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Abstract 

The literature indicates that limited research has focused on predicting both the fresh and hardened properties 
of self-compacting concrete (SCC). Therefore, this study employs an optimized Random Forest (RF) approach to 
develop predictive models for both the fresh and hardened properties of SCC. The RF method's determinative 
variables are optimized by artificial hummingbird optimization (AHA) and grey wolf optimization (GWO) 
methods. The L-box test, V-funnel test, slump flow, and compressive strength (CS) in the toughened stage are 
taken into account attributes of SCC in the new stage. Outcomes show strong promise in both training and testing, 
as well as approximation. It denotes good precision in the training and approximation processes since the 
relationship among the measured and anticipated SCC qualities from hybrid schemes is satisfactory. Outcomes 
from AHA-RF outperformed those from GWO-RF and the literature. Generally, the AHA-developed RF scheme 
serves better than others, demonstrating the AHA tactic's capacity to choose the best variables for the under-
consideration technique. 
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1. Introduction 

In 1988, in Japan, SCC was first expanded. These days, SCC is a very 
efficient concrete blend worldwide (Wang et al., 2022). A kind of concrete 
known as SCC can load and flow the formatting without the need of 
external force. As well, it can strengthen by its weight of its own (Garcia-
Troncoso et al., 2021). The design combination first concentrated on the 
two initial requirements, namely the urgency of a high-performing water-
decreasing mixture and the need of the great value of superior particle. It 
requires very little human effort, which is a bonus compared to other types 
of ordinary concrete. Additionally, it raises result level and lowers noise 
problems. The SCC technology area is the subject of various research 
studies, many of which propose tighter increments and continuity. In 
addition to all these advantages, SCC also has certain drawbacks. The cost 
of SCC result may be 2-3 times more than that of regular concrete. 
Therefore, a variety of mixes may be utilized to reduce costs (Esmaeili 
Falak et al., 2020). These ingredients are utilized in acts as a good 
substitute for Portland cement (Acharya & Patro, 2015; Beycioğlu & 
Aruntaş, 2014; Jalal et al., 2015; Sfikas et al., 2014; Sukumar et al., 2008; 
Yoo et al., 2015). Three different requirements, such as filling capacity, 
passage capacity, and separation resistance, must be met to prolong SCC. 
Subsequently certain test trials must be conducted to satisfy these 
demands. The affordability and cost-effectiveness of SCC are often 
questioned. 

Today, reports of effective artificial neural network usage in several 
disciplines have been adopted from empirical findings. The concrete 
industry has greatly increased this use to anticipate diverse concrete 
qualities. To anticipate the CS of concrete containing silica fume, Oxcan et 
al. (Özcan et al., 2009) conducted a comparison study examining two 
approaches, utilizing ANN and fuzzy logic. Many academics recommended 
suitable examples for comparable applications that were motivated by the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) to calculate the CS 
(Douma et al., 2017; Kostić & Vasović, 2015; Shadi & Nazari, 2019; Subaşı 
et al., 2013). Newly, Sonebi et al. (Sonebi et al., 2016) investigated the 
novel features of SCC using SVR procedure. Positive and motivating, the 
output shows finer filling and passing abilities. Various scholars 
performed similar research work to predict the CS of concrete deploying 
SVR (Naseri et al., 2017; H. Y. Yang & Dong, 2013; Yazdi et al., 2013). Liu (J. 
Liu et al., 2016) addressed the idea of specifying autogenous shrinkage of 
concrete admixtures using an SVM sample. In turn, Yang (S. Yang et al., 
2014) investigated corroded reinforced concrete via empirical study. For 
forecasting the rheological properties of SCC, various schemes have also 
been established in other articles, including the ANN technique (Douma et 
al., 2017), M5' and MARS based prediction schemes (Kaveh et al., 2018), 
and support vector regression (Saha et al., 2020). 

It is applicable to address this item in light of the purpose of this 
investigation's use of the radial basis function neural network (RBFNN) 
and recently established enhancement technique s (Aljarah et al., 2018; 
Rashedi et al., 2021). By combining hybrid biogeography-based 

optimization (BBO) and fuzzy RBFNN, the CS of SCC incorporating FA was 
anticipated. The outcomes clearly demonstrated that the hybrid model's 
efficiency in predicting the CS of SCC with FA is satisfactory (Golafshani & 
Pazouki, 2018). Different research employed a hybrid RBFNN and firefly 
optimization algorithm (FOA) model to estimate the CS of SCC 
incorporating Class F FA. The findings show that, in comparison to the 
empirical findings, the CS anticipated by the suggested schemes performs 
as expected (Pazouki et al., 2021). 

However, almost all of the research on concrete was restricted just to 
anticipate the toughened concrete characteristics. According to the 
released publications, only a small amount of research has focused on 
applying the optimized random forests (RF) approach to anticipate either 
fresh or hardened characteristics of SCC (Saha et al., 2024; Taffese & 
Nunes, n.d.). To anticipate fresh and hardened characteristics of SCC using 
the RF technique, schemes are thus being developed. The Artificial 
Hummingbird Algorithm (AHA) and Grey Wolf Optimization (GWO) 
algorithms were used in this work to find the critical variables of the RF 
technique, which may be improved utilizing optimization methods. To 
create the GWO-RF and AHA-RF schemes, empirical data records from 
released publications were acquired.  

Several recent studies in civil engineering have explored the use of 
AHA and GWO for predicting various material properties and optimizing 
engineering processes (Bi & Yi, 2024). For instance, the GWO has been 
effectively employed in predicting the compressive strength, flexural 
strength, and durability indices of concrete, including high-performance 
and fiber-reinforced types (Dehghanbanadaki et al., 2021; Guangyao et al., 
2024; Kalemci et al., 2020; Shariati et al., 2020; Tunca, 2024). GWO has 
also been integrated with machine learning models such as SVR and ANN 
to optimize hyperparameters and improve prediction accuracy in 
applications like chloride diffusion estimation and strength forecasting of 
blended cements (Bardhan & Asteris, 2023). In parallel, the AHA, although 
relatively new, has started gaining attention in geotechnical and structural 
engineering domains (falak & Benmaran, 2024; D. Liu, 2025; Yunpeng et 
al., 2024). These studies confirm the growing relevance and versatility of 
AHA and GWO in civil engineering applications, especially when dealing 
with complex, nonlinear datasets. 

The AHA and GWO offer notable advantages over traditional 
optimization methods, particularly in complex and data-limited 
engineering problems. AHA excels due to its dynamic foraging strategies, 
guidance, territorial, and migration, which enhance its exploration-
exploitation balance and prevent premature convergence. Its memory-
based search mechanism also supports more robust global optimization. 
GWO, on the other hand, benefits from its simple yet effective leadership 
hierarchy and hunting behavior, which allows for efficient local 
refinement and faster convergence with minimal parameter tuning. 
Compared to other algorithms, both AHA and GWO demonstrate superior 
adaptability, stability, and performance in high-dimensional, nonlinear 
problems often encountered in material modeling and machine learning 
tasks within civil engineering. Their ability to consistently find high-
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quality solutions makes them particularly suitable for optimizing 
predictive models when data is sparse or noisy. 

2. Materials and Methods 

2.1 Data Description 

This investigation aimed to create networks for estimating the 
parameters connected to SCC's fresh and hardened properties. The 
majority of the available research has been constrained to evaluate only 
one actual result attribute utilizing a variety of inputs. Therefore, four 
outputs of SCC named D flow, L-box, V-funnel, and CS are included. To do 
this, 114 SCC samples from released publications were collected to create 
a database (Aggarwal & Aggarwal, 2011; Bingöl & Tohumcu, 2013; 
Dhiyaneshwaran et al., 2013; Gettu et al., 2002; Güneyisi et al., 2010; 
Krishnapal et al., 2013; Mahalingam & Nagamani, 2011; Muthupriya et al., 
2012; Nepomuceno et al., 2014; Patel, 2004; Şahmaran et al., 2009; 
Siddique et al., 2012; Uysal & Yilmaz, 2011). Binder (B), fly ash (FA), water 

to binder ratio (W/B), fine aggregate (FAG), coarse aggregate (CAG), and 
superplasticizer (SP) are among the concrete elements that are included 
in the input parameters. The database for this investigation was split into 
30% of testing data and 70% of training data (Debnath & Dey, 2018). Table 
1 and Fig. 1 provide the database's statistical variables and their histogram 
plots, respectively.  

The association between the two variables is described using the 
Pearson correlation coefficient (PCC). The outcomes of the relationships 
are displayed in Fig. 2 (a-d), for DF, LB, VF, and CS, respectively. PCC values 
that are abnormally high or low make it challenging to assess how 
explanatory factors have affected the outcome and may indicate that the 
schemes used are inadequate. The aforementioned factors may account 
for a considerable portion of the PCCs that are below 0.48, which indicates 
that they are unlikely sources of multicollinearity problems (Farrar & 
Glauber, 1967). The highest correlation value is between B and SP at 0.75. 
The bottom boxes in each figure are related to output variables and inputs. 
Considering the input variables and outputs related to correlation values, 
it can be seen that only VF has rough relationship with SP at 0.56.   

 
Table 1. Statistical parameters of variables 

Phase Index Inputs  Output variable 
𝐵 𝐹𝐴 𝑊/𝐵 𝐹𝐴𝐺 𝐶𝐴𝐺 𝑆𝑃  𝐷𝐹 𝐿𝐵 𝑉𝐹 𝐶𝑆 

Train 𝑀𝑖𝑛. 370 0.0 0.26 656 590 0.74  510 0.6 2 23 
 𝑀𝑎𝑥. 733 60 0.45 1010 935 21.84  810 1.0 19.2 86.8 
 𝑆𝑡.𝐷. 73.4506 15.74 0.061 92.54 120.486 4.703  53.321 0.084 4.047 17.408 
 𝑉𝑎𝑟. 5394.99 247.67 0.004 8563.65 14517.02 22.12  2843.14 0.007 16.378 303.07 
 𝑅𝑎𝑛𝑔𝑒 363 60 0.19 354 345 21.1  300 0.4 17.2 63.8 
 𝑆𝑘𝑒𝑤. 0.0869 -0.288 -0.406 -0.272 -0.0644 0.677  -0.0457 -0.52 0.493 0.4955 
 𝐾𝑢𝑟𝑡. 0.4472 -0.575 -1.059 -1.1257 -1.5461 0.494  0.3045 0.1314 -0.289 -0.908 

Test 𝑀𝑖𝑛. 400 0.0 0.27 686 590 0.86  480 0.6 2.5 17 
 𝑀𝑎𝑥. 628 60 0.45 1038 926 19.53  770 1 14.5 82.9 
 𝑆𝑡.𝐷. 64.463 17.941 0.057 77.842 121.657 4.518  60.735 0.109 3.243 17.251 
 𝑉𝑎𝑟. 4155.556 321.89 0.0033 6059.42 14800.36 20.411  3688.79 0.0120 10.5166 297.59 
 𝑅𝑎𝑛𝑔𝑒 228 60 0.18 352 336 18.67  290 0.4 12 65.9 
 𝑆𝑘𝑒𝑤. -0.5276 0.3895 -0.626 -0.219 0.2066 0.496  -0.1246 -0.799 0.1133 0.454 
 𝐾𝑢𝑟𝑡. -0.5108 -0.555 -1.055 -0.0220 -1.5411 0.2141  0.8255 0.1453 -1.1721 -0.526 
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(𝐵 − 1) (𝐵 − 2) (𝐵 − 3) 

 
(𝐵 − 4) 

Fig. 1 The histogram plots of the input and output variables 

  

(a) (b) 

  

(c) (d) 

Fig. 2 The Pearson correlation coefficient matrix between inputs and outputs 
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2.2  Grey Wolf Optimization (GWO) 

GWO presents a meta-heuristic method (Mirjalili et al., 2014). With 
strong social foundations, grey wolves live in groups. To achieve this goal, 
wolves have their responsibility, i.e., alpha wolves known as leaders, beta 
are superior, and omega role as a scapegoat. Based on the wolves' rank, 
they have pursued encircling, attacking, and hunting prey. This treatment 
is mathematically formulated in Eqs. (1-2) (Mirjalili et al., 2014). 

�⃗⃗� = |𝐶 . 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|     (1) 

𝑋 (𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗�                    (2) 

𝑋  : the grey wolf situation 

𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) : the prey location vector 
𝑡 : and the present moment 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎 ⃗⃗⃗        (3) 

𝐶 = 2. 𝑟2⃗⃗⃗         (4) 

𝑎  : linearly reduced from 2 to 0 
𝑟1⃗⃗⃗  ,  𝑟2⃗⃗⃗   : random vectors spread between 0 and 1 monotonously 

By assuming that the wolves are sufficiently near to the prey, the 
hunting tendency of wolves is simulated according to Fig. 3. The other 
wolves use alpha, beta, and omega positions to determine the position of 
the hunt. Here, the wolves' average position is utilized to determine the 
position of the hunt:  

Fig. 3 How α, β, ω, and δ are defined in GWO (Mirjalili et al., 2014) 

{

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗  ⃗. 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 |

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗  − 𝑋 | 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 |

} , {

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . 𝐷𝛼

⃗⃗⃗⃗  ⃗

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗ . 𝐷𝛽

⃗⃗ ⃗⃗  

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − 𝐴3
⃗⃗ ⃗⃗ . 𝐷𝛿

⃗⃗ ⃗⃗   

} , 𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
    (5) 

After defining the prey position, the subsequent stage is exploitation, 
which is obtained from the vector A ⃗ when the value of variable a reduces 
from 2 to 0, wolves' locations go toward the location of the hunt. In 
addition, C could alter the prey's position and the complexity of the 
hunting task. The grey wolf is forced to veer away from the prey and find 
a better one by the variable X value being greater than 1. Once all wolves 
have gone through this procedure, the ideal site will be identified.  

2.3  Artificial Hummingbird Optimization (AHA) 

AHA is designed to address single-objective optimization problems. 
AHA is categorized as a bio-based method and falls under the broader class 
of swarm algorithms (Zhao et al., 2022). The optimization method involves 
the emulation of three distinct foraging behaviors by AHA, including 
directed foraging, territorial foraging, and migratory foraging. In the 
context of foraging activities, the simulation incorporates three distinct 
flying skills: axial flight, diagonal flight, and omnidirectional flight. The 
fundamental constituents of AHA are concisely delineated as follows. 
Visit table: The visit table has significant importance within the AHA 
framework as it serves to monitor and record the visitation levels of 
individual hummingbirds to various food sources. The visit table's greater 
worth indicates a longer duration during which the hummingbird does not 
visit the food source. This implies that the food source collects a greater 
amount of nectar for the hummingbird, hence increasing its priority for 
visitation.  
Guided foraging: Within the context of avian foraging behavior, the 
enhanced physical condition of a hummingbird serves as an indicator of 
the increased pace at which the nectar of the identified food source is 
replenished. During the guided foraging phase, it can be seen that each 
individual hummingbird has a tendency to choose the food source with the 
greatest visit level among the available options that possess the biggest 
nectar volume. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖,𝑡𝑎𝑟(𝑡) + 𝐷. 𝑎. (𝑥𝑖(𝑡) − 𝑥𝑖,𝑡𝑎𝑟(𝑡))   (6) 

Let 𝑥𝑖(𝑡) represent the positional coordinates of the ith food source at 
time t. Similarly, 𝑥𝑖,𝑡𝑎𝑟(𝑡) denotes the positional coordinates of the target 
source where the ith hummingbird plans to visit. The guided factor, a, is a 

random variable that follows a typical normal distribution with mean 0 
and standard deviation 1, displayed as N (0, 1). 
Territorial foraging: During the territorial foraging phase, 
hummingbirds exhibit a preference for exploring their immediate vicinity 
rather than venturing to established food sources beyond their nearby 
zone.  

𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐷. 𝑏. 𝑥𝑖(𝑡)     (7) 

The variable b represents a territorial component that follows a 
conventional normal dispersion N (0,1). 
Migration foraging: In instances when the availability of sustenance 
becomes limited within a particular habitat, hummingbirds have been 
shown to engage in migratory behavior, relocating to alternative regions 
to get nourishment. In the context of foraging behavior, a migration 
coefficient is established to regulate the timing of migratory activities.  

𝑥𝑤𝑜𝑟(𝑡 + 1) = 𝐿𝑜𝑤 + 𝑟. (𝑈𝑝 − 𝐿𝑜𝑤)    (8) 

The source exhibiting the lowest nectar-refilling rate in the population 
is displayed as 𝑥𝑤𝑜𝑟. The hummingbirds possess three distinct flying 
talents. 
Axial flight: The ability of a hummingbird to navigate across the search 
space along any coordinate axis is referred to as axial flying.  

𝐷(𝑖) = {
1     𝑖𝑓   𝑖 = 𝑟𝑎𝑛𝑑𝑖([1, 𝑑])
0 𝑒𝑙𝑠𝑒                                    

       𝑖 = 1, … , 𝑑   (9) 

Diagonal flight: The concept of diagonal flying signifies the capability of 
a hummingbird to go from one corner of a rectangular area to the 
diagonally opposite corner during its quest for resources. 

𝐷(𝑖) =

{
1     𝑖𝑓   𝑖 = 𝑃(𝑗), 𝑗𝜖[1, 𝑘], 𝑃 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘), 𝑘𝜖[2, [𝑟1. (𝑑 − 2) + 1]]

0                                                                                                                     𝑒𝑙𝑠𝑒 
       𝑖 =

1, … , 𝑑       (10) 

Omnidirectional flight: This part displays the capability of a 
hummingbird to navigate in a manner that encompasses all possible 
directions projected onto each of the coordinate axes inside the looking 
area.  

𝐷(𝑖) = 1,                𝑖 = 1, … , 𝑑     (11) 

Answer readjusts: When the candidate answer generated during the 
guided foraging or territorial foraging steps exhibits high quality 
compared to the present solution, the hummingbird will relinquish the 
present source and stay at the candidate resolution for the purpose of 
eating.  

𝑥𝑖(𝑡 + 1) = {
𝑥𝑖(𝑡)              𝑓(𝑥𝑖(𝑡)) ≤ 𝑓(𝑣𝑖(𝑡 + 1))

𝑣𝑖(𝑡 + 1)     𝑓(𝑥𝑖(𝑡)) > 𝑓(𝑣𝑖(𝑡 + 1))
   (12) 

The function 𝑓 (·) represents the fitness value, whereas 𝑣𝑖(𝑡 + 1) 
denotes the candidate solution at time (𝑡 + 1). 

2.4  Hybrid Random Forests (RF) Schemes 

The nonparametric approach Random Forest (RF) is often used in 
supervised machine learning (Breiman, 2001). The RF algorithm was 
developed by Breiman, whereby he introduced the concept of combining 
random parameter selection at each node with Bootstrap aggregation 
(Bagging). Based on the notion of the Decision Tree (DT), RF may be seen 
as an improved method of bagging. The underlying concept of RF is the use 
of bootstrap resampling to get multiple samples from the primary 
database, followed by the creation of a DT for each bootstrap sample. The 
DTs are mutually independent, and each DT is created by a random 
process in a RF. Consequently, an RF scheme has many separate predictors 
that have been independently built. The individual predictions for each 
tree are aggregated by means of averaging to get the final forecast (Han et 
al., 2020). The predicted result of the RF model �̂�(𝑥) might be calculated 
from an input characteristic vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

𝑇 using the formula 
in Eq. (13). 

�̂�(𝑥) =
1

𝐵
∑ �̂�𝑏(𝑥)𝐵

𝑏=1       (13) 

B stands for the entire quantity of trees, and �̂�𝑏(𝑥) stands for the 
approximate provided by the 𝑏𝑡ℎtree. Due to its capacity to effectively 
eliminate extraneous input data by considering their relative significance, 
RF schemes have emerged as highly efficient supervised machine learning 
methodologies currently used. 

2.5  Indices  

Various efficiency assessors were used to gauge how well generated 
hybrid schemes performed in anticipating the features under 
consideration. To do this, the following accuracy measurements - 𝑅2, 
RMSE, and MAE - were computed: 

𝑅2 = (
∑ (𝑡𝑃−�̅�)(𝑦𝑃−�̅�)𝑃

𝑝=1

√[∑ (𝑡𝑃−�̅�)2𝑃
𝑝=1 ][∑ (𝑦𝑃−�̅�)2𝑃

𝑝=1 ]
)

2

    (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑃
∑ (𝑦𝑝 − 𝑡𝑝)

2𝑃
𝑝=1      (15) 
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𝑀𝐴𝐸 =
1

𝑃
∑ |𝑦𝑝 − 𝑡𝑝|

𝑃
𝑝=1      (16) 

where, 𝑦𝑃, 𝑡𝑃, 𝑡̅, and �̅� show the projected of the 𝑃𝑡ℎ, the goal of the 
𝑃𝑡ℎ, the mean of the goal and, the mean of the projected. 

3. Results and Discussion 

The following information is provided as the outcome of the RF 
schemes used to anticipate SCC characteristics. As previously noted, 
choosing the optimal mixture of the hyperparameters is what determines 

the key variables in RF performance. Fig. 4 shows strong promises for 
approximation in the testing stage and also learning. For GWO-RF and 
AHA-RF, which are connected to the fresh and hardened characteristics of 
SCC, a comparison of the outcomes with those anticipated by created 
schemes is shown in Fig. 4. The suggested 𝑅2 values throughout the 
learning and testing phases are adequate. It denotes good precision in the 
training and approximation processes since the connection among the 
measured and anticipated SCC qualities from hybrid schemes is 
satisfactory.
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Fig. 4 Scatter plot 
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(b) 

 

(c) 

 

(d) 

Fig. 5 Predictions by networks 

Table 2. Metrics value of created RF networks 

Properties Metrics Phase 𝐴𝐻𝐴 − 𝑅𝐹 𝐺𝑊𝑂 − 𝑅𝐹 
(Saha et al., 

2020) 
(Kaveh et al., 

2018) 
𝐷 𝑓𝑙𝑜𝑤 𝑅2 Train 0.9887 0.9632 0.931 0.57 

Test 0.9645 0.9282  
𝑅𝑀𝑆𝐸 Train 5.7029 10.2312 11.678 36.29 

Test 11.5426 16.3082  
𝑀𝐴𝐸 Train 1.7263 4.1898  27.66 

Test 2.7386 7.6096   
𝐿 − 𝑏𝑜𝑥 𝑅2 Train 0.9659 0.953 0.91 0.56 

Test 0.9364 0.9581  
𝑅𝑀𝑆𝐸 Train 0.0157 0.0187 0.025 0.06 

Test 0.0279 0.0237  
𝑀𝐴𝐸 Train 0.0039 0.0040  0.05 

Test 0.0082 0.0070   
𝑉 − 𝑓𝑢𝑛𝑛𝑒𝑙 𝑅2 Train 0.999 0.9957 0.958 0.87 

Test 0.998 0.9947  
𝑅𝑀𝑆𝐸 Train 0.1295 0.2667 0.723 1.46 

Test 0.1501 0.2442  
𝑀𝐴𝐸 Train 0.0378 0.1047  1.11 

Test 0.0579 0.1164   
𝐶𝑆 𝑅2 Train 0.9977 0.9935 0.955 0.93 

Test 0.9932 0.9791  
𝑅𝑀𝑆𝐸 Train 0.8471 1.4963 3.783 4.45 

Test 1.452 2.7632  
𝑀𝐴𝐸 Train 0.3357 0.6987  3.45 

Test 0.7023 1.5834   
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Additionally, Table 2 provides the outcomes of constructed schemes 
that took into account 𝑅2, RMSE, and MAE values for the fresh and 
hardened characteristics of SCC. The outcomes of the schemes that have 
been put out in this investigation have been contrasted with the available 
research (Saha et al., 2020). The AHA-RF values for D flow are superior to 
both the research and GWO-RF. In training, for example, the RMSE value 
of the network by AHA is 5.7029mm, but this value for the GWO-RF model 
is approximately twice as high. Saha et al. (2020) are next with 11.67mm, 
followed by Kaveh et al. (2018) with 36.29mm. Outcomes from AHA-RF 
are superior to those from GWO-RF and the research in terms of L-box. For 
example, the RMSE of the AHA network in training is 0.0157, whereas this 
number for the GWO-RF scheme is 0.0187. Saha et al. (2020) comes in 
second place with a 0.025 RMSE value, followed by Kaveh et al. (2018) 
with a 0.06 RMSE value. When it comes to V-funnel outcomes, AHA-RF 
outperforms both research and GWO-RF by a wide margin. For example, 
the R2 value of the AHA model in the testing stage is 0.998, while for the 
GWO-RF is 0.9947. Saha et al. (2020) are next with a value of 0.958, 
followed by Kaveh et al. (2018) with a value of 0.87. The CS result, in 
addition, shows identical outcomes to those previously mentioned. 
Overall, the AHA-developed RF model performs better than others, 
demonstrating the AHA tactic's capacity to select the most advantageous 
variables for the approach under consideration.  

The time series data shown in Figs. 5(a-d) may be used to determine a 
justified fit among observed values and forecasted values. As can be 
observed, for both of the suggested optimized RF (GWO-RF and AHA-RF) 
schemes' fresh and hardened characteristics of SCC, the calculated values 
show satisfactory agreement with measured ones, conveying the viability 
of the suggested integrated methods to predict the D flow, L box, V funnel, 
and CS with great accuracy. Time series data show that established 
schemes provide the minimum variance in the procedure of forecasting 
attributes, producing fairly correct anticipations that may be deployed in 
real-world settings. 

4. Conclusions 

Limited research has focused on predicting both the fresh (e.g., D-flow, 
L-box, V-funnel) and hardened (e.g., compressive strength, CS) 
characteristics of self-compacting concrete (SCC). Hence, the research 
endeavors to establish networks to anticipate SCC characteristics by the 
random forests (RF) method. In this work, we used artificial hummingbird 
algorithms (AHA) and GWO tactics to find the critical variables of the RF 
technique, which may be improved utilizing optimization methods. The 
following are the primary findings: 

1) Outcomes show strong promise for learning and also approximate 
performance throughout testing. The suggested schemes' 
appropriate 𝑅2 values throughout the learning and testing phases 
may be the outcome. It denotes good precision in the training and 
approximation processes since the connection among the measured 
and anticipated SCC qualities from hybrid schemes are satisfactory. 

2) Based on D flow, the outcomes of AHA-RF are finer than GWO-RF 
and research. For example, the RMSE of the network by AHA in the 
training stage is 5.7029 mm, while for the GWO-RF is roughly twice. 

3) Based on L-box, the findings of AHA-RF are finer than GWO-RF and 
research. For instance, the RMSE of the network by AHA in the 
raining stage is 0.0157, while for GWO-RF is 0.0187, followed by 
Saha et al. (2020) at 0.025, and then Kaveh et al. (2018) by 0.06.  

4) In the V-funnel outcomes, the outcomes of AHA-RF are extremely 
better than GWO-RF and research. For example, R^2 of network by 
AHA in the testing stage is 0.998, while GWO-RF is 0.9947, followed 
by Saha et al. (2020) at 0.958, and then Kaveh et al. (2018) by 0.87.  

5) The outcomes for CS show identical findings as before. In general, 
the AHA-developed RF model operates better than others, 
demonstrating the AHA tactic's capacity to select the best variables 
for the under-consideration technique.  

6) The calculated values represent the viability of the recommended 
methods to anticipate the 𝐷 𝑓𝑙𝑜𝑤, 𝐿 𝑏𝑜𝑥, 𝑉 𝑓𝑢𝑛𝑛𝑒𝑙, 𝑎𝑛𝑑 𝐶𝑆 with 
great accuracy, showing an acceptable agreement with observed 
ones. Time series data displays that established schemes offer the 
minimum variance in the procedure of forecasting attributes, 
producing moderately precise anticipations that may be deployed in 
practical settings. 

7) Despite the promising performance of the AHA-RF model in 
predicting both fresh and hardened properties of SCC, some 
limitations must be acknowledged. The dataset used may not fully 
represent all possible mix designs or environmental conditions 
encountered in real-world applications. Additionally, the study 
primarily focused on specific tests (slump flow, L-box, V-funnel, and 
compressive strength), potentially overlooking other relevant SCC 
characteristics such as durability, shrinkage, or rheology. Finally, 
while AHA and GWO were effective optimizers, the exploration of 
other methods of techniques could yield different or improved 
outcomes. 

8) The proposed hybrid AHA-RF model can be a valuable tool for 
engineers and concrete technologists aiming to optimize SCC mix 
designs efficiently without relying solely on extensive experimental 
work. By accurately forecasting SCC performance metrics, the model 
aids in reducing material waste, saving time, and ensuring the 
desired performance for various structural and infrastructure 
applications. This approach is particularly beneficial in ready-mix 
concrete plants, precast industries, and quality control laboratories 
seeking to streamline production while maintaining high standards. 

9) Future studies could expand the model by incorporating a broader 
range of input variables, including chemical admixtures, curing 
conditions, and environmental factors. Cross-validation with larger, 
more diverse datasets from different geographic regions would also 
enhance the model's generalizability. Moreover, integrating other 
advanced machine learning techniques or hybridizing AHA-RF with 
deep learning models may lead to further performance 
improvements in predicting SCC properties across a wider 
spectrum of applications. 
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