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Large-span spatial building structures are complex and face challenging environments after construction. Under
external impacts, vibrations, and wind and snow loads, certain structural components may undergo deformation.
Therefore, it is crucial to implement spatial building structure optimization during the construction process. This
study proposes an optimization model for large-span spatial building structures by integrating Genetic Algorithm,

Kalman Filter, Influence Matrix, and Particle Swarm Optimization. Experimental results show that the proposed
algorithm achieves the lowest tracking frequency and phase mean square error, with a loop convergence time of
only 0.3s and a frequency tracking error of 15Hz. In practical applications, the optimized cable force values are
reduced by an average of 61kN compared to the original values, and the average bending stress decreases by
5.9MPa. The mean error of model-reconstructed displacement is 3.3% and 3.8%, achieving the highest
reconstruction accuracy. The experimental data demonstrate that the proposed model exhibits superior
performance in real-world optimization, contributing to large-span spatial building structures by ensuring safety

and improving construction efficiency.
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1. Introduction

With the steady growth of the global economy and increasing social
and cultural activities, the demand for large-span spatial structures
continues to rise (Su et al., 2025). The performance of large-span spatial
structures, especially those relying on cable systems (such as cable
trusses, cable-supported domes, tensioned beams, etc.), is highly
dependent on the initial state and service response of key components
(such as cables). This type of structure faces several prominent
engineering challenges and urgently needs precise and efficient
optimization methods. High cable force sensitivity is a common challenge.
Even minor changes in cable force can lead to significant alterations in
structural displacement and internal force distribution and even trigger
unexpected large deformations or instability risks (Yin et al, 2022).
Traditional design methods rely on empirical estimation and simplified
analysis, making it difficult to accurately capture this sensitivity, resulting
in the difficulty of precisely controlling the structural safety margin or
causing material waste. Adapting to complex dynamic environments is
also a major challenge. Structures face complex and time-varying load
conditions during the construction phase (such as step-by-step tensioning
and lifting) and the operation phase (such as wind loads, crowd loads, and
temperature changes). These dynamic environments require real-time
perception and prediction of the structural state in order to adjust the
control strategy in a timely manner or assess the safety status (Ledong et
al., 2022). However, structural optimization needs to simultaneously
consider safety (such as controlling displacement and stress), economy
(such as minimizing material usage and cable force), and construction
feasibility (such as tensile force limit and adjustment step sequence), and
there is a strong nonlinear coupling relationship among the variables,
making the solution difficult. When dealing with such large-scale,
nonlinear and multi-objective optimization problems, the existing
methods often face the predicaments of low computational efficiency,
being prone to falling into local optimum or having difficulty meeting the
real-time requirements. It is precisely these specific challenges, namely
the extreme sensitivity to minor changes in cable force, the need for real-
time state estimation under complex dynamic loads, and the complexity of
strong nonlinear multi-objective optimization, that constitute the
fundamental driving force for the research to seek more advanced
optimization methods. Kalman Filter (KF) can process dynamic data in
real time, effectively suppress noise, and integrate multi-source data to
achieve accurate variable estimation (Owen et al, 2023). Genetic
Algorithm (GA) has strong global search capabilities, enhances search
efficiency through population parallelism, and continuously optimizes
structural design based on fitness evaluation (Ghannadi et al, 2023).

Therefore, this study develops an optimization model for large-span
spatial structures based on KF and GA. The model incorporates Artificial
Neural Network (ANN) to improve GA, enabling rapid global optimization.
KF is then applied to filter observation data. Additionally, Influence Matrix
and Particle Swarm Optimization (PSO) are integrated to optimize cable
forces, aiming to enhance the stability of large-span spatial structures,
reduce engineering costs, and improve construction safety. This study
innovatively combines KF and GA, introduces further algorithm
improvements, and comprehensively considers various influencing
factors during optimization to enhance the model’s adaptability in
dynamic and complex environments.
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In the field of artificial intelligence, both KF and GA were developed to
solve complex problems. They improve result accuracy and solution
quality through information fusion and population evolution. Researchers
worldwide have conducted extensive studies on these methods. For
example, Zhao et al. (2022) developed a hybrid non-single-state fuzzy
strong tracking Kalman Filter model to enhance state estimation
performance in high-precision optoelectronic tracking systems under
complex conditions. This model integrated strong tracking and fuzzy logic
filtering techniques. Simulations and experimental comparisons
demonstrated their significant advantages. Bakhshi’s team (2023)
addressed the oversight of simple architecture methods in flood warning
systems by optimizing a Long Short-Term Memory model using KF for
water flow forecasting. Simulations based on real dam daily flow
sequences verified the feasibility and high performance of deep learning
methods with simple architectures for flood prediction. Sohail (2023)
explored the limitations of traditional optimization tools in engineering
and data science when dealing with large-scale or high-dimensional data.
He examined advanced GA applications, combining time-series
forecasting, Bayesian inference, and GA, confirming their strong
effectiveness in artificial intelligence. Khatri et al. (2023) proposed an
efficiency improvement model for isolated hybrid energy systems based
on GA to address the unpredictability of renewable energy growth. The
model analyzed multiple factors, including input variables, energy costs,
probability of energy loss, and renewable energy contributions, proving
its superior performance. Ghezelbash et al. (2023) developed a genetic-
based support vector machine model to tackle challenges in
mineralization process transformation. They used traditional clustering
algorithms to create mineral prospectivity maps and incorporated GA into
the clustering process. Experimental results showed that this model
outperformed similar alternatives.
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Large-span spatial building structures emerged alongside societal
advancements and have received significant research attention. For
instance, Tian et al. (2024) addressed the poor fitting of existing force
calculation methods for arch-cable structures. They proposed a multi-loop
nested algorithm that decomposes the construction process into
subsystem control modules, setting stress and displacement control
indicators for each module. Results demonstrated that this algorithm
effectively handled discreteness issues and provided greater parameter
flexibility. Choi et al. (2023) tackled the high construction cost and
environmental impact of prestressed concrete slabs by developing a multi-
objective green design model. They used a non-dominated sorting GA to
optimize input slab dimensions and loads, proving that their model
reduced both construction costs and carbon emissions compared to
existing slab design methods. Entezami and Sarmadi (2025) introduced an
innovative machine learning-assisted prediction method to address the
vulnerability of large-span suspension bridges to storm-induced
vibrations. Their method integrated metric learning, kernel learning, and
hybrid learning into a unified regularization framework, demonstrating its
effectiveness and practicality. Yu et al. (2023) aimed to improve the
computational efficiency of force optimization in suspension cables, which
often involves extensive matrix operations. They proposed a new cable
force optimization method that combined finite element analysis with
multi-objective optimization. Results indicated that this method
significantly improved optimization efficiency. Doroudi et al. (2024)
tackled data processing and feature selection challenges in large-span
bridges. They proposed an observer-teacher-learner-based optimization
method, using wavelet transform and multivariate empirical mode
decomposition to extract time-domain features. Their results confirmed
that this method made significant contributions to structural health
monitoring.

In summary, although researchers worldwide have made progress in
studying large-span spatial structures, existing studies often fail to
consider all influencing factors, leading to discrepancies between
computational results and real-world performance. Therefore, this study
combines KF and GA, utilizing GA for global search and optimization while
applying KF for real-time dynamic data processing. This approach
enhances optimization efficiency and accuracy, improves structural
stability, and significantly reduces engineering costs.

2. Optimization model construction for
large-span spatial engineering

21 Improved GA design with ANN

The core structural problems faced by large-span spatial structures
during construction and service are their extreme sensitivity to
mechanical behavior, strong nonlinearity, and adaptability to complex
environments. Minor changes in internal forces of key components may
lead to significant or even disproportionate redistribution of overall
displacement and internal force distribution of the structure, resulting in
unpredictable risks of large deformation or instability. The structure is
subjected to complex and time-varying dynamic load environments during
the construction and operation phases, requiring real-time perception and
prediction of the structural state. In large-span engineering optimization,
GA effectively searches for the global optimal solution and adapts to
complex forces. This study uses GA to determine the dynamic noise
covariance matrix. GA is an optimization algorithm inspired by biological
evolution. By simulating processes such as natural selection, crossover,
and mutation, GA iteratively searches for possible solutions (Lee et al.,
2024). The flowchart of GA is shown in Fig. 1.
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Fig. 1 Schematic diagram of GA process

As shown in Fig. 1, the problem parameters are first encoded to
generate the initial population. Each individual's fitness is then evaluated
to measure its ability to solve the problem. In the selection process,
individuals are chosen based on their fitness. The selected individuals
undergo crossover, exchanging gene segments to produce new
individuals. Meanwhile, some individuals undergo mutation to increase
population diversity, generating the next generation. The new population
enters the fitness evaluation stage, and this iteration continues until a
satisfactory solution is found. In the selection phase, the probability of an

individual being selected for reproduction is proportional to its fitness, as
shown in Equation (1).
__ fla)
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In Equation (1), a represents a vector encoding an individual's
characteristics, p represents the probability of being selected, f denotes
fitness, n is the total number of individuals, i and j represent individuals in
n. In the crossover phase, the selected individuals generate offspring
through the crossover operation, as expressed in Equation (2).

" ajn) (2)

In Equation (2), a’ represents the offspring of a. A small probability is
applied to modify certain genes in the new individuals, introducing
mutations to increase population diversity. The mutation operation is
expressed in Equation (3).
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In Equation (3), a” represents the mutated gene, x4 denotes the
mutation rate, and é represents a small random variation. By continuously
repeating these steps, GA gradually improves solution quality over
multiple generations, approaching the optimal solution. However, GA
encounters challenges in optimizing complex problems, such as large
search spaces and local optima. ANN has strong learning capabilities and
can leverage its fast-learning ability to guide GA, enhancing search
efficiency (Xiong et al., 2024). The flowchart of ANN-GA is shown in Fig. 2.
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Fig. 2 Schematic diagram of ANN-GA workflow

population generated by GA.

As shown in Fig. 2, trial samples are randomly selected and input into
the ANN prediction model for learning. The initial model is then generated
and subjected to tolerance analysis. If the tolerance meets the
requirements, the final ANN model is generated, otherwise, weights and
thresholds are adjusted. GA's initial parameters are then set, and the ANN
model is integrated to generate the optimal prediction model. Next,
relevant constraints and optimization objectives are established. Fitness
values are computed, and if the termination criteria are met, the final
result is output. If not, individuals are selected from the parent generation,
and new populations are generated through crossover and mutation. The
process returns to the GA initialization step and iterates until the
termination criteria are satisfied.

2.2 Algorithm design integrating KF and ANN-GA

When the deformation of a large-span spatial structure exceeds its
limit, safety accidents may occur, making structural optimization essential.
Based on a discretized linear stochastic system, future responses can be
predicted. The state vector of the observation point is expressed in
Equation (4).

Y() = y®,y®]" (4)

In Equation (4), Y represents the state vector, t denotes the current
time, y represents the system state vector, y is the derivative of y, and T is
the transpose process. The state equation is formulated as shown in
Equation (5).

(o) = [g (1)] Y(6) + [‘1’] w(®) (5)

In Equation (5), Y is the derivative of ¥, and » represents the noise
vector. The state equation is solved as shown in Equation (6).
v =} e+ £ o5 T[] e(@ada ©

In Equation (6), t, is the initial time, « is the integration variable, and
da represents the differential of . KF is constructed based on a discretized
linear stochastic system. It can estimate structural states in real-time with
high accuracy, making it more suitable for large-span engineering
optimization. This algorithm updates states estimates by combining the
previous estimate with the current observation using the minimum mean
square error criterion (Huang et al,, 2024). The flowchart and filtering
effect of KF are shown in Fig. 3.
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Fig. 3 KF workflow and filtering effect diagram

As shown in Fig. 3(a), the system state and covariance are first
initialized. The actual measurement value is then obtained and used to
compute the Kalman gain, determining the weight distribution between
the predicted and measured values. Using the computed Kalman gain, the
prediction and measurement values are combined through the update
step to obtain an updated state estimate. Covariance is updated to reflect
estimation uncertainty. The updated state is then projected onto the next
step (k+1) to predict the estimate, and the process enters the next
iteration. As shown in Fig. 3(b), KF continuously corrects state estimates.
It starts with an initial probability distribution, predicts based on the
previous estimate, and combines it with the probability distribution of
new measurements to obtain an updated estimate. The state prediction
equation of KF is shown in Equation (7).

X, = Fx,_q + Buy 7

In Equation (7), k and k — 1 represent time, u denotes the control
input vector, B represents the control input matrix, F is the state transition
matrix, x is the prior state estimate, and x’ is the posterior state estimate.
The error covariance prediction equation is shown in Equation (8).
Py =FPFT +Q (8)

In Equation (8), P represents error covariance, F' is the transpose
matrix of F, and Q represents the process noise covariance matrix. The
next step involves updating the state variable estimate. First, the Kalman
gain is calculated as shown in Equation (9).

K, = P.H"(HP,H™ + R)™! (C))
In Equation (9), HT represents the transpose matrix of observation

matrix H, K represents the gain matrix, and R is the covariance matrix of
observation noise. The state update equation is shown in Equation (10).

— Hxy) (10)

In Equation (10), z represents the measurement, and x;' is the
posterior state estimate at time k. The error covariance update equation is
shown in Equation (11).

P;;=(I—KkH)Pk

X' = x, + K (2

(11

In Equation (11), / is the identity matrix, and P’ is the posterior error
covariance. During the initialization of KF, the state noise covariance
matrix plays a crucial role. Based on the KF principle, a deformation
detection model is established, incorporating an improved ANN-GA
approach. The specific process is shown on Fig. 4.

As shown in Fig. 4, GA is first used to generate an initial population of
deformation detection parameter combinations. ANN is then used to
predict the fitness of individuals in the population, reflecting the
effectiveness of parameter combinations in deformation detection.
Individuals with low fitness are eliminated, and new populations are
generated through genetic operations such as crossover and mutation.
This process continues until an optimal parameter combination is
obtained. The optimized results are input into the KF module, where
updating, gain, and prediction functions optimize the detection data to

obtain filtered results. This process integrates the advantages of ANN, GA,
and KF, significantly improving deformation detection quality and
efficiency.

Fig. 4 ANN-GA innovation Kalman filter process diagram

2.3 Optimization model for building structures
based on deformation detection

In large-span structural optimization, in addition to optimizing
deformation monitoring, cable force optimization in cable-rod systems is
also crucial. It ensures structural safety and adaptability to complex loads.
The influence matrix method is commonly used for cable force
optimization. It constructs a matrix based on the relationship between
structural response and cable force, determining the reasonable bridge
completion cable force and solving construction cable tension (Bel Hadj Ali
et al, 2022). The vector relationship is first established as shown in
Equation (12).

Ax=D (12)

In Equation (12), 4 represents the influence matrix, while x and D
represent the applied and adjusted vectors, respectively. The equations for
calculating bending moment, axial force, shear force, and displacement are
shown in Equation (13).

M =M, + 4,,T
F=F,+ AT

13
Q=0Q,+AgT (13)
Z=1,+A,T

In Equation (13), M represents the bending moment of the structural
section, P is the dead load effect, 4 is the influence matrix, and T represents
the cable force vector. F, Q, and Z denote axial force, shear force, and
displacement, respectively. The cable-rod system in large-span structures
is often highly nonlinear and multi-variable, requiring a global optimal
solution. The study incorporates an improved PSO to handle various
constraints, aiding in the search for the optimal cable force. The core idea
of PSO is inspired by bird foraging behavior, utilizing individual
information sharing within a group to explore different regions in search
of optimal solutions (Pham et al., 2025). The velocity and position update
equations for particles in space are shown in Equation (14).

{v,d(k +1) = wv, (k) +cn[ pbest, (k) = x,, (k)] +c,r,[ gbest, (k) — x,, (k)]

Xq(k+1)=x,,(k)+v, (k+1) 14

In Equation (14), k represents the number of iterations, v denotes the
particle velocity, x indicates the position, w is the inertia factor, ¢
represents the constant acceleration, and r is a random number. gbest
stands for the individual best value, while pbest represents the global best
value. In optimization problems, constraint conditions for parameter
variables generally include equality constraints and inequality
constraints. To ensure the optimization results satisfy these conditions,
constraints are often incorporated into the objective function as penalty
functions. The penalty factor in the penalty function is a large positive
number, which penalizes constraint violations. Taking structural strain
energy as an example, the structure is first discretized into multiple
elements. Based on the bending moment, axial force, and sheer force of
each element, strain energy is calculated by considering material and
geometric parameters. By minimizing strain energy, cable force
optimization is achieved. Other objective functions follow a similar
approach, where minimizing the corresponding index leads to cable force
optimization. The optimization process combining PSO and the influence
matrix method is shown in Fig. 5.

As shown in Fig. 5, the process begins with problem analysis and data
preparation, where the optimization objective is clarified, and constraints
such as cable force ranges are defined. The study used ANSYS finite
element analysis software to construct an accurate structural model, in
order to obtain the relationship between structural response and cable
force. A decision is then made on whether to use the influence matrix
method or PSO for optimization. Next, in the influence matrix method,
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adjustment and response vectors are defined, and influence coefficients
are computed to form the influence matrix. Simultaneously, PSO is
initialized, where particle encoding is performed for cable forces, and
parameters such as swarm size are set. The iterative optimization process
then begins, calculating particle fitness and updating particle velocity and
position based on the equations. Finally, results are evaluated and output.
When the termination conditions are met, the optimal cable force
distribution is obtained and applied to design or construction. The ANN-
GA innovation Kalman filter is used for deformation monitoring, while PSO
and the influence matrix method are applied for cable force optimization.
This approach establishes an optimization model for large-span spatial
structural engineering. The optimization model framework developed in
this study is shown in Fig. 6.

As shown in Fig. 6, displacement sensors and strain gauges are first
used to collect deformation data under different conditions. After noise
reduction and normalization preprocessing, network parameters are
determined, and ANN is trained. The trained ANN is then used to optimize
GA parameters, improving prediction accuracy. The optimized predicted
values and actual measurements are input into the innovation Kalman
filter for deformation monitoring optimization. Simultaneously, cable
force optimization is carried out using the influence matrix method or PSO.
Finally, the information is integrated into output optimization results,
achieving the goal of optimizing large-span spatial structural engineering.

Suitable for

|
S
%ptlnmézanon , 0o [l | E
______________ y IHUENCe | Definition vector

I'matrix method !

|

: |—>l [ .| | Clalmlat/ed _N Output the |

| : | IKER inflence ' |optlmal solution,

1 | | Tnfluence matrix coefficient : _______

: : Suittble & L method |

U Clear Buld | Suitable for

| ontimizati | optlmlzanon ____________________

| optimization structural |

| objectives model |

I | b | X
: Problem analysis and data ! deort . @ ? % ‘3 @ '
1 preparation | : Particle Set parameters  Fitness Partlcle I
_____________ : coding . calculation  renewal :

. ) .
| L) L] |
: Improved PSO algorithm :

Fig. 5 Cable force optimization process combining PSO and
influence matrix method

| | | X | !
| | | | | ANN \
: a . : | | | A0 training "

N Displacement I | | | |
: sensor I‘:>I 1::> # [
I ' !
| |
| |
! l

structure data
collection

|
| | |
Long-span building H | : Data | S "'
| |
|

Strain gauge |

Ve %4

NS

SRS
| |

& 24O

Influence Optimized | | Output | INew information
matrix  cable force OPtmizat | | optimization | | Kalman filter
ton ! ! result | | processing

Fig. 6 Workflow diagram of the constructed optimization model

3. Experimental analysis of the
optimization model for large-span
spatial engineering

3.1 Performance verification of the improved
algorithm

To verify the performance advantages of the ANN-GA innovation KF,
this study conducted comparative experiments with the traditional KF,
Extended Kalman Filter (EKF), and Cubature Kalman Filter (CKF). The
experiments were performed on a system equipped with an Intel Core i3-
6100 CPU, 16GB of memory, and 512GB of storage, using Python 3.6 on
Windows 10. Simulated data were generated in MATLAB, with an input
frequency of a 500Hz initial Doppler signal. The simulation data utilizes
representative dynamic models of large-span spatial structures, known for
exhibiting significant geometric nonlinearity and sensitivity to dynamic
inputs. The core input signal simulates an initial Doppler frequency of 500
Hz, intentionally chosen to represent the complex vibration modes that
may be encountered in this structure. The signal is contaminated by
additional thermal noise, with a signal-to-noise ratio range of -22 dB to -
15 dB. This range is specifically selected to replicate the challenging noise
and interference conditions commonly present in the operating

environments of real-world buildings and large-span structures.
Therefore, the simulated data simulated the dynamic response of key
structural points that are highly sensitive to external stimuli. The
frequency tracking error comparison is shown in Fig. 7.

As shown in Fig. 7(a), the proposed algorithm achieved a loop
convergence time of 0.3s, with a frequency tracking error of 15Hz. In
contrast, KF exhibited significant fluctuations and only stabilized after
1.3s, ultimately reaching a tracking frequency error of 32Hz. As shown in
Fig. 7(b), both EKF and CKF converged within 1s. However, EKF had a
higher final tracking error than CKF, measuring 28Hz and 25Hz,
respectively. These results indicated that the proposed algorithm
provided a significant improvement in tracking performance compared to
traditional algorithms. To further evaluate the tracking performance
under different Signal-to-Noise Ratio (SNR) conditions, the system was
tested with thermal noise SNR ranging from -22dB to -15dB. The Mean
Square Errors (MSE) of loop frequency and phase tracking are shown in
Fig. 8.
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Fig. 7 Comparison of frequency tracking errors of different
algorithms

As shown in Fig. 8(a), the MSE of frequency tracking decreased
continuously with increasing SNR for all four algorithms. EKF exhibited
the largest decrease in tracking frequency errors as the SNR increased,
reaching a minimum of 1.8Hz at -15dB. The proposed algorithm
maintained the lowest tracking frequency error among all algorithms,
measuring only 0.8Hz at -15dB. As shown in Fig. 8(b), the phase tracking
error also decreased as SNR increased. After a 7dB increase in SNR, KF's
phase tracking error decreased by 0.09rad, while EKF and CKF decreased
by 8rad. The proposed algorithm showed the smallest decrease at 0.06rad
but remained the most stable among all four algorithms. These results
demonstrated the superior robustness of the proposed algorithm. To
further verify its filtering effectiveness, the study compared the fitness
values of different algorithms during the iteration process and evaluated
the filtered coordinate values against actual monitoring data, as shown in
Fig. 9.

As shown in Fig. 9(a), after 50 iterations, the proposed algorithm
stabilized, with the best fitness value reaching 20. Although EKF achieved
a fitness value of 15, second only to the proposed algorithm, it did not
stabilize until 250 iterations. CKF converged after 170 iterations, with the
best fitness value of 13, while KF stabilized after 210 iterations, with the
best fitness value of 10. As shown in Fig. 9(b), compared to the actual
monitoring data, the proposed algorithm was closest to the real values in
the eighth monitoring period, with an average coordinate deviation of only
0.2mm. KF deviated the most, with an average coordinate difference of
0.6mm. These results demonstrated the feasibility of the proposed
algorithm in filtering applications.
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3.2 Performance verification of the optimization
model

After verifying the superiority of the proposed algorithm, its practical
applicability was further evaluated by comparing it with the Tabu Search-
Artificial Neural Network (TS-ANN) model, the Particle Swarm
Optimization-Finite Element Method-Filtering Algorithm (PSO-FEM-FA)

model, and the Genetic Algorithm-Simulated Annealing Algorithm (GA-SA)
model. The experimental data comes from the long-term health
monitoring system of a large spatial structure project with a span of 120m
in a large manufacturing factory. The system continuously collected cable
force and stress-strain data for 6 months through force sensors and strain
gauges installed on key cables and nodes, with a cumulative effective data
volume of about 15GB, providing sufficient real physical observation
sequences for model comparison. The processing and analysis of data
were carried out in the hardware and software environments configured
in Table 1. The specific experimental environment is listed in Table 1.

Table 1. Experimental environment and configuration

Experimental ) .
environment Category Configuration
Internal memory  DDR4 8GB
Video memory 4GB Nvdia.Geforce
Hardware GTXlOSOT.I
configuration CPU Intel Core i5-7300, 2.50GHz
Graphics card Nvdia Geforce GTX1050Ti
Operating Windows 10
system
Software Python 3.6
environment MATLAB 2018b

In order to evaluate the optimization effect of different models on the
tension of inclined cables, this study conducted on-site testing on a 120m
span steel roof structure in the large single-layer manufacturing factory
mentioned above and closely monitored the key section of 60m long near
the mid span. The choice of a 120m span is due to its typical
representativeness in large-span spatial structures, which can fully reflect
the geometric nonlinear behavior and cable force redistribution effect of
the structure under complex loads. The key section of 60m long near the
mid span is tested because it has clear stress and typical boundary
conditions, which can effectively reflect the continuous distribution law of
cable force optimization along the length of the component. The
comparison results are shown in Fig. 10.
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Fig. 10 Cable force optimization effect diagram

As shown in Fig. 10(a), the TS-ANN model exhibited varying degrees
of cable force reduction depending on the length, with the maximum
reduction reaching 31kN at 40m and an average reduction of 25kN. The
GA-SA model achieved similar optimization results to the TS-ANN model,
with an average reduction of 29kN, but demonstrated lower optimization
stability. The proposed model and the PSO-FEM-FA model showed more
significant optimization effects, reducing cable force by 61kN and 46KkN,
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respectively. As shown in Fig. 10(b), the TS-ANN and GA-SA models
demonstrated limited optimization effects on bending stress, reducing
stress by only 2.6MPa and 2.9MPa, respectively. In contrast, the proposed
model and the PSO-FEM-FA model achieved greater reductions. The
proposed model showed the most significant reduction, reaching 7MPa at
8m and averaging a reduction of 5.9MPa. The PSO-FEM-FA model
followed, with an average stress reduction of 4.6MPa. To further compare
the effectiveness of the four models in reconstructing deformation
displacement under different working conditions, strain measurement
errors were set at 5% and 15%, and the results are shown in Fig. 11.
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Fig. 11 Deformation displacement reconstruction results under
different errors

As shown in Fig. 11(a), when the strain measurement error was 5%,
the proposed model was closest to the ideal reconstructed displacement
curve, with an average error of 3.3%. The PSO-FEM-FA model followed,
with an average error of 6.9%. The TS-ANN model deviated the most from
the ideal curve, with the highest average error of 38.9%. As shown in Fig.
11(b), when the strain measurement error increased to 15%, the proposed
model remained the closest to the ideal curve, with only a 0.5% increase
in average error. In contrast, the TS-ANN model's average error increased
by 10.2% to 49.1%. Although the PSO-FEM-FA model remained relatively
close to the ideal curve, its average error increased by 6.8% under 15%
strain measurement error. These experimental results indicated that the
proposed model demonstrated superior performance in reconstructing
deformation displacement and exhibited higher robustness.

4. Conclusion

Large-span spatial structures have become a key choice for landmark
urban buildings due to their unique advantages. These structures feature
large spans and diverse forms while bearing significant responsibilities in
public safety and social functionality. Therefore, optimizing their
structural performance is crucial for advancing the construction industry
and meeting urban development needs. This study introduced an
improved approach based on KF and GA, leveraging the real-time accurate
state estimation of KF and the global search capability of GA to enhance
deformation monitoring. Additionally, the study incorporated an influence
matrix and PSO to optimize structural cable forces. Experimental results
showed that the proposed algorithm achieved a loop convergence time of
0.3s and a frequency tracking error of 15Hz. Among the four compared
algorithms, it consistently maintained the lowest root mean square errors
for both frequency and phase tracking. When the SNR was -15dB, the
frequency tracking error was only 0.8Hz, and the phase tracking error was

0.02rad. In practical applications, the proposed model demonstrated
significant effectiveness in optimizing cable forces, with an average
reduction of 61kN compared to the original values, while the average
bending stress decreased by 5.9MPa. Under strain measurement errors of
5% and 15%, the reconstructed displacement errors averaged 3.3% and
3.8%, respectively, showing minimal variation as strain measurement
errors increased. Overall, the contribution of the research method lies in
that its cable force optimization results directly reduce the working stress
level of key load-bearing components, effectively alleviate the potential
overload risk of the structure under complex load combinations, and
provide additional margin for the structural safety reserve. The average
reduction of bending stress significantly reduces the stress concentration
phenomenon in key parts. This not only improves the bearing capacity of
local components, but more importantly reduces the possibility of
buckling instability of the structure as a whole under extreme loads. By
optimizing the cable force distribution and reducing the bending stress,
this model enhances the overall stiffness and stability of the structure. It is
expected to improve its vibration characteristics under wind loads and
dynamic loads and enhance the applicability and long-term service
performance of the structure. The optimized deformation displacement
reconstruction accuracy provides a more reliable database for structural
health monitoring and condition assessment, directly serving the safe
operation and maintenance of the structure. Although the proposed
algorithm and model showed performance advantages in multiple aspects,
the experimental scenarios were limited, and the generalization capability
of the model remains insufficiently validated. Future research should
expand experimental dimensions and integrate additional algorithms to
further enhance model performance.
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