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Abstract 

Concrete-filled steel tubular (CFST) columns are widely utilized in Structural Engineering because of their 
outstanding Load-Bearing Capacity (LBC) and ductility. Current design codes offer inconsistent predictions for 
Axial Load Capacity (ALC), particularly for high-strength Rectangular CFST Stub Columns (R-CFST columns), 
leading to uncertainty in practical applications. This study addresses this gap by developing interpretable and 
accurate Machine Learning (ML) models for predicting the ALC of such columns. A Database of 719 experimental 
results was compiled, encompassing six input features related to geometry and material properties. The core ML 
algorithm used is Histogram Gradient Boosting Regression (HGBR), which is further enhanced using two 
metaheuristic optimization algorithms: the Lotus Effect Optimization Algorithm (LEOA) and the Emperor 
Penguin Optimization Algorithm (EPOA). An ensemble strategy based on Dempster–Shafer theory (D–S theory) 
is also proposed. Model performance is evaluated using R², RMSE, MSE, MRAE, and RSR metrics. The hybrid 
HGBR–LEOA model (HGLA) achieved the best performance with R² = 0.9933 and RMSE = 202.728 in the test set. 
A sensitivity analysis using the Pearson Correlation Coefficient (PCC) identified Wall Thickness (t) and Section 
Width (B) as the most influential features. The outcomes illustrate that the suggested ML models significantly 
outperform traditional design code predictions and offer a fast, reliable alternative for early-stage structural 
design. This document provides a practical, data-driven framework that bridges the gap between empirical 
behavior and design code limitations for R-CFST columns. 
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1. Introduction 

High-strength composite columns offer greater strength, ductility, and 
stiffness, along with enhanced energy absorption in comparison with 
traditional steel columns or Reinforced Concrete (RC) (Damico & Conti, 
2024; Khajavi et al., 2025; Liu & Gho, 2005; Naeim, Akbarzadeh, et al., 
2024; Naeim, Khiavi, et al., 2024; Sakino et al., 2004a; Zhong, 2006). CFSTs 
leverage the optimal attributes of concrete and steel. Encasing the 
concrete core, the Steel Tube (ST) builds a tri-axial stress environment 
that boosts strength and ductility. Consequently, the solid core 
substantially reduces the probability of premature local buckling of the ST 
(Hatzigeorgiou, 2008). Additionally, CFST columns are highly effective in 
streamlining the construction process and lowering costs, as there is no 
need for formwork. Consequently, CFST columns are increasingly sought 
after in building and bridge construction. 

To decrease the usage of construction materials, significant attention 
has been directed towards utilizing high-yield-strength steel and high-
compressive-strength concrete in rectangular CFST stub column 
configurations. Research conducted by Liew et al. (Liew et al., 2016) and 
Xiong et al. (Xiong et al., 2017) evaluated these configurations, using steel 
yield strengths (𝑓𝑦) and concrete compressive strengths (𝑓𝑐

′) values of 

193 MPa and 779 MPa, respectively, while Khan et al. (Khan et al., 2017) 
provided similar findings with 𝑓𝑦 at 762 MPa and 𝑓𝑐

′ at 113 MPa. Mursi and 

Uy (Mursi & Uy, 2004; Uy, 2001) and Sakino et al. (Sakino et al., 2004b) 
also replicated these tests, achieving 𝑓𝑦 values reaching 761 MPa and 853 

MPa, respectively. The design instructions for CFST configurations are 
outlined in several design codes, including those from the United States 
(AISC 360–16 (Specification for Structural Steel Buildings (ANSI/AISC 360-
16) - 2016 | American Institute of Steel Construction, n.d.)), the United 
Kingdom (BS 5400 (Institution, 1982)), and Europe (Eurocode 4 (Johnson 
& Anderson, 2001)). 

The codes mentioned do not address the whole range of material 
strengths. Additionally, there is a disparity in the results achieved by these 
codes for the same problems, thus hindering the precise determination of 
CFST column strength. These limitations linked to the codes can 
potentially be addressed by ML algorithms, which analyze the database 
and identify correlations between input and output variables (Almustafa 
& Nehdi, 2020; Olalusi & Awoyera, 2021; Solhmirzaei et al., 2020). Lai and 
Varma (Lai & Varma, 2015) assembled a comprehensive collection of data 
on robust rectangular CFST columns. Drawing from an extensive 
parametric investigation using Finite Element (FE) analysis, they also 

proposed new formulas for design and a resistance factor (ϕ) to evaluate 
the strength of the Cross Section (C/S). The steel tube and concrete filling's 
fundamental stress-strain relationships were demonstrated. Creating 
validated FE schemes for CFST columns can be extremely challenging and 
time-consuming, although FE methods can accurately simulate their 
behavior. Thus, creating precise and dependable data-oriented methods 
that can steadily forecast the capability of CFST columns is essential. 

Scholars have proposed many ML tactics to help predict Failure Modes 
(FMs), analyze progressive collapse, estimate capacity, design, and 
compute structural demands (Fu, 2020; Jeon et al., 2014; Mangalathu, 
Hwang, et al., 2020; Rahman et al., 2021; Seo et al., 2012). Among the 
utilization of ML schemes in SE are identifying FMs in circular RC bridge 
columns (Mangalathu & Jeon, 2019), evaluating bridge vulnerability to fire 
(Kodur & Naser, 2021), quickly predicting earthquake destruction to 
structures (Mangalathu, Sun, et al., 2020), classifying FMs, and forecasting 
shear strength in beam-column joints, shear walls, and RC beams 
(Keshtegar et al., 2022; Mangalathu, Jang, et al., 2020; Mangalathu & Jeon, 
2018). Previous studies have also utilized data-oriented schemes to 
examine the CFST columns’ capacity. Tran et al. (Tran et al., 2019, 2020) 
compiled a substantial dataset of circular and R-CFST columns and 
deployed Artificial Neural Networks (ANN) to determine the maximum 
strength of these columns. Zarringol et al. (Zarringol et al., 2020) similarly, 
an ANN-based approach was utilized to forecast the capacity of CFST 
columns, round and oblong, in terms of eccentric and concentric loading 
conditions. Naser et al. (Naser et al., 2021) examined 3,103 CFST section 
test results and applied Genetic Algorithms (GA) alongside Gene 
Expression Programming (GEP) to create data-driven models. All these 
explorations found that the precision of the predictive schemes 
significantly exceeded that of the compressive capacity estimates based on 
the code. Memarzadeh et al. (Memarzadeh et al., 2023) examined the LBC 
of columns featuring square and circular shapes, utilizing GEP in 
conjunction with ANN techniques. In their research, Chen Wang and Tak-
Ming Chan (Wang & Chan, 2023) used three ML methods—Neural 
Networks (NN), Support Vector Regression (SVR), and Random Forest 
Regression (RFR)—to enhance models that forecast the final strength of 
CFSTs subjected to eccentric loads. 

It should be pointed out that having a highly predictive potential and 
accuracy is not necessarily an indicator of the reliability of an ML scheme. 
The ML schemes’ construction ought to be well-explainable and 
interpretable. The goal of this exploration is to develop interpretable ML 
schemes to project the ALC of R-CFST columns. The authors focus solely 
on projecting the ALC in R-CFST columns in this paper. HGBR, along with 
LEOA and EPOA, is used in this study to set up single and hybrid ML 
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schemes. Furthermore, an ensemble method on the basis of D–S theory is 
utilized to integrate the HGBR with two optimizers. A sensitivity analysis 
based on the PCC was also done to demonstrate the correlation of 
compressive strength with six features of the exploration. 

2. Data Collection  

The database employed in this research was sourced from Kaggle 
(https://www.kaggle.com/datasets/celalakrolu/rectangularstubcolumn)
, comprising 719 data points dedicated to assessing the Axial Load-Bearing 
Capacity (ALBC) of Stub Columns (SCs), on the basis of their material and 
geometry characteristics. The ALC of columns is predicted based on six 
different features, including the width of the cross-section (B), Height of 
the cross-section (H), steel casing wall thickness (t), length of the 

specimen (L), yield stress of steel (𝑓𝑦), and (𝑓𝑐
′). Error! Reference s

ource not found. illustrates the distribution and ranges of input and 
output values based on five primary statistical metrics: Median, 
Minimum (Min), Maximum (Max), Average, and Standard Deviation 
(SD). According to the table, the Max and Min values for both B and H 

are 400 and 60 mm, and the average values for t and L are 4.69 mm and 
522.02 mm, respectively. Also, the SD for 𝑓𝑦, 𝑓𝑐

′ and ALC are 167.87, 

31.98, and 2049.18. Furthermore, Error! Reference source not found. i
llustrates the frequency distribution of inputs and output values. For 
instance, the most frequent features B and H happen between 100 and 
200 mm, and most of the output data is distributed between 0 and 4000 
MPa. 

Table 1. Numerical properties of input and output variables 

Components Properties 
Max Min Average Median St. Dev 

B (mm) 400 60 149.30 130 59.46 
H (mm) 400 60 161.36 150 57.69 
t (mm) 12.5 0.7 4.69 4.38 2.31 
L (mm) 1514 60 522.02 480 211.95 
fy (MPa) 835 115 397.13 340.1 167.87 
fc (MPa) 164.1 8.52 53.98 44.9 31.98 
Axial load 
capacity (KN) 

14116 275 2528.48 1845 2049.18 

 

 

Fig. 1 Frequency distribution plots for input and output factors 
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Fig.2 indicates the correlation matrix between the ALC of columns and 
six key Input Parameters (IPs): B, H, t, L, fy, and f'c. The heatmap reveals 
that B and H show moderate to strong positive correlations with the ALC, 
indicating that larger C/S dimensions significantly enhance a column's 
ability to resist compressive forces. This is consistent with fundamental 
structural mechanics, which states that axial strength increases with the 
C/S area. The steel casing t shows a moderate positive correlation, 
suggesting that thicker steel walls contribute to better confinement and 
increased resistance to axial forces, particularly in composite column 
systems. In contrast, L exhibits a weak negative or near-zero correlation 
with ALC, implying that longer columns may be more prone to buckling 
and instability, which negatively impacts their effective axial performance. 
Additionally, both the fy and the f′c demonstrate moderate to strong 
positive correlations with axial capacity, reflecting their crucial roles in 
enhancing structural strength. Higher fy values increase the column’s 
resistance to deformation under load, while stronger concrete mixes 
(higher f′c directly contribute to bearing capacity. Overall, this analysis 
reveals that parameters increasing geometric size and material strength 
have a positive influence on ALC, while geometric instability factors, such 
as excessive length, may have an adverse or limited effect. 

 
Fig. 2 Correlation between parameters of the DB 

3. Machine Learning  

3.1 HBGR 

The procedure initiates by fitting a regressor to the DB, then continues 
with training additional regressors on the residuals left by the initial 
model. These weaker models are subsequently combined to form the final 
algorithm, which aims to minimize the loss function defined in Eq. (1). 
HGBR, a variant of Gradient-Boosting Regressor, distinguishes itself by 
employing histograms to enhance the efficiency of gradient and Hessian 
calculations for the loss function. 

𝐾 = ∑ (𝑆𝑖 − 𝑆𝑖̂)
2𝑁

𝑖=1       (1) 

At each cycle, a weak learner Pt (h) is trained using the residual errors 
from earlier regressors. The DB is first categorized into bins according to 
the weak learner's decision tree and the input attributes' values. Next, it 
calculates values for the gradients and Hessians directly from the data 
through histograms, eliminating any approximations related to the 
involved loss. The weight assigned to the learner is calculated accurately 
using these gradients and Hessians. A significant advantage of histogram 
gradient boosting is its natural capacity to handle missing values and 
categorical features by effectively creating new groupings for each unique 
category or any missing data. The final model is developed by calculating 
a weighted average of each weak learner, as demonstrated in Eq. (2). 

𝑆̂(ℎ) = ∑ 𝛽𝑡𝑃𝑡(ℎ)𝑇
𝑡=1       (2) 

𝛽𝑡 represents the learner's weight assigned to 𝑡𝑡ℎ weak learner (Li, 2024). 
Error! Reference source not found. illustrates the process of HGBR. 

 
Fig. 3 The design of the HGBR (Li, 2024) 

3.2 LEOA 

The pollination process of the lotus flower and the distinct 
characteristics of its leaves have motivated the development of the 
proposed LEOA. This algorithm combines a localized water-like search on 
lotus leaves with the pollination-inspired principles of the dragonfly 
algorithm, enhancing its effectiveness. The stages of exploration and 
exploitation in LEAO are described below: 

Exploration, as insects such as dragonflies assist in the dispersal of 
seeds, and their flight patterns can be tailored for this function (refer to 
the dragonfly optimization algorithm). 

Exploitation: As blossoms open, concentrate on a key center; they 
offer inspiration for nearby exploration by using a multi-group strategy 
that arranges the search elements (based on lotus flowers). 

Exploitation Guiding water across the plant's foliage, allowing it to exit 
through the nearest pores, might motivate a focused examination within 
the algorithm to determine the best spots (using local search techniques, 
namely, the Hill Climbing Algorithm—HCA) (Dalirinia et al., 2024). Fig. 4 
illustrates the LEOA procedure. 

 
Fig. 4 The diagram of the LEOA (Dalirinia et al., 2024) 
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3.3 EPOA 

The Emperor Penguin (EP) (Dhiman & Kumar, 2018), scientifically 
designated as Aptenodytes forsteri, is recognized as the most significant 
and heaviest type. The plumage and size of male and female EPs are alike. 
Their backs and heads are black, while their bellies are white, displaying a 
pale-yellow chest and bright yellow accents near the ears. EPs are unique 
in that they gather together to survive the severe Antarctic winter. The 
huddling actions observed in EPs can be separated into four distinct 
phases. 

1. Establish the boundary of the EP huddle. 
2. Assess the temperature distribution surrounding the huddle. 
3. Measure the spacing between the EPs. 
4. Identify and reposition the effective mover. 

This approach mainly aims to locate a capable facilitator. The huddle 
is positioned on a 2-D L-shaped polygonal surface. First, EPs haphazardly 
outline the huddle's border. Subsequently, the spread of temperature 
surrounding the huddle is analyzed. The distance between the EPs is 
evaluated to facilitate further investigation and utilization. Ultimately, the 
efficient relocation specialist, or optimal solution, is discovered, and the 
huddle border is recalibrated on the basis of the updated positions of the 
EPs. Fig. 5 illustrates the diagram of the optimization framework of EPOA. 

 
Fig. 5 The flowchart of the EPOA (Dhiman & Kumar, 2018) 

3.4 Dempster-Schafer Theory for Optimizers 

Evidence theory, also called D–S theory (Zhao et al., 2022), extends the 
concept of Bayesian subjective probability. It represents a structure for 
uncertain thinking and shares connections with other theories, such as 
probability and possibility theory. Dempster's rule combines belief 
degrees, fusing them, and bases the theory on subjective probabilities, 
taking data assumptions and the number of responses into account. The 
D-S evidence hypothesis is fundamentally on the basis of 2 significant 
thoughts: 1. Subjective probabilities regarding linked matters are used to 
infer levels of confidence; 2. Degrees of belief, constructed on various parts 
of proof, are aggregated utilizing Dempster's rule. Belief degrees rely on 
subjective probabilities for corresponding issues or hypotheses. This 
indicates the degree to which present evidence supports a particular 
assertion but does not necessarily assign exact probabilities. This ability 
to accommodate flexibility enables the theory to handle uncertainty 
without demanding prior knowledge. Dempster's combination rule 
(Shafer, 2016), being the foundation of the theory, is a process of 
combining several sources of evidence to adjust the levels of belief. It 
compiles various evidence sources by superimposing their impacts while 
diminishing inconsistencies. The degree of belief assigned to a proposition 
reflects how strong the evidence in its support is and its coherence with 
other evidence. 

3.5 Sensitivity Analysis Based on PCC 

PCC (Zhou et al., 2016), gauges the linear relationship between a pair 
of Random Variables (RV) (real-valued vectors). The PCC is traditionally 
the earliest method developed for gauging correlation and remains a 

widely used metric for assessing relationships. The covariance of variables 
X and Y is split by the product of their SDs, serving as a normalization 
factor, to describe the PCC between them. Another alternative definition 
can also be provided for it: 

𝑟𝑥𝑦 =
∑(𝑥𝑖 − 𝑥̅) ∑(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2√∑(𝑦𝑖 − 𝑦̅)2
    (3) 

The mean values of 𝑦 and 𝑥 are represented by 𝑦̅ and 𝑥̅ respectively, and 
the correlation coefficient 𝑟𝑥𝑦, which ranges from −1 to 1, stays unaffected 

by linear transformations of either variable. 
PCC determines the intensity of the linear link between the 2 RVs, 𝑥 and 
𝑦. A positive correlation coefficient indicates that the variables are 
positively correlated, whereas a negative one indicates an inverse 
correlation. No relationship between 𝑥 and 𝑦, when 𝑟𝑥𝑦 equals 0. As the 

absolute value of |𝑟𝑥𝑦| approaches 1, the strength of the linear association 
between the variables increases. This is because the measure of 
association indicates the direction of the tendency for changes in one 
variable to be predictive of changes in the corresponding variable between 
the two profiles. Fig. 6 illustrates the PCC sensitivity analysis results to 
illustrate the impact of inputs on compressive strength, which is the target 
value of the exploration. As is denoted in the figure, the inputs B and t are 
the features with the highest coefficients of 0.63332 and 0.62726, and the 
lowest coefficient belongs to feature L, which indicates the weakest impact 
on the target value. 

 
Fig. 6 The influence of IPs on the ALC drawing on PCC Sensitivity 
analysis 

3.6 K-Fold Cross-Validation (KCV) 

KCV is widely deployed by practitioners in model selection and 
estimation of errors in classifiers. KCV asks for a DB to be split into k 
portions; later on, via a cycle, a portion of these segments is deployed to 
train the scheme, while others are deployed to test the scheme's 
performance. In this study, all the algorithms proposed were enhanced by 
applying a k-fold strategy with k=5, in which various segments of the data 
are employed for learning and evaluation processes. Fig. 7 illustrates the 
process of fold selection, drawing on R2 and RMSE values. Drawing on the 
figure, the highest precision and least error belong to fold K4, with 
approximate values of 0.975 and 625 for R2 and RMSE, respectively. 

 
Fig. 7 The results of 5-fold cross-validation 
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For evaluation of the results of the predictions, numerical metrics of 
R2, RMSE, MSE, MRAE, and Residual Standard Error to Standard Deviation 
Ratio (RSR) have been used (Asgarkhani et al., 2023). 

R2 gauges the degree of fluctuation in the result-dependent variable, 
which is expressed by inputs (independent variables) within a regression 
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• R2=1: Perfect fit. The scheme describes 100% of the variation in the 
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• R2=0: The scheme describes none of the variability, implying a poor 
model. 
RMSE is one of the most deployed measures to evaluate the precision 

of a regression model. RMSE quantifies differences between expected and 
real values, giving an understanding of the typical size of the error in 
forecasts. The estimate of how well the model's prediction approximates 
the actual data is particularly facilitated by RMSE, without any alteration 
to the units of the original data. 

This is a commonly used measure in regression analysis that assesses 
the mean squared difference between the actual and predicted values. By 
squaring the differences, it emphasizes larger errors compared to smaller 
ones, making it notably responsive to outliers. 

The MRAE is used as a measure to find out the goodness of regression 
schemes. Usually, the meaning of the observed ones serves as the baseline 
model, and the average absolute prediction error is calculated relative to 
its absolute error. 

RSR is a statistical measure applied to test the productivity of schemes 
by examining RSE compared to the observed data SD.  

𝑅2 = 1 −
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑛

𝑖=1

∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑛
𝑖=1

    (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑛

𝑖=1     (4) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

2𝑛
𝑖=1     (5) 

𝑀𝑅𝐴𝐸 =
1

𝑛
 ∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑖
|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑎𝑣𝑔|

𝑛
𝑖=1     (6) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝜎𝑦
=

√
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑖
)

2
𝑛
𝑖=1

√
1

𝑛−1
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑎𝑣𝑔)𝑛

𝑖=1

  (7) 

5. Results and Discussion 

5.1  Outcomes of Hyperparameter Tuning and 
Convergence Curves 

Hyperparameters are the options that determine how the ML model is 
learned. In contrast to model elements, which are trained from data, 
hyperparameters are determined before training and significantly affect 
the productivity of the scheme. Various tactics have been employed to 
adjust hyperparameters and improve model outcomes. In this study, 
hyperparameter optimization was conducted using the random search 
technique implemented in Python. This method samples combinations of 
hyperparameters from predefined ranges and evaluates model 
performance, offering efficient exploration in high-dimensional parameter 
spaces. Compared to exhaustive grid search, random search enables 
broader coverage with fewer evaluations, which is particularly 
advantageous for complex models such as HGBR and its hybrid variants. 
Furthermore, more sophisticated hyperparameter tuning tactics, such as 
Bayesian optimization, GAs, and gradient-based enhancement, can also be 
employed to further optimize hyperparameter selection. Table 2 
illustrates the results of hyperparameter optimization for two hybrid 
schemes, HGLA (HGBR optimized using the Lotus Effect Optimization 
Algorithm (LEOA)) and HGEA (HGBR optimized using the Emperor 
Penguin Optimization Algorithm (EPOA)). 

Table 2. Results of hyperparameters for developed hybrid 
schemes 

Optimal 
Hyperparameters 

Schemes 
HGLA HGEA 

Max_depth 3 1 
Min_samples_leaf 21 27 

For the evaluation of the speed of hybrid schemes in obtaining an 
optimum solution convergence process, based on R2 and RMSE, has been 
done for two hybrid schemes of the exploration, HGLA and HGEA, and 
illustrated in Fig. 8. According to the figure, HGLA takes about 190 cycles 
to obtain an RMSE of about 200, which is the optimum RMSE, and the cycle 
number to reach the same level for HGEA is 180, which is slightly lower. In 
the case of R2, it can be seen that the cycle numbers for obtaining the 
optimum value for HGLA are slightly higher. In this respect, HGEA 
indicates a better performance. 

 
Fig. 8 Results of the convergence process for hybrid schemes 

5.2  Comparison of Schemes’ Performance 
Based on Evaluation Metrics 

Table 3 illustrates the results of the five metrics of R2, RMSE, MSE, 
MRAE, and RSR for a single model of HGBR, hybrid schemes of HGLA 
(HGBR+LEOA) and HGEA (HGBR+EPOA), and the ensemble approach 
HGLE (HGBR+LEOA+EPOA). For a more reliable comparison between 
schemes, the results of the test phase are considered. By exploring test 
phase results, it is seen that the hybrid model of HGLA with values of 
0.9933 and 202.728, respectively, for R2 and RMSE, has the best 
performance among all schemes. The ensemble approach, HGLE, is the 
second-best model with lower values for error metrics of MSE, MRAE, and 
RDR, and higher R2 compared to the single model of HGBR and the hybrid 
model of HGEA, and the worst performance belongs to the single model of 
HGBR, with higher error-based values and a higher R2. 

Table 3. The outcomes of the appraisal metrics for the developed schemes 

Phase Schemes Data Metrics 
R2 RMSE MSE MRAE RSR 

Train HGBR 0.9754 314.540 98935.33 0.6479 0.1582 
HGLA 0.9881 217.357 47244.25 0.4480 0.1093 
HGEA 0.9809 276.532 76469.94 0.5699 0.1391 
HGLE 0.9823 266.457 70999.19 0.5500 0.1340 

Validation HGBR 0.9793 292.004 85266.21 0.4521 0.1498 
HGLA 0.9901 201.777 40713.74 0.3124 0.1035 
HGEA 0.9839 256.824 65958.71 0.3976 0.1317 
HGLE 0.9851 247.285 61150.00 0.3829 0.1268 

Test HGBR 0.9858 293.439 86106.20 0.3834 0.1194 
HGLA 0.9933 202.728 41098.50 0.2647 0.0825 
HGEA 0.9891 257.942 66534.01 0.3379 0.1050 
HGLE 0.9899 248.478 61741.52 0.3250 0.1011 
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Fig. 9 Scatter plots for correlation between predicted and measured values of ALC 

Fig. 9 is a representation of four scatter plots of the studied schemes, 
and they are plots of the values predicted against the ratio of expected to 
be measured. The nearer an expected value is to the line where 
expected/measured values equal 1, the more accurate the prediction. 
According to the figure, almost all the schemes have the same distribution 
on the plot. For all the schemes, more than seventy percent of the expected 
values fall between 0 and 4000 MPa. HGLA distribution is the most 
accurate since the predicted/measured ratio is between 0.6 and 1.4, which 
is the lowest among all the schemes.  
   Table 4 illustrates the results of five statistical metrics for prediction 
schemes in three phases of Validation, Training, and Test, compared with 
the measured values of the exploration. In the Test phase maximum (Max) 
and minimum (Min) of measured values are 10357 and 382, respectively. 
The average and median of expected values by the single model of HGBR 

are 3136.5 and 2511.31, respectively, and the SD for the ensemble 
approach HGLE is 2433.87. 

Table 5 displays the distribution of errors made by studied schemes 
via 5 primary statistical metrics. Positive amounts of errors in the 
maximum (MAX) section show that expected values are bigger than 
measured, and negative values in the minimum (Min) section indicate 
expected values being lower than measured ones. In the Test phase, the 
highest and lowest number of errors belong to a single model of HGBR 
with values of 49.971 and -53.3398, respectively; the average and median 
of errors in HGLA are positive, and for the remaining schemes are negative. 
Furthermore, the lowest SD is for HGLA, 4.7207. Fig. 10 illustrates a box 
plot for the normal distribution of prediction errors in the test phase. As 
depicted in Table 5, HGLA has the least SD, meaning that the number of 
prediction errors is distributed around the average and median. However, 
for the other three schemes, more dispersity is seen in the plot. 

 
Table 4. Statistical properties for comparison of schemes 

Phase Schemes Properties 
Max Min Average Median St. Dev 

Train Measured 14116.00 275.00 2493.01 1815.00 1988.08 
HGBR 13562.70 151.35 2506.58 1940.00 2003.12 
HGLA 13732.81 189.92 2502.40 1916.11 1993.20 
HGEA 13629.21 166.27 2504.93 1926.71 1998.70 
HGLE 13647.10 170.26 2504.49 1927.06 1997.74 

Validation Measured 12307.00 374.00 2180.93 1760.00 1949.66 
HGBR 12150.60 210.23 2259.66 1815.55 1943.64 
HGLA 12199.19 263.47 2235.26 1795.61 1941.15 
HGEA 12169.70 229.89 2250.11 1791.86 1942.23 
HGLE 12174.70 236.26 2247.56 1792.82 1941.92 

Test Measured 10357.00 382.00 3159.26 2376.50 2457.33 
HGBR 10068.30 319.16 3136.50 2511.31 2432.39 
HGLA 10157.36 407.31 3143.45 2479.06 2436.41 
HGEA 10102.12 358.88 3139.34 2521.16 2433.54 
HGLE 10112.10 366.62 3139.94 2514.68 2433.87 
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Table 5. Statistical properties of the error of schemes 

Phase Schemes Properties 
Max Min Average Median St. Dev 

Train HGBR 59.5547 -52.6419 0.6282 0.6719 20.8803 
HGLA 49.7727 -46.8824 0.7345 0.1581 5.9004 
HGEA 52.3364 -46.2808 0.5530 0.5827 18.3488 
HGLE 50.2987 -44.5511 0.5311 0.5619 17.6778 

Validation HGBR 54.4197 -44.9649 6.4072 4.4940 19.9244 
HGLA 41.9966 -9.7435 1.4285 -0.0460 7.6361 
HGEA 47.6827 -39.8187 5.6241 3.9430 17.5147 
HGLE 46.0319 -38.1513 5.4216 3.7933 16.8697 

Test HGBR 49.9710 -53.3398 -0.9236 -0.4422 18.4143 
HGLA 13.9508 -14.8186 0.4837 0.0224 4.7207 
HGEA 44.0570 -46.8779 -0.8028 -0.3907 16.1874 
HGLE 42.3571 -45.2037 -0.7820 -0.3771 15.5930 

 

 

Fig. 10 Box plot normal distribution for errors of predictive 
schemes 

6. Practical Implications and Limitations 

6.1  Practical Application 

The developed ML-based models, especially the HGLA and HGLE 
hybrid approaches, offer promising utility for structural engineers 
involved in the construction and assessment of CFST columns. Practically 
speaking, engineers can utilize these models to quickly measure the ALBC 
of R-CFST columns. This removes the necessity for lengthy and 
computationally demanding FE modeling, or the application of excessively 
cautious and variable design guidelines. Once trained, the ML models 
produce predictions in milliseconds, offering a valuable cost- and time-
saving tool during preliminary design stages or parametric studies. 
Moreover, these models improve accuracy by learning directly from 
experimental data, thus capturing empirical behavior more effectively 
than analytical formulations in design codes. 

6.2 Model Boundaries 

It is crucial to point out that the trained models are only valid within 
the input range covered by the dataset. Based on Table 1, the acceptable 
input ranges are: 

• Width (B): 60 mm – 400 mm 
• Height (H): 60 mm – 400 mm 
• Wall thickness (t): 0.7 mm – 12.5 mm 
• Length (L): 60 mm – 1514 mm 
• Steel yield strength (fy): 115 MPa – 835 MPa 
• Concrete compressive strength (fc): 8.52 MPa – 164.1 MPa 
Users must ensure that their IPs fall within these boundaries to avoid 

extrapolation errors. The model is trained specifically on R-CFST columns; 
hence, predictions for circular or long-slender columns are outside the 
intended scope. 

6.3 Limitations 

Although the outcomes suggest strong predictive precision, the 
model's effectiveness is fundamentally linked to the standard and variety 
of the training data. Any bias or sparsity in the data, particularly in 
underrepresented parameter combinations, can reduce the 
generalizability of the model. Additionally, the ML schemes are data-
driven and do not explicitly model complex nonlinear FMs, such as local 
buckling, bond-slip, or post-peak behavior, which may arise under 
different loading or boundary conditions. These aspects are typically 
addressed more thoroughly in FE analysis. Finally, while the PCC-based 
sensitivity analysis offers some insights into feature importance, the 
model does not yet incorporate formal explainability tools, which would 
be valuable in future work to enhance interpretability. 

7. Conclusion  

This study develops interpretable ML models for forecasting the ALBC 
of R-CFST columns. Utilizing a DB of 719 new records and six geometric 
and material parameters, a core ML algorithm, HGBR, was enhanced with 
two bio-inspired optimizers (LEOA and EPOA), as well as a Dempster-
Shafer theory-based ensemble strategy. To quantify the results, five 
statistical metrics are utilized: the coefficient of determination (R2), RMSE, 
MSE, MRAE, and RSR. Dempster-Shafer theory-based ensemble is also 
employed to combine the two hybrid schemes to achieve an ensemble 
approach. PCC is also utilized in performing a sensitivity analysis to 
illustrate the compressive strength correlation with six of the features 
extracted in the exploration. Considering the results, it can be concluded 
that: 

1. The findings indicated that the geometry features B, H, and L are 
strongly correlated among themselves, while feature t is strongly 
correlated with 𝑓𝑦 and 𝑓𝑐

′. A fairly uniform correlation between ALC 

and IPs was seen for all the features. 
2. Comparative results of prediction schemes based on the five 

mentioned metrics demonstrate that the best prediction results and 
best distribution of expected values belong to the HGLA hybrid 
model, which is a combination of HGBR and LEOA. R2 and RMSE 
values assigned to HGLA were 0.9933 and 202.728, respectively. 
Also, the ensemble approach of HGLE (HGBR + LEOA +EPOA) can be 
mentioned as the second-best model with lower errors and a higher 
R2 value. 

3. Sensitivity assessment is done to recognize the effect of inputs on 
the output, and outcomes depict that features B and t have the 
highest coefficients of 0.63332 and 0.62726, respectively, while 
feature L has the lowest coefficient, indicating the smallest impact 
on the intended value. 

Employing ML to forecast how CFST structures act enhances the 
accuracy, efficiency, and affordability of structural design and analysis. ML 
schemes ensure dependable CFST performance predictions with little 
requirement for complex computations and extensive physical tests. They 
maximize material utilization, enhance safety analysis, and facilitate real-
time monitoring of structural health for early damage detection. With 
ongoing learning from data, ML improves the precision of designs, 
minimizes cost, and speeds up the development process. Future research 
can integrate ML with deep learning, FE analysis, and digital twins to make 
predictions precise and optimize CFST structures. 
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