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Abstract 

Large-span spatial building structures are complex and face challenging environments after construction. Under 
external impacts, vibrations, and wind and snow loads, certain structural components may undergo deformation. 
Therefore, it is crucial to implement spatial building structure optimization during the construction process. This 
study proposes an optimization model for large-span spatial building structures by integrating Genetic Algorithm, 
Kalman Filter, Influence Matrix, and Particle Swarm Optimization. Experimental results show that the proposed 
algorithm achieves the lowest tracking frequency and phase mean square error, with a loop convergence time of 
only 0.3s and a frequency tracking error of 15Hz. In practical applications, the optimized cable force values are 
reduced by an average of 61kN compared to the original values, and the average bending stress decreases by 
5.9MPa. The mean error of model-reconstructed displacement is 3.3% and 3.8%, achieving the highest 
reconstruction accuracy. The experimental data demonstrate that the proposed model exhibits superior 
performance in real-world optimization, contributing to large-span spatial building structures by ensuring safety 
and improving construction efficiency. 

  

Keywords  

Genetic algorithm, Kalman filter, Artificial neural network, Influence matrix, Particle swarm optimization, Large-
span spatial   

1. Introduction 

With the steady growth of the global economy and increasing social 
and cultural activities, the demand for large-span spatial structures 
continues to rise (Su et al., 2025). The performance of large-span spatial 
structures, especially those relying on cable systems (such as cable 
trusses, cable-supported domes, tensioned beams, etc.), is highly 
dependent on the initial state and service response of key components 
(such as cables). This type of structure faces several prominent 
engineering challenges and urgently needs precise and efficient 
optimization methods. High cable force sensitivity is a common challenge. 
Even minor changes in cable force can lead to significant alterations in 
structural displacement and internal force distribution and even trigger 
unexpected large deformations or instability risks (Yin et al., 2022). 
Traditional design methods rely on empirical estimation and simplified 
analysis, making it difficult to accurately capture this sensitivity, resulting 
in the difficulty of precisely controlling the structural safety margin or 
causing material waste. Adapting to complex dynamic environments is 
also a major challenge. Structures face complex and time-varying load 
conditions during the construction phase (such as step-by-step tensioning 
and lifting) and the operation phase (such as wind loads, crowd loads, and 
temperature changes). These dynamic environments require real-time 
perception and prediction of the structural state in order to adjust the 
control strategy in a timely manner or assess the safety status (Ledong et 
al., 2022). However, structural optimization needs to simultaneously 
consider safety (such as controlling displacement and stress), economy 
(such as minimizing material usage and cable force), and construction 
feasibility (such as tensile force limit and adjustment step sequence), and 
there is a strong nonlinear coupling relationship among the variables, 
making the solution difficult. When dealing with such large-scale, 
nonlinear and multi-objective optimization problems, the existing 
methods often face the predicaments of low computational efficiency, 
being prone to falling into local optimum or having difficulty meeting the 
real-time requirements. It is precisely these specific challenges, namely 
the extreme sensitivity to minor changes in cable force, the need for real-
time state estimation under complex dynamic loads, and the complexity of 
strong nonlinear multi-objective optimization, that constitute the 
fundamental driving force for the research to seek more advanced 
optimization methods. Kalman Filter (KF) can process dynamic data in 
real time, effectively suppress noise, and integrate multi-source data to 
achieve accurate variable estimation (Owen et al., 2023). Genetic 
Algorithm (GA) has strong global search capabilities, enhances search 
efficiency through population parallelism, and continuously optimizes 
structural design based on fitness evaluation (Ghannadi et al., 2023). 

Therefore, this study develops an optimization model for large-span 
spatial structures based on KF and GA. The model incorporates Artificial 
Neural Network (ANN) to improve GA, enabling rapid global optimization. 
KF is then applied to filter observation data. Additionally, Influence Matrix 
and Particle Swarm Optimization (PSO) are integrated to optimize cable 
forces, aiming to enhance the stability of large-span spatial structures, 
reduce engineering costs, and improve construction safety. This study 
innovatively combines KF and GA, introduces further algorithm 
improvements, and comprehensively considers various influencing 
factors during optimization to enhance the model’s adaptability in 
dynamic and complex environments. 

1.1 Related works 

In the field of artificial intelligence, both KF and GA were developed to 
solve complex problems. They improve result accuracy and solution 
quality through information fusion and population evolution. Researchers 
worldwide have conducted extensive studies on these methods. For 
example, Zhao et al. (2022) developed a hybrid non-single-state fuzzy 
strong tracking Kalman Filter model to enhance state estimation 
performance in high-precision optoelectronic tracking systems under 
complex conditions. This model integrated strong tracking and fuzzy logic 
filtering techniques. Simulations and experimental comparisons 
demonstrated their significant advantages. Bakhshi’s team (2023) 
addressed the oversight of simple architecture methods in flood warning 
systems by optimizing a Long Short-Term Memory model using KF for 
water flow forecasting. Simulations based on real dam daily flow 
sequences verified the feasibility and high performance of deep learning 
methods with simple architectures for flood prediction. Sohail (2023) 
explored the limitations of traditional optimization tools in engineering 
and data science when dealing with large-scale or high-dimensional data. 
He examined advanced GA applications, combining time-series 
forecasting, Bayesian inference, and GA, confirming their strong 
effectiveness in artificial intelligence. Khatri et al. (2023) proposed an 
efficiency improvement model for isolated hybrid energy systems based 
on GA to address the unpredictability of renewable energy growth. The 
model analyzed multiple factors, including input variables, energy costs, 
probability of energy loss, and renewable energy contributions, proving 
its superior performance. Ghezelbash et al. (2023) developed a genetic-
based support vector machine model to tackle challenges in 
mineralization process transformation. They used traditional clustering 
algorithms to create mineral prospectivity maps and incorporated GA into 
the clustering process. Experimental results showed that this model 
outperformed similar alternatives. 
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Large-span spatial building structures emerged alongside societal 
advancements and have received significant research attention. For 
instance, Tian et al. (2024) addressed the poor fitting of existing force 
calculation methods for arch-cable structures. They proposed a multi-loop 
nested algorithm that decomposes the construction process into 
subsystem control modules, setting stress and displacement control 
indicators for each module. Results demonstrated that this algorithm 
effectively handled discreteness issues and provided greater parameter 
flexibility. Choi et al. (2023) tackled the high construction cost and 
environmental impact of prestressed concrete slabs by developing a multi-
objective green design model. They used a non-dominated sorting GA to 
optimize input slab dimensions and loads, proving that their model 
reduced both construction costs and carbon emissions compared to 
existing slab design methods. Entezami and Sarmadi (2025) introduced an 
innovative machine learning-assisted prediction method to address the 
vulnerability of large-span suspension bridges to storm-induced 
vibrations. Their method integrated metric learning, kernel learning, and 
hybrid learning into a unified regularization framework, demonstrating its 
effectiveness and practicality. Yu et al. (2023) aimed to improve the 
computational efficiency of force optimization in suspension cables, which 
often involves extensive matrix operations. They proposed a new cable 
force optimization method that combined finite element analysis with 
multi-objective optimization. Results indicated that this method 
significantly improved optimization efficiency. Doroudi et al. (2024) 
tackled data processing and feature selection challenges in large-span 
bridges. They proposed an observer-teacher-learner-based optimization 
method, using wavelet transform and multivariate empirical mode 
decomposition to extract time-domain features. Their results confirmed 
that this method made significant contributions to structural health 
monitoring. 

In summary, although researchers worldwide have made progress in 
studying large-span spatial structures, existing studies often fail to 
consider all influencing factors, leading to discrepancies between 
computational results and real-world performance. Therefore, this study 
combines KF and GA, utilizing GA for global search and optimization while 
applying KF for real-time dynamic data processing. This approach 
enhances optimization efficiency and accuracy, improves structural 
stability, and significantly reduces engineering costs. 

2. Optimization model construction for 
large-span spatial engineering 

2.1 Improved GA design with ANN 

The core structural problems faced by large-span spatial structures 
during construction and service are their extreme sensitivity to 
mechanical behavior, strong nonlinearity, and adaptability to complex 
environments. Minor changes in internal forces of key components may 
lead to significant or even disproportionate redistribution of overall 
displacement and internal force distribution of the structure, resulting in 
unpredictable risks of large deformation or instability. The structure is 
subjected to complex and time-varying dynamic load environments during 
the construction and operation phases, requiring real-time perception and 
prediction of the structural state. In large-span engineering optimization, 
GA effectively searches for the global optimal solution and adapts to 
complex forces. This study uses GA to determine the dynamic noise 
covariance matrix. GA is an optimization algorithm inspired by biological 
evolution. By simulating processes such as natural selection, crossover, 
and mutation, GA iteratively searches for possible solutions (Lee et al., 
2024). The flowchart of GA is shown in Fig. 1. 

 
Fig. 1 Schematic diagram of GA process 

As shown in Fig. 1, the problem parameters are first encoded to 
generate the initial population. Each individual's fitness is then evaluated 
to measure its ability to solve the problem. In the selection process, 
individuals are chosen based on their fitness. The selected individuals 
undergo crossover, exchanging gene segments to produce new 
individuals. Meanwhile, some individuals undergo mutation to increase 
population diversity, generating the next generation. The new population 
enters the fitness evaluation stage, and this iteration continues until a 
satisfactory solution is found. In the selection phase, the probability of an 

individual being selected for reproduction is proportional to its fitness, as 
shown in Equation (1). 

𝑝𝑖 =
𝑓(𝑎𝑖)

∑ 𝑓(𝑎𝑗)
𝑛
𝑗=1

      (1) 

In Equation (1), 𝑎 represents a vector encoding an individual's 
characteristics, 𝑝 represents the probability of being selected, 𝑓 denotes 
fitness, 𝑛 is the total number of individuals, 𝑖 and 𝑗 represent individuals in 

𝑛. In the crossover phase, the selected individuals generate offspring 
through the crossover operation, as expressed in Equation (2). 

𝑎′ = (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑘 , 𝑎𝑗(𝑘+1), . . . , 𝑎𝑗𝑛)   (2) 

In Equation (2), 𝑎′ represents the offspring of 𝑎. A small probability is 
applied to modify certain genes in the new individuals, introducing 
mutations to increase population diversity. The mutation operation is 
expressed in Equation (3). 

𝑎𝑛𝑘
′′ = 𝑎𝑛𝑘 + 𝛿,𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝜇                 (3) 

In Equation (3), 𝑎′′ represents the mutated gene, 𝜇 denotes the 
mutation rate, and 𝛿 represents a small random variation. By continuously 
repeating these steps, GA gradually improves solution quality over 
multiple generations, approaching the optimal solution. However, GA 
encounters challenges in optimizing complex problems, such as large 
search spaces and local optima. ANN has strong learning capabilities and 
can leverage its fast-learning ability to guide GA, enhancing search 
efficiency (Xiong et al., 2024). The flowchart of ANN-GA is shown in Fig. 2. 

 

Fig. 2 Schematic diagram of ANN-GA workflow 

As shown in Fig. 2, trial samples are randomly selected and input into 
the ANN prediction model for learning. The initial model is then generated 
and subjected to tolerance analysis. If the tolerance meets the 
requirements, the final ANN model is generated, otherwise, weights and 
thresholds are adjusted. GA's initial parameters are then set, and the ANN 
model is integrated to generate the optimal prediction model. Next, 
relevant constraints and optimization objectives are established. Fitness 
values are computed, and if the termination criteria are met, the final 
result is output. If not, individuals are selected from the parent generation, 
and new populations are generated through crossover and mutation. The 
process returns to the GA initialization step and iterates until the 
termination criteria are satisfied. 

2.2 Algorithm design integrating KF and ANN-GA 

When the deformation of a large-span spatial structure exceeds its 
limit, safety accidents may occur, making structural optimization essential. 
Based on a discretized linear stochastic system, future responses can be 
predicted. The state vector of the observation point is expressed in 
Equation (4). 

𝑌(𝑡) = [𝑦(𝑡), 𝑦̇(𝑡)]𝑇                          (4) 

In Equation (4), 𝑌 represents the state vector, 𝑡 denotes the current 
time, 𝑦 represents the system state vector, 𝑦̇ is the derivative of 𝑦, and 𝑇 is 
the transpose process. The state equation is formulated as shown in 
Equation (5). 

𝑌̇(𝑡) = [
0
0
1
0
] 𝑌(𝑡) + [

0
1
]𝜔(𝑡)                   (5) 

In Equation (5), 𝑌̇ is the derivative of 𝑌, and 𝜔 represents the noise 
vector. The state equation is solved as shown in Equation (6). 

𝑌(𝑡) = [
0
0
𝑡 − 𝑡0
1

] 𝑌(𝑡0) + ∫ [
1
0
𝑡 − 𝛼
1

]
𝑡

𝑡0
[
0
1
]𝜔(𝛼)𝑑𝛼    (6) 

In Equation (6), 𝑡0 is the initial time, 𝛼 is the integration variable, and 
𝑑𝛼 represents the differential of 𝛼. KF is constructed based on a discretized 
linear stochastic system. It can estimate structural states in real-time with 
high accuracy, making it more suitable for large-span engineering 
optimization. This algorithm updates states estimates by combining the 
previous estimate with the current observation using the minimum mean 
square error criterion (Huang et al., 2024). The flowchart and filtering 
effect of KF are shown in Fig. 3. 
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Fig. 3 KF workflow and filtering effect diagram 

As shown in Fig. 3(a), the system state and covariance are first 
initialized. The actual measurement value is then obtained and used to 
compute the Kalman gain, determining the weight distribution between 
the predicted and measured values. Using the computed Kalman gain, the 
prediction and measurement values are combined through the update 
step to obtain an updated state estimate. Covariance is updated to reflect 
estimation uncertainty. The updated state is then projected onto the next 
step (k+1) to predict the estimate, and the process enters the next 
iteration. As shown in Fig. 3(b), KF continuously corrects state estimates. 
It starts with an initial probability distribution, predicts based on the 
previous estimate, and combines it with the probability distribution of 
new measurements to obtain an updated estimate. The state prediction 
equation of KF is shown in Equation (7). 

𝑥𝑘 = 𝐹𝑥𝑘−1
′ + 𝐵𝑢𝑘                          (7) 

In Equation (7), 𝑘 and 𝑘 − 1 represent time, 𝑢 denotes the control 
input vector, 𝐵 represents the control input matrix, 𝐹 is the state transition 
matrix, 𝑥 is the prior state estimate, and 𝑥′ is the posterior state estimate. 
The error covariance prediction equation is shown in Equation (8). 

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 +𝑄                           (8) 

In Equation (8), 𝑃 represents error covariance, 𝐹𝑇 is the transpose 
matrix of 𝐹, and 𝑄 represents the process noise covariance matrix. The 
next step involves updating the state variable estimate. First, the Kalman 
gain is calculated as shown in Equation (9). 

𝐾𝑘 = 𝑃𝑘𝐻
𝑇(𝐻𝑃𝑘𝐻

𝑇 + 𝑅)−1                      (9) 

In Equation (9), 𝐻𝑇 represents the transpose matrix of observation 
matrix 𝐻, 𝐾 represents the gain matrix, and 𝑅 is the covariance matrix of 
observation noise. The state update equation is shown in Equation (10). 

𝑥𝑘′ = 𝑥𝑘 +𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘)                         (10) 

In Equation (10), 𝑧 represents the measurement, and 𝑥𝑘′ is the 
posterior state estimate at time 𝑘. The error covariance update equation is 
shown in Equation (11). 

𝑃𝑘
′ = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘                         (11) 

In Equation (11), 𝐼 is the identity matrix, and 𝑃′ is the posterior error 
covariance. During the initialization of KF, the state noise covariance 
matrix plays a crucial role. Based on the KF principle, a deformation 
detection model is established, incorporating an improved ANN-GA 
approach. The specific process is shown on Fig. 4. 

As shown in Fig. 4, GA is first used to generate an initial population of 
deformation detection parameter combinations. ANN is then used to 
predict the fitness of individuals in the population, reflecting the 
effectiveness of parameter combinations in deformation detection. 
Individuals with low fitness are eliminated, and new populations are 
generated through genetic operations such as crossover and mutation. 
This process continues until an optimal parameter combination is 
obtained. The optimized results are input into the KF module, where 
updating, gain, and prediction functions optimize the detection data to 

obtain filtered results. This process integrates the advantages of ANN, GA, 
and KF, significantly improving deformation detection quality and 
efficiency. 
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Fig. 4 ANN-GA innovation Kalman filter process diagram 

2.3 Optimization model for building structures 
based on deformation detection 

In large-span structural optimization, in addition to optimizing 
deformation monitoring, cable force optimization in cable-rod systems is 
also crucial. It ensures structural safety and adaptability to complex loads. 
The influence matrix method is commonly used for cable force 
optimization. It constructs a matrix based on the relationship between 
structural response and cable force, determining the reasonable bridge 
completion cable force and solving construction cable tension (Bel Hadj Ali 
et al., 2022). The vector relationship is first established as shown in 
Equation (12). 

𝐴𝑥 = 𝐷                                             (12) 

In Equation (12), 𝐴 represents the influence matrix, while 𝑥 and 𝐷 
represent the applied and adjusted vectors, respectively. The equations for 
calculating bending moment, axial force, shear force, and displacement are 
shown in Equation (13). 

{
 

 
𝑀 = 𝑀𝑝 + 𝐴𝑀𝑇

𝐹 = 𝐹𝑝 + 𝐴𝐹𝑇

𝑄 = 𝑄𝑝 + 𝐴𝑄𝑇

𝑍 = 𝑍𝑝 + 𝐴𝑍𝑇

                                  (13) 

In Equation (13), 𝑀 represents the bending moment of the structural 
section, 𝑃 is the dead load effect, 𝐴 is the influence matrix, and 𝑇 represents 
the cable force vector. 𝐹, 𝑄, and 𝑍 denote axial force, shear force, and 
displacement, respectively. The cable-rod system in large-span structures 
is often highly nonlinear and multi-variable, requiring a global optimal 
solution. The study incorporates an improved PSO to handle various 
constraints, aiding in the search for the optimal cable force. The core idea 
of PSO is inspired by bird foraging behavior, utilizing individual 
information sharing within a group to explore different regions in search 
of optimal solutions (Pham et al., 2025). The velocity and position update 
equations for particles in space are shown in Equation (14). 

d d 1 1 d d 2 2 d d

d d d

( 1) ( ) [ ( ) ( )] [ ( ) ( )]

( 1) ( ) ( 1)

i i i i i i

i i i

k k c r pbest k x k c r gbest k x k

x k x k k

 



+ = + − + −


+ = + +
        (14) 

In Equation (14), 𝑘 represents the number of iterations, 𝜈 denotes the 
particle velocity, 𝑥 indicates the position, 𝜔 is the inertia factor, 𝑐 

represents the constant acceleration, and 𝑟 is a random number. 𝑔𝑏𝑒𝑠𝑡 
stands for the individual best value, while 𝑝𝑏𝑒𝑠𝑡 represents the global best 
value. In optimization problems, constraint conditions for parameter 
variables generally include equality constraints and inequality 
constraints. To ensure the optimization results satisfy these conditions, 
constraints are often incorporated into the objective function as penalty 
functions. The penalty factor in the penalty function is a large positive 
number, which penalizes constraint violations. Taking structural strain 
energy as an example, the structure is first discretized into multiple 
elements. Based on the bending moment, axial force, and sheer force of 
each element, strain energy is calculated by considering material and 
geometric parameters. By minimizing strain energy, cable force 
optimization is achieved. Other objective functions follow a similar 
approach, where minimizing the corresponding index leads to cable force 
optimization. The optimization process combining PSO and the influence 
matrix method is shown in Fig. 5. 

As shown in Fig. 5, the process begins with problem analysis and data 
preparation, where the optimization objective is clarified, and constraints 
such as cable force ranges are defined. The study used ANSYS finite 
element analysis software to construct an accurate structural model, in 
order to obtain the relationship between structural response and cable 
force. A decision is then made on whether to use the influence matrix 
method or PSO for optimization. Next, in the influence matrix method, 
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adjustment and response vectors are defined, and influence coefficients 
are computed to form the influence matrix. Simultaneously, PSO is 
initialized, where particle encoding is performed for cable forces, and 
parameters such as swarm size are set. The iterative optimization process 
then begins, calculating particle fitness and updating particle velocity and 
position based on the equations. Finally, results are evaluated and output. 
When the termination conditions are met, the optimal cable force 
distribution is obtained and applied to design or construction. The ANN-
GA innovation Kalman filter is used for deformation monitoring, while PSO 
and the influence matrix method are applied for cable force optimization. 
This approach establishes an optimization model for large-span spatial 
structural engineering. The optimization model framework developed in 
this study is shown in Fig. 6. 

As shown in Fig. 6, displacement sensors and strain gauges are first 
used to collect deformation data under different conditions. After noise 
reduction and normalization preprocessing, network parameters are 
determined, and ANN is trained. The trained ANN is then used to optimize 
GA parameters, improving prediction accuracy. The optimized predicted 
values and actual measurements are input into the innovation Kalman 
filter for deformation monitoring optimization. Simultaneously, cable 
force optimization is carried out using the influence matrix method or PSO. 
Finally, the information is integrated into output optimization results, 
achieving the goal of optimizing large-span spatial structural engineering. 
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Fig. 5 Cable force optimization process combining PSO and 
influence matrix method 
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Fig. 6 Workflow diagram of the constructed optimization model 

3. Experimental analysis of the 
optimization model for large-span 
spatial engineering  

3.1 Performance verification of the improved 
algorithm 

To verify the performance advantages of the ANN-GA innovation KF, 
this study conducted comparative experiments with the traditional KF, 
Extended Kalman Filter (EKF), and Cubature Kalman Filter (CKF). The 
experiments were performed on a system equipped with an Intel Core i3-
6100 CPU, 16GB of memory, and 512GB of storage, using Python 3.6 on 
Windows 10. Simulated data were generated in MATLAB, with an input 
frequency of a 500Hz initial Doppler signal. The simulation data utilizes 
representative dynamic models of large-span spatial structures, known for 
exhibiting significant geometric nonlinearity and sensitivity to dynamic 
inputs. The core input signal simulates an initial Doppler frequency of 500 
Hz, intentionally chosen to represent the complex vibration modes that 
may be encountered in this structure. The signal is contaminated by 
additional thermal noise, with a signal-to-noise ratio range of -22 dB to -
15 dB. This range is specifically selected to replicate the challenging noise 
and interference conditions commonly present in the operating 

environments of real-world buildings and large-span structures. 
Therefore, the simulated data simulated the dynamic response of key 
structural points that are highly sensitive to external stimuli. The 
frequency tracking error comparison is shown in Fig. 7. 

As shown in Fig. 7(a), the proposed algorithm achieved a loop 
convergence time of 0.3s, with a frequency tracking error of 15Hz. In 
contrast, KF exhibited significant fluctuations and only stabilized after 
1.3s, ultimately reaching a tracking frequency error of 32Hz. As shown in 
Fig. 7(b), both EKF and CKF converged within 1s. However, EKF had a 
higher final tracking error than CKF, measuring 28Hz and 25Hz, 
respectively. These results indicated that the proposed algorithm 
provided a significant improvement in tracking performance compared to 
traditional algorithms. To further evaluate the tracking performance 
under different Signal-to-Noise Ratio (SNR) conditions, the system was 
tested with thermal noise SNR ranging from -22dB to -15dB. The Mean 
Square Errors (MSE) of loop frequency and phase tracking are shown in 
Fig. 8. 

 

 
 

Fig. 7 Comparison of frequency tracking errors of different 
algorithms 

As shown in Fig. 8(a), the MSE of frequency tracking decreased 
continuously with increasing SNR for all four algorithms. EKF exhibited 
the largest decrease in tracking frequency errors as the SNR increased, 
reaching a minimum of 1.8Hz at -15dB. The proposed algorithm 
maintained the lowest tracking frequency error among all algorithms, 
measuring only 0.8Hz at -15dB. As shown in Fig. 8(b), the phase tracking 
error also decreased as SNR increased. After a 7dB increase in SNR, KF's 
phase tracking error decreased by 0.09rad, while EKF and CKF decreased 
by 8rad. The proposed algorithm showed the smallest decrease at 0.06rad 
but remained the most stable among all four algorithms. These results 
demonstrated the superior robustness of the proposed algorithm. To 
further verify its filtering effectiveness, the study compared the fitness 
values of different algorithms during the iteration process and evaluated 
the filtered coordinate values against actual monitoring data, as shown in 
Fig. 9. 

As shown in Fig. 9(a), after 50 iterations, the proposed algorithm 
stabilized, with the best fitness value reaching 20. Although EKF achieved 
a fitness value of 15, second only to the proposed algorithm, it did not 
stabilize until 250 iterations. CKF converged after 170 iterations, with the 
best fitness value of 13, while KF stabilized after 210 iterations, with the 
best fitness value of 10. As shown in Fig. 9(b), compared to the actual 
monitoring data, the proposed algorithm was closest to the real values in 
the eighth monitoring period, with an average coordinate deviation of only 
0.2mm. KF deviated the most, with an average coordinate difference of 
0.6mm. These results demonstrated the feasibility of the proposed 
algorithm in filtering applications. 
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Fig. 8 Frequency and phase mean square error results. 

 

 

Fig. 9 Filtering effects of different algorithms 

3.2 Performance verification of the optimization 
model 

After verifying the superiority of the proposed algorithm, its practical 
applicability was further evaluated by comparing it with the Tabu Search-
Artificial Neural Network (TS-ANN) model, the Particle Swarm 
Optimization-Finite Element Method-Filtering Algorithm (PSO-FEM-FA) 

model, and the Genetic Algorithm-Simulated Annealing Algorithm (GA-SA) 
model. The experimental data comes from the long-term health 
monitoring system of a large spatial structure project with a span of 120m 
in a large manufacturing factory. The system continuously collected cable 
force and stress-strain data for 6 months through force sensors and strain 
gauges installed on key cables and nodes, with a cumulative effective data 
volume of about 15GB, providing sufficient real physical observation 
sequences for model comparison. The processing and analysis of data 
were carried out in the hardware and software environments configured 
in Table 1. The specific experimental environment is listed in Table 1. 

Table 1. Experimental environment and configuration 

Experimental 
environment 

Category Configuration 

Hardware 
configuration 

Internal memory DDR4 8GB 

Video memory 
4GB Nvdia Geforce 
GTX1050Ti 

CPU Intel Core i5-7300, 2.50GHz 
Graphics card Nvdia Geforce GTX1050Ti 
Operating 
system 

Windows 10 

Software 
environment 

Python 3.6 
MATLAB 2018b 

In order to evaluate the optimization effect of different models on the 
tension of inclined cables, this study conducted on-site testing on a 120m 
span steel roof structure in the large single-layer manufacturing factory 
mentioned above and closely monitored the key section of 60m long near 
the mid span. The choice of a 120m span is due to its typical 
representativeness in large-span spatial structures, which can fully reflect 
the geometric nonlinear behavior and cable force redistribution effect of 
the structure under complex loads. The key section of 60m long near the 
mid span is tested because it has clear stress and typical boundary 
conditions, which can effectively reflect the continuous distribution law of 
cable force optimization along the length of the component. The 
comparison results are shown in Fig. 10. 

 

 

 

Fig. 10 Cable force optimization effect diagram 

As shown in Fig. 10(a), the TS-ANN model exhibited varying degrees 
of cable force reduction depending on the length, with the maximum 
reduction reaching 31kN at 40m and an average reduction of 25kN. The 
GA-SA model achieved similar optimization results to the TS-ANN model, 
with an average reduction of 29kN, but demonstrated lower optimization 
stability. The proposed model and the PSO-FEM-FA model showed more 
significant optimization effects, reducing cable force by 61kN and 46kN, 
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respectively. As shown in Fig. 10(b), the TS-ANN and GA-SA models 
demonstrated limited optimization effects on bending stress, reducing 
stress by only 2.6MPa and 2.9MPa, respectively. In contrast, the proposed 
model and the PSO-FEM-FA model achieved greater reductions. The 
proposed model showed the most significant reduction, reaching 7MPa at 
8m and averaging a reduction of 5.9MPa. The PSO-FEM-FA model 
followed, with an average stress reduction of 4.6MPa. To further compare 
the effectiveness of the four models in reconstructing deformation 
displacement under different working conditions, strain measurement 
errors were set at 5% and 15%, and the results are shown in Fig. 11. 

 

 

 

 

Fig. 11 Deformation displacement reconstruction results under 
different errors 

As shown in Fig. 11(a), when the strain measurement error was 5%, 
the proposed model was closest to the ideal reconstructed displacement 
curve, with an average error of 3.3%. The PSO-FEM-FA model followed, 
with an average error of 6.9%. The TS-ANN model deviated the most from 
the ideal curve, with the highest average error of 38.9%. As shown in Fig. 
11(b), when the strain measurement error increased to 15%, the proposed 
model remained the closest to the ideal curve, with only a 0.5% increase 
in average error. In contrast, the TS-ANN model's average error increased 
by 10.2% to 49.1%. Although the PSO-FEM-FA model remained relatively 
close to the ideal curve, its average error increased by 6.8% under 15% 
strain measurement error. These experimental results indicated that the 
proposed model demonstrated superior performance in reconstructing 
deformation displacement and exhibited higher robustness. 

4. Conclusion 

Large-span spatial structures have become a key choice for landmark 
urban buildings due to their unique advantages. These structures feature 
large spans and diverse forms while bearing significant responsibilities in 
public safety and social functionality. Therefore, optimizing their 
structural performance is crucial for advancing the construction industry 
and meeting urban development needs. This study introduced an 
improved approach based on KF and GA, leveraging the real-time accurate 
state estimation of KF and the global search capability of GA to enhance 
deformation monitoring. Additionally, the study incorporated an influence 
matrix and PSO to optimize structural cable forces. Experimental results 
showed that the proposed algorithm achieved a loop convergence time of 
0.3s and a frequency tracking error of 15Hz. Among the four compared 
algorithms, it consistently maintained the lowest root mean square errors 
for both frequency and phase tracking. When the SNR was -15dB, the 
frequency tracking error was only 0.8Hz, and the phase tracking error was 

0.02rad. In practical applications, the proposed model demonstrated 
significant effectiveness in optimizing cable forces, with an average 
reduction of 61kN compared to the original values, while the average 
bending stress decreased by 5.9MPa. Under strain measurement errors of 
5% and 15%, the reconstructed displacement errors averaged 3.3% and 
3.8%, respectively, showing minimal variation as strain measurement 
errors increased. Overall, the contribution of the research method lies in 
that its cable force optimization results directly reduce the working stress 
level of key load-bearing components, effectively alleviate the potential 
overload risk of the structure under complex load combinations, and 
provide additional margin for the structural safety reserve. The average 
reduction of bending stress significantly reduces the stress concentration 
phenomenon in key parts. This not only improves the bearing capacity of 
local components, but more importantly reduces the possibility of 
buckling instability of the structure as a whole under extreme loads. By 
optimizing the cable force distribution and reducing the bending stress, 
this model enhances the overall stiffness and stability of the structure. It is 
expected to improve its vibration characteristics under wind loads and 
dynamic loads and enhance the applicability and long-term service 
performance of the structure. The optimized deformation displacement 
reconstruction accuracy provides a more reliable database for structural 
health monitoring and condition assessment, directly serving the safe 
operation and maintenance of the structure. Although the proposed 
algorithm and model showed performance advantages in multiple aspects, 
the experimental scenarios were limited, and the generalization capability 
of the model remains insufficiently validated. Future research should 
expand experimental dimensions and integrate additional algorithms to 
further enhance model performance. 
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