequent cycle.

The philosophy of the described method can be summarized as
follows: the buckling load of the structure is the load just enough to
maintain it in an assumed buckling configuration, provided that this load
will in turn produce the assumed configuration. The method involves
cycles of iteration in which a new configuration is obtained better than the
assumed one at the end of each cycle. The calculations can be repeated
until the required degree of accuracy is obtained.

3. Numerical Results

The versatility of the presented analysis can be demonstrated in
dealing with stability problems of frames having non-prismatic column
members, which are often encountered in both concrete and steel
structures. Consider the anti-symmetrical mode of buckling of the frame
shown in Fig. 4, with three spans. The span lengths are L; =5.0 m, L2 = 6.0
m, and L3= L; = 5.0 m; where L, Lzand L3 are the distances between AD,
DD’ and D’A’, respectively.

Each column is divided into six segments with equal lengths, and the
moments of inertia of all the columns vary as illustrated at each section for
column AB (not shown for the other three columns). A numerical value of
deflection is assumed for each division point, or station along the column.
An arbitrary sidesway value of A = 1000 units is chosen. Using Eq. (2), and
following the notation given in Fig. 2, considering X: = X; and X> = X3due to
anti-symmetry, we obtain
X, + X, = 2.56PA= 2560P @)

It has been deduced from solving many cases that it is good practice
to begin with an equal value of the moments at the top of all the columns.
Thus X1 = X>= 1280P are suggested values for the first cycle. These initial
values will be altered from cycle to cycle until they reach their correct
values. Fig. 5 shows complete calculations of the last cycle, in which both
columns AB and DC are subjected to the different forces reached at this
cycle. Each column is divided into 7 sections (6 segments of equal length
A, where A = L,/6). Details of each step are as follows:

Fri=1 7 -“H,-=17
Reiq =1

(c) Deformationdue X; = 1 (d) Deformationdue H; = 1

x; Case(c) + H; Case (d)
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Fig. 4 Frame with non-prismatic columns

Line 1: assumed buckling mode obtained from previous cycle (a
comment on the first cycle is given at the end of the detailed steps and
shown in Table 1). The suffixes 1 and 2 correspond to columns AB and DC,
respectively.

Line 2: moments in each column. A common factor is shown at the end
of each line, for line 2 the common factor is P.

Line 3: flexural rigidity EI. for both columns AB and DC.

Line 4: angle changes « (a = M/ El:), commonly known as the elastic
load.

Line 5: equivalent concentrated elastic loads & acting on each section.
The values of these concentrations are computed with sufficient accuracy
from the formulae given in the work of Newmark (1943).

Line 6: assumed average slopes ¢q beginning with zero slope at the
column ends B and C (will be corrected).

Line 7: trial deflections (yx and yz:) based on the assumed average
slopes and beginning with zero deflections at A and D.

Line 8: correction deflections y:ic and yz for column AB and DC,
respectively. These corrections are linear beginning from zero at A and D
to certain values at B and C. These values are obtained from the following
relations:

(a) true slope = assumed slope + slope correction; hence, at B, B, ¢, =
0+ ¢,cand at C, ¢, = 0+ ¢,.. From slope deflection equations, X; =
(EI/L)(Ay +2¢,), X3 = (EI/L)(¢; +4¢,) and X, — X3 = (El/
1.2L,)6¢,. By superposition we get X; + X, = (EI/L)(6¢; + 11¢,).
Noticing that L; = 0.5L, = 32and (X; + X,) = 2560P from Eq. (7), then

2560P = = (69, + 119,) (8)

(b) True deflectiony1 atB, y,; + y,. =true deflection y, at C, y,; + y,..
Since y;, = 6.4 = 69,4, and y,. = 6¢,.A = 6¢,4, therefore,

Lc=100™

From line 7 Fig. 5, yirat B = 22361 PA?/El and yar at C = 25811 PA?/EL
By solving Egs. (8) and (9) we get ¢, =823.83PA/El and ¢, =
284.83PA/EI Thus y,;, = 4943PA%/EIl and y,. = 1493PA%/EI. Based on
the correction values of the deflections at B and C (4943PA%/EI and y,. =
1493P%/EI), the linear corrections of columns AB and DC are entered in
line 8.

Line 9: line 7 + line 8. This line gives true deflections y; and y..

Line 10: line 1/line 9. It gives ratios of the assumed and resulting
deflections which are almost identical at all division points.

The better ratio Zy./2y is 0.03662 EI/PA?. Equating this ratio to unity,
the value of the critical load is 1.3182 EI/L. and the effective length factor
k of the hinged column AB is equal to 2.736; where P, = w?EIl/(kL.)? The
same problem was solved analytically by deriving the slope-deflection
equations for beam-columns made of solid bars, whose cross-sections
varies as pyramids or truncated cone (Krynicki and Mazurkiewicz 1964)
and a value of 1.31 EI/L:Z was obtained.

The suggested starting buckling mode of the subsequent cycle (last
two lines of Fig. 5) is almost identical to the previous one, thus the shape
of the columns at the critical condition is already obtained with a high
degree of accuracy.

The previous problem was solved five times, beginning with five
different assumed sets of deflection (ya) as shown in Table 1. In all cases,
both the same critical load and the true buckling mode were reached.
Special attention must be given to the last case where different shapes are
assumed for each column of the frame, an assumption quite unreasonable,
nevertheless the true anti-symmetrical mode of buckling was obtained.
This investigation is in fact a severe test which demonstrates that the
presented numerical procedure successfully converges with the correct
solutions, even when unreasonable deflections are assumed at the

Vie + 6011 =y, + 69,1 9 beginning of the solution
o e
atB atC
A
P
X1=1261P
B
X3=435P/X
D
P
X2=1299P
P
Cc
X4=435P/%
1 2 3 5 6 7
Le = 64
|
T
Last Cycle:
1- 0 258 493 692 844 946 1000
Y 0 279 529 731 877 966 1000
2- M, 0 302 580 823 1018 1164 1261 P
M, 0 392 738 1010 1194 1289 1299 P
3- Elc 0.4 0.47 0.56 0.65 0.75 0.87 10 E
4 a 0 -643 -1036 -1266 -1357 -1338 -1261  P/EI
« 0 -834 -1318 -1544 -1592 -1482 -1299  P/EI
5- @ 622 1022 1254 -1348 -1333 646 PAJEI
a -805 -1297 -1538 -1580 -1476 -683 PA/EI
6- Ass.  av 6225 5603 4581 3327 1979 646 PAJEI
Ass. pav 7379 6574 5277 3739 2159 683 PAJEI
7- ¥y 0 6225 11828 16409 19736 21715 22361 PA%/EI
Var 0 7379 13953 19230 22969 25128 25811 PA?/EI
8-y, 0 824 1648 2472 3295 4119 4943 PA*/E1
Voo 0 249 498 747 995 1244 1493 PAY/EI
%y 0 7049 13476 18881 23031 25834 27304 PA/EI
¥ 0 7628 14451 19977 23964 26372 27304 PA*/EI
10 y /v 0.03660 0.03658 0.03665 0.03665 0.03662 0.03662  EI/PA?
W 0.03658 0.03661 0.03659 0.03660 0.03663 003662  EI/PA*

Better Ratio = (17230/470542) EI/PA” = 0.03662 EI/PA*
Critical Load Per = 0.03662 x 36 El/L*c = 1.3182 El/L%

Assumed Bucking Mode of Next Cycle:

258.2
279.4

493.6
529.3

» 0
Y, 0

691.5
731.7

946.2
965.9

1000
1000

843.5
a77.7

Fig. 5 Calculation of critical load Pcr for multi-span sway frame of Fig. 4 (last cycle)
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Table 1. Different assumed starting deflections (first cycle) all
converging to the same critical load Pcr and buckling mode

Values of Assumed
Set of Deflection (1st
Cycle)

1 0 167 333 500 667
833 1000
Same in four columns
(Straight line)

2 0 259 500 707 866
966 1000
Same in four columns
(Sine Curve)

Assumed shape (1st Cycle)

3 0 -100 0
600 1000
Same in four columns

150 450

T

4 0 -500 -700 -700 -
500 0 1000
Same in four columns

[ (

150 450 T

5 0 167 333 500 667
833 1000
0 259 500 707 866
966 1000
0 -100 O
600 1000
0 -500 -700 -700 -
500 0 1000
Different in  each
column (combination
of sets 1 to 4 above,
unreasonable)

The sway critical load procedure described herein is used to calculate
the buckling load for the frame shown in Fig. 6, resulting in a critical load
of 5.04 EI/LZ. The resulting deflections (buckling modes) at seven equally
spaced sections of the four columns are shown in Table 2. For example, the
value of 847 for the hinged column carrying a load of 2P is the column
deflection for the section whose moment of inertia is equal to 2.00 I as
shown in Fig. 6. A linear set of deflection was assumed in the first cycle,
resulting in a first cycle critical load of 4.97 EI/ L. with a difference of just
1.4% from the final answer.

lI 2p 3p 4P
N - -
- p 563 1 o o 1140 ©

424 1+ 853 1

300 1+ 597 14

H 1 200 14+ Result: Per =5.04 EI/L’( 31 400 [ 4+
125 14 250 14

072 1 14 14

036 1-L 073 1L

— 4 2 - -

Le Le Le
] | ] |

Fig. 6 Sway multi-span frame with non-prismatic members

Table 2. Buckling mode for sway multi-span frame of Fig. 5

Column Load Column Buckling mode values at seven sections

with a top column sway A = 1000

Fixed P 0 63 230 459 698 894 1000
Hinged 2P 0 387 670 847 946 990 1000
Fixed 3P 0 65 236 469 709 902 1000
Hinged 4P 0 357 624 800 907 969 1000

The sway critical loads for multi-span frames, having 2 to 10 columns,
with bending stiffness ratio K, /K, ranging from 0.1 to 4, are determined
using the presented method. In all cases the end columns carry a load P
whereas the intermediate ones are subjected to a load 2P. The results are
plotted in Figs. 7 and 8. The curves show that the value of the factor f5,
where P, = B EI /L2, decreases as the number of columns increases.
Nevertheless, the total critical load carried by the entire frame increases.
The curves approach to each other more and more as nc increases, and
become very close for nc greater than 6, especially for small ratios of
K, /K_.. The curves also show that the sway critical load increases with the
increase of the relative bending stiffness K, /K.

Since there is no difficulty in obtaining the critical loads P,, of frames
with nonprismatic column members using the numerical procedure
described in this research, why not analyze such frames? is the critical load
of such frames higher than the critical load of frames with prismatic
members having equal volume? and what is the ratio of the depth at the
top and bottom of the columns for maximum possible critical load? Fig. 9

shows a rectangular cross section with a constant width b and varying
depth d. The dimension dx may be expressed by

dy = dp[1+ ((de/dp) — 1)x/L] (10)
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Fig. 7 Sway critical load of multi-span hinged frames
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Fig. 8 Sway critical load of multi-span fixed frames

where dy is the depth of any cross section located at distance x from
bottom column’s section, d: is the depth of the top section, ds is the depth
of the bottom section and L is the height of the column. For a constant
volume column having sectional depth of dn at mid-height, where d,,, =
(dy + d;)/2, the moment of inertia at any section is given by

_ 1+(:;—1)z]3,
- m

de
o5(2ra)

(11
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Fig. 10 Critical sway load of two hinged frames with tapered
columns

where I,,, is the moment of inertia at the mid-section. Using Eq. (11),
the values of moment of inertia along the columns are calculated and the
critical load is obtained for various ratios of d;/d,,. The results are plotted
in Figs. 10 - 12, covering the range of d,/d,= 1.0 to 5.0, for one, two and
three spans, respectively.

Figs 10-12 present the variation of the critical sway load for one-span,
two-span, and three-span hinged frames with tapered columns as a
function of the depth ratio d:/d» where d: and d» are the depths at the top
and bottom of the column, respectively. The analysis assumes constant
column volume, and the moment of inertia at each section is computed
using Eq. (11), which accounts for the variation of depth along the column
height. The developed numerical procedure applies to Newmark’s double
integration method iteratively to determine the buckling load
corresponding to each taper ratio. As shown in the figures, the critical load
increases with the depth ratio up to a peak at d:/d»= 2.5, beyond which the
load begins to decrease. This behavior reflects the trade-off between
stiffness distribution and geometric efficiency: increasing the top depth
improves resistance to lateral displacement, but excessive tapering
reduces stiffness near the base, which is critical for buckling resistance.
The maximum critical load achieved at the optimal taper ratio is
approximately 25-30% higher than that of a prismatic column with the
same volume. These results confirm that strategic tapering can

significantly enhance the buckling performance of multi-span frames,
especially in systems with hinged support where lateral stability is more
sensitive to column geometry.

The effective length factor k is given by k = 7/ \/E where the critical
2ELy,

load, P,, can be determined using P, = W
C.

£
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Fig. 11 Critical sway load of two span hinged frames with tapered
columns

8
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12
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Fig. 12 Critical sway load of three span hinged frames with
tapered columns.

4. Conclusions

The following key findings are drawn from this study (1) Newmark’s
numerical double integration method was successfully extended for use in
computing critical loads and buckling modes of rigidly jointed sway elastic
multi-span portal frames with mixed hinged and fixed columns, (2) the
method accurately computes critical buckling loads and effective length
factors for prismatic and non-prismatic columns, (3) the elastic line of the
mode of buckling is determined as a major part of the solution, which gives
a clear insight of the behavior of the structure, (4) a depth ratio of 2.5
between the top and bottom of tapered columns yields the maximum

Electronic Journal of Structural Engineering, 2026, Vol 26, No.1 18



critical load, (5) tapered columns with constant volume can achieve 25-
30% higher critical loads than prismatic columns, (6) the method
converges reliably even with arbitrary initial deflection assumptions,
demonstrating robustness, (7) the method can be used to calculate the
column effective length factor and the buckling loads of frames with non-
prismatic members having irregular shapes, and (8) the approach is
applicable to steel and concrete frames in buildings, bridges, and industrial
structures.
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