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Abstract 

The traditional method of detecting bridge conditions cannot continuously monitor and maintain bridges during 
use. To address this issue, the study proposed a damage identification method that uses a back-propagation 
neural network and vehicle-bridge coupling. The method analyzed the car's response when passing over the 
bridge using a back-propagation neural network combined with the coupled vibration of the vehicle-bridge. It 
then inferred the response of the car tire's contact point with the bridge. To create a model of the simulated 
bridge's damaged structural response, the stiffness of the bridge contact point was decreased. The contact point 
between the bridge deck and the tires was used as input for a back-propagation neural network that computed 
coupled vibration equations for the vehicle and the bridge and created a data set of their responses. The network 
can also accurately locate damaged bridge structures and assess the extent of the damage. The results 
demonstrated that the average accuracy of the back-propagation neural network in locating the damaged bridge 
structure was about 90%. Under circumstances where varying noise levels were present, the average accuracy in 
locating the damaged structure was kept at 85%. The maximum accuracy in assessing the degree of damage to 
the structure was 98.54%, around 10% higher than the performance of deep belief networks and support vector 
machines in identifying damage to bridge structures. Taken together, the proposed method for identifying 
damage to bridge structures can achieve high localization and quantitative accuracy. 
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1. Introduction 

Numerous regional routes feature bridges, which play a crucial role in 
transportation for military and security purposes, as well as economic 
mobility (Yessoufou & Zhu, 2023). Although long-term bridge use does not 
immediately pose a major safety issue, it can seriously compromise the 
bridge's structural stability over time, potentially causing it to collapse. 
Wind, rain, and passing vehicles can affect the structure of the bridge to 
varying degrees (Malekjafarian et al., 2019). For instance, the Zhashui 
Bridge in Shaanxi Province collapsed on July 19, 2024, due to unexpected 
intense rainfall and flash flooding. Similarly, on October 10, 2019, the 
Xigang Road Bridge in Jiangsu Province collapsed due to an overload of 
cars colliding with the bridge (Nguyen et al., 2019; Sony et al., 2022). Each 
instance of bridge collapse resulted in financial losses and human 
casualties, significantly affecting the long-term stability of society. 
Therefore, identifying and maintaining the structure of the bridge is 
crucial because several factors can cause it to collapse. These factors 
include the bridge's lengthy working hours, which can damage its internal 
structure, cars passing through it, the force of the cars' tires on the bridge, 
the vibration the cars cause on the bridge, and other factors (Neves et al., 
2021). During use, the structure of a bridge not only bears the effect of 
vehicle loads, but also the impact force generated by the contact between 
the car and the bridge when the vehicle is traveling across the bridge. Most 
of the bridges cross large rivers, resulting in unsustainable and more 
difficult inspection and maintenance (Hao et al., 2020; Zong & Yi, 2020). 
The traditional bridge inspection method has poor identification and 
localization accuracy for damaged structures, as well as poor accuracy in 
identifying the degree of structural damage. Therefore, this study uses a 
combination of a back-propagation neural network (BPNN) and vehicle-
bridge coupling to identify damage to bridge structures, with the 
expectation that it would improve the accuracy of identifying structural 
damage to bridges and promote the development of the field of bridge 
damage. This study innovates by combining BPNN and vehicle-bridge 
coupling vibration analysis. This combination simultaneously utilizes 
BPNN's mapping ability for complex relationships and vehicle-bridge 
coupling vibration analysis's ability to capture dynamic responses. This 
provides a new perspective and method for identifying bridge damage. 
The main contribution of this study is as follows:  
1) It is an efficient and accurate technical means of identifying damage 

to bridge structures. It can quickly process large amounts of bridge 
vibration response data and effectively identify damage 
characteristics.  

2) The proposed method for assessing bridge structure damage can 
be adapted to different types of bridges and damage modes. It is 
scalable, providing a universal solution for identifying damage to 
different types of bridges. 

1.1  Related Work 

In recent years, with the gradual increase in the number of bridges, it 
has received extensive attention from scholars at home and abroad as to 
how to continuously carry out bridge inspection and maintenance and 
improve the identification accuracy of structural damage of bridges. To 
solve the problem of low bridge damage identification accuracy, Wu et al. 
proposed a bridge damage identification method based on BP neural 
network. The study utilized bridge vibration to improve recognition 
accuracy and established a bridge finite element model. The neural 
network was also validated using random samples. The results indicated 
that the mean square error was 0.003196 and the correlation coefficient 
r=0.9654, which could effectively detect the bridge state (Wu & Zhang, 
2023). He et al. proposed a neural network with a depth structure to 
address the limited ability of traditional recognition methods to detect 
subtle bridge damage. To develop a damage recognition method based on 
a convolutional neural network and recurrence maps, the coupling 
between vehicles and bridges was analyzed using wavelet packet filtering 
and reconstruction. The resulting recurrence maps were then used as 
input images for the neural network (He et al., 2021). To detect and 
evaluate deterioration in bridges' structural integrity, Chen and his 
colleagues developed a two-dimensional convolutional neural network 
identification technique based on continuous wavelet variation. They 
combined the vehicle-bridge coupling model with a deep learning model 
to simulate bridge damage by reducing the stiffness of the unit. Then, they 
used the vehicle-bridge coupling vibration to obtain the response signal 
and construct a data set to identify the damage (Chen et al., 2024). In 
response to the problems of large workloads, long time consumption, and 
the inability to quickly predict the finite element model, Li et al. proposed 
a BPNN-based stress and displacement prediction model for bridge 
structures. They created a three-dimensional rod system finite element 
model and an artificial neural network bridge structural response model 
and enhanced the training and test data sets for the finite element models 
(Zhao, 2024). The members of Nick et al. addressed the issue that 
vibration-based damage identification methods were unreliable in the 
presence of noise. They proposed a method to quantify the degree of 
damage using artificial neural networks. The study utilized modal 
flexibility damage indices with different damage levels as inputs for neural 
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network training and used the modal flexibility method to eliminate noise 
and locate damage (Nick & Aziminejad, 2021).  

Furthermore, academics both domestically and internationally are 
highly concerned about vehicle-bridge coupling. Zhang et al. proposed a 
damage identification method based on macroscopic strain patterns for 
bridges with large stiffness, strong time-varying vibration characteristics, 
and smooth vehicle loads. These characteristics made it difficult to 
determine the strain patterns of bridges. They utilized wavelet transform 
denoising and reconstruction techniques to reconstruct the static and 
dynamic strain data of vehicle-bridge coupling. They combined the mutual 
correlation function to construct a matrix damage localization index 
(Zhang et al., 2022). To address the limitations of current techniques for 
identifying bridge damage in vehicle-bridge coupling systems, Chen et al. 
proposed an approach integrating the coupled vibration responses of 
vehicles and bridges with a deep learning model. First, they established a 
model of the vehicle and bridge, used unit stiffness to simulate bridge 
damage, and carried out a coupled vehicle-bridge vibration analysis under 
different flatness conditions (Chen et al., 2024). To detect damage to 
bridges with identical cross sections, (Zhi et al., 2023). proposed a method 
based on the coupled vibration of vehicles and bridges. First, they 
determined the bridge’s vibration mode function. Then, they simulated a 
car traveling over it and solved the coupled equations. Finally, they 
analyzed the car's and bridge's reactions at the damaged site. Additionally, 
this method does not require special signal processing. Corbally et al. 
addressed the inability of bridges to be consistently inspected and the 
maintenance of infrastructure by proposing a method to monitor bridge 
conditions using wheel response to bridge contact points. The study 
measured the axle contact point response from within the vehicle to infer 
the sensitivity of the axle contact point response to the roadway. A rigid 
disk was also used to simulate axle interactions (Corbally & Malekjafarian, 
2021).  

Research conducted both domestically and abroad has revealed 
drawbacks to the traditional approach to detecting damaged bridge 
structures, including an inability to track the bridge's condition over time 
and low accuracy in locating and identifying damage. The project is 
proposed to identify damaged bridge structures by combining a BPNN 
with a vehicle-bridge coupling. This method is expected to enable 
continuous monitoring of bridge status while improving the accuracy of 
identifying structural damage. 

2. BP-Vehicle-Bridge Coupling for Bridge 
Structure Recognition 

2.1 Bridge Structure Recognition Based on 
BPNN 

In identifying structural damage in bridges, it is necessary to have a 
simple testing method for identification technology and memory ability. 

Thus, BPNN is suitable for identifying structural damage in bridges (Xiang 
et al., 2023; Xu et al., 2020). Identification and localization of the structural 
damage index is achieved using the BPNN's memory mechanism and 
capacity to forecast bridge dynamic characteristic parameters as output 
and structural damage as input. BPNN consists of three layers: input, 
output, and hidden. The model is shown schematically in Fig. 1. 

Input layer Hidden layer Output layer  

Fig. 1 Schematic Diagram of BPNN Model 

In Fig. 1, the BPNN receives input signals, analyzes and processes the 
data in the hidden layer, and produces an output. The inputs to the nodes 
of the BPNN's hidden layer are calculated, as shown in Eq. (1). 

𝑥𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑖       (1) 

In Eq. (1),  𝑥𝑗  is each node of the hidden layer. 𝑥𝑖 is each node of the 

input layer.  𝑤𝑖𝑗  is the connection weight between the input layer and each 

node of the hidden layer. The node output is calculated, as shown in Eq. 
(2).  
𝑦𝑗 = 𝜑(𝑥𝑗)     (2) 

In Eq. (2), 𝜑(𝑥𝑗) is an activation function. The BPNN error can be 

described by an error function, as shown in Eq. (3).  

𝐸 =
1

2
∑ (𝑑𝑖 − 𝑦𝑗)

2𝑀
𝑗=1       (3) 

In Eq. (3), 𝑀 denotes the total number of neurons. The update network 
weights are calculated, as shown in Eq. (4).  

𝛥𝑊𝑗𝑘 = −𝜂
𝜕𝐸

𝜕𝑊𝑗𝑘
      (4) 

In Eq. (4), “−” indicates a gradient descent, not positive or negative. 
When the BPNN model is run in reverse, each layer of the neural network 
inertia weights is rearranged between the output layers. Then, the 
computation is performed. After this repeated adjustment and calculation 
method, the neural network inertia weights are also continuously adjusted 
and updated until the output meets the error requirements, thus 
completing the calculation of the BPNN model. The process is shown on 
Fig.2. 
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In Fig. 2, BPNN extracts information features. Then, the training data 
is imported and adjusted to numerically update the network weights. The 
BPNN is also completed when the error meets the requirements. When the 
error cannot meet the requirements, the error is reversed, and the weights 
are updated again until the error requirements are met. The deflection of 
the bridge structure must be controlled within a specific range in order to 
prevent stiffness from being too low. If the deflection is too great, the 
stiffness of the bridge structure will be diminished. Structural damage to 
the bridge leads to a reduction in stiffness. This results in an increase in 
the displacement change of the unit node due to the dynamic load through 
the bridge structure at the nodes of the unit node. Therefore, the 
displacement change of the unit node can express the bridge structure's 
damaged state. The unit node displacement is expressed in Eq. (5).  

{𝛥} = [𝐾]−1{𝑃}      (5) 

In Eq. (5), {𝛥} represents the unit node displacement vector of the 
bridge structure, [𝐾] represents the stiffness matrix of the bridge 
structure, and {𝑃} represents the unit node load vector. When the unit 
node load vector remains constant, the displacement vector of the bridge 
structure changes according to the stiffness matrix of the structure. In 
other words, the load vector of the bridge structure can represent its 
stiffness. A damaged recognition index based on the displacement change 
rate of the upper chord bar is established and expressed as Eq. (6).  

𝛥𝑥𝑖 =
𝑥𝑖𝑖𝑚𝑎𝑥

𝑥𝑖
      (6) 

In Eq. (6),  𝑥𝑖 represents the displacement at node 𝑖 when the stiffness 
of the bridge structure is perfect under the uncertain working conditions. 
𝑥𝑖𝑚𝑎𝑥  represents the maximum displacement at node 𝑖 when the stiffness 
of the bridge structure is imperfect and changed under the determined 
working conditions.  𝛥𝑥𝑖  represents the rate of change of the displacement 
at node 𝑖 when there is a load under the working conditions. The BPNN 
steps for recognizing bridge structure damage are shown in Fig. 3.   

Fig.3 shows the process of damage identification using BPNN. First, a 
bridge finite element model is established, and the model data is 
calculated. Next, the damage location data are integrated, and the damage 
identification model is established. Then, the measured damage location 
data are simulated. Finally, the damage identification results are obtained. 
In the BPNN, the maximum value of the network output is used to judge 
the location and severity of damage to the chord bar. If the result is 
positive, the identification is correct. The specific expression is shown in 
Eq. (7).  

0.8𝑦 ≤ �̄� ≤ 1.2𝑦      (7) 

In Eq. (7) 𝑦 ̄ and 𝑦 are denoted as the actual output of the neural 
network and the single target output of the neural network, respectively.  

2.2 Damage Identification Based on Coupled 
Axle Vibration Modeling 

After using BPNN for bridge damage structure analysis, the secondary 
analysis of damage structure using axle coupled vibration can improve the 
accuracy of damage structure identification. In the process of a car passing 

through a bridge, the bridge will produce mutual vibration effect with the 
car. A vehicle-axle coupled vibration system is formed between the two 
(Zhang et al., 2021). The basic Eq. of vehicle-bridge coupling is described, 
as shown in Eq. (8).  

𝐹𝑏 = 𝑀𝑏�̈�𝑏 + 𝐶𝑏�̇�𝑏 + 𝐾𝑏𝑦𝑏     (8) 

In Eq. (8), 𝑀𝑏  denotes the bridge weight. 𝐶𝑏  denotes the bridge 
damping ratio. 𝐾𝑏 denotes the bridge stiffness matrix. �̈�𝑏  denotes the 
single-target node acceleration. �̇�𝑏  denotes the single-target node velocity.   
𝑦𝑏  denotes the single-target node displacement. 𝐹𝑏 denotes the kinetic 
load of the vehicle action over the bridge. Transforming the vehicle into a 
two-dimensional system, the vehicle-bridge model is shown in Fig. 4.    

Bridge

vMV

ck

 

Fig. 4 Vehicle-Bridge Model 

In Fig. 4, Mv is denoted as the mass of the vehicle. c and k denote the 
vertical downward stiffness and damping ratio of the vehicle passing over 
the bridge, respectively. The degrees of freedom of the wheels are not set 
in the vehicle-bridge model. Rather, the wheels act as a displacement link 
between the vehicle and the bridge deck. This relationship is expressed in 
Eq. (9).  

𝑍𝑤𝑖𝑗𝑙 = 𝑍𝑏(𝑥𝑖𝑗𝑙) + 𝑍𝑆(𝑥𝑖𝑗𝑙)     (9) 

In Eq. (9), 𝑥𝑖𝑗𝑙 is expressed as the relative position of the 𝑙 th steering 

tire on the 𝑗 th steering wheel carrier of the 𝑖 th vehicle with respect to the 
bridge. According to the vehicle displacement conditions, the wheels and 
bridge deck always come into contact when a vehicle passes over the 
bridge. The relative displacement between the wheels and bridge deck can 
be described by Eq. (10).  

𝑧𝑖(𝑥) = 𝑧𝑣𝑖(𝑥) − 𝑧𝑏𝑖(𝑥) − 𝑟𝑖(𝑥)     (10) 

In Eq. (10), 𝑧𝑣𝑖(𝑥) represents the radial movement of the wheels 
through the bridge deck and 𝑧𝑏𝑖(𝑥) represents the original radial 
displacement of the vehicle through the bridge deck. Due to the limitation 
of force balance, the force generated by the wheel for the bridge deck and 
the reaction force of the bridge deck to support the wheel remain the same 
and in the opposite direction. The expression relationship is shown in Eq. 
(11).  

𝐹𝑣𝑖 = −𝐹𝑏𝑖      (11) 

In Eq. (11), 𝐹𝑏𝑖 represents the force of the wheel on the bridge. Vehicle-
bridge coupling system power equations can be solved in a number of 
methods. The study chooses to use the entire iterative approach for the 
calculation in order to obtain a quick and efficient iterative calculation of 
the vehicle-bridge coupling. The specific process is shown in Fig. 5.  
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Fig. 5 Vehicle-Bridge Coupling Calculation Process 

Table 1. Classification of Road Surface Roughness Levels 

Road surface grade Road roughness coefficient 

𝐺𝑞(𝑛0) × 10−6
𝑚2

𝑚−1,
𝑛0 = 0.1𝑚−1 

Lower limit Geometric mean Upper limit 
A 8 16 32 
B 32 64 128 
C 128 256 512 
D 512 1024 2048 
E 2048 4096 8192 
F 8192 16384 32768 
G 32768 65536 131072 
H 131072 262144 524288 
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Fig. 5 shows the coupled vibration of the vehicle and bridge. This is 
obtained by establishing three models: pavement, vehicle, and bridge. The 
pavement samples and the motion state of the vehicle wheels are collected. 
Then, the interaction force between the pavement and the wheels is 
calculated iteratively. After establishing the bridge finite element model, 
the time course of vibration of the damaged bridge structure is converged. 
The final results are also obtained if the convergence condition is satisfied. 
If the convergence condition is not satisfied, the pavement samples are re-
selected, and the operation is repeated until the convergence condition is 
satisfied. The axle coupling calculations are performed by coordinating the 
displacements and equilibrium forces. The convergence expression for 
displacement is shown in Eq. (12).  

|𝑍𝑖
𝑗

−𝑍𝑖
𝑗−1

|

𝑍𝑖
𝑗 ≤ 𝜀      (12) 

In Eq. (12), 𝑍𝑖
𝑗
 it denotes the displacement of the wheel from the 

bridge deck at the 𝑗th iteration. 𝑍𝑖
𝑗−1

 denotes the displacement of the 
wheel from the bridge deck at the 𝑗 − 1th iteration.   denotes the control 
parameter for convergence. The force convergence is expressed in Eq. 
(13).  

|𝐹𝑖
𝑗
−𝐹𝑖

𝑗−1
|

𝐹𝑖
𝑗 ≤ 𝜀      (13) 

In Eq. (13), 𝐹𝑖
𝑗
represents the force acting on the bridge deck of the car 

tire in the 𝑗th iteration and 𝐹𝑖
𝑗−1

 represents the force acting on the bridge 

deck of the car tire in the 𝑗 − 1th iteration. In the actual vehicle-bridge 
coupling calculation, due to the unevenness of the road surface, which 
leads to the vibration of the car traveling on the bridge deck. The 
unevenness of the road surface is modeled. The density of road surface 
unevenness is expressed as Eq. (14).  

𝐺𝑑(𝑛) = 𝐺𝑑(𝑛0) (
𝑛

𝑛0
)

−𝑤

     (14) 

In Eq. (14) 𝑛 and 𝑛0 denote the frequency and reference frequency in 
the bridge deck in space, respectively. 𝑮𝒅(𝒏)  denotes the displacement 
rate Pu density. 𝐺𝑑(𝑛0)  denotes the bridge deck unevenness coefficient. 
The pavement unevenness classifications are shown in Table 1.  

The unevenness of pavements can be viewed as a stable Gaussian 
equation that can be described using the triangular series method, the 
Fourier inverse transformation method, or the free regression moving 
average model method (Li et al., 2023). The power spectral densities of the 
bridge deck and pavement are used to model the methods used to change 
the pavement unevenness. For the calculation of pavement unevenness, 
the commonly used counting methods are the trigonometric series 
method and the power spectral density function, as shown in Eq. (15). 

{
𝑟(𝑥) = ∑ 𝐺(𝑛1) 𝑐𝑜𝑠(2𝜋𝑛𝑖𝑥 + 𝜑𝑖)𝑛

𝑖=1

𝐺(𝑛𝑖)2 = 4𝐺𝑑(𝑛𝑖)𝛥𝑛
    (15) 

In Eq. (15), 𝜑𝑖  is a random number with values ranging from. [0,2𝜋]. 
𝐺(𝑛𝑖)  is expressed as the magnitude of the vibration amplitude of the car 
crossing the bridge.  

3. Validation of the Effectiveness of BPNN 
with Vehicle-Bridge Coupling Damage 
Identification 

3.1 Effectiveness Analysis of Bridge Structure 
Damage Identification Using BPNN 

A finite element model is created using a bridge on a high mountain 
pass as an example. The bridge's main beam is 60 meters long, and its main 
structure is made of concrete. The model consists of 58,135 units and 
109,915 nodes. The BPNN model has a single hidden layer with 50 nodes. 
The number of nodes in the input layer is determined based on the number 
of dynamic characteristic parameters of the bridge. The number of nodes 
in the output layer is consistent with the requirements for identifying the 
location and extent of damage. The hidden layer uses the Sigmoid function, 
and the output layer uses a linear activation function. The iteration count 
is set to 1000, the learning rate is set to 0.01, and the Adam algorithm is 
used to accelerate convergence. The study sets the bridge structure as 
single damage under three different working conditions with stiffness 
reduction coefficients of 30%, 50%, and 70%, respectively. Five different 
noise degree conditions with noise sizes range from 0% to 20%, with an 
interval of 5%. The primary goal of identifying damage to a bridge 
structure is to locate the damaged structure and analyze the extent of the 
damage. The study uses a deep belief network (DBN) and a support vector 
machine (SVM) for comparison. The DBN's 3-layer restricted Boltzmann 
machine has 200, 100, and 50 nodes, a learning rate of 0.001, and a batch 
size of 32. The SVM's kernel function is Gaussian, and its regularization 
parameter is 1. The results are as Fig. 6.   
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Fig. 6 Identification, localization, and Quantitative Results of 
Three Methods under Different Operating Conditions 

As displayed in Fig. 6(a), the BPNN is smoother and has fewer extreme 
fluctuations in the process of locating the bridge structure than the other 
two methods when it comes to locating the damaged structure under 
various working conditions. Its minimum accuracy is 88.32%, and its 
maximum accuracy is 94.12%. The accuracy of DBN is 59.45% and 87.54% 
for the damaged structure. SVM has lower accuracy and a maximum of 
27.25% when performing the localization of damaged bridges. In Fig. 6(b), 
the study suggested using BPNN for the quantitative analysis of structural 
damage with a higher accuracy than DBN and SVM methods, with the 
highest quantitative accuracy of 74.54%. The quantitative analysis of 
damage using BPNN is more accurate than the other two methods under 
various working conditions. The lowest quantitative accuracy using BPNN 
is 23.21%, which is about 10% higher than the other two methods. The 
lowest quantitative accuracy is 23.21%, about 10% higher than the other 
two methods. The results of damage localization and quantitative analysis 
of bridge structure under different noise levels are shown in Fig. 7.   
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Fig. 7 Damage Localization and Quantification under Different 
Noise Conditions 



 

21  Electronic Journal of Structural Engineering, 2025, Vol 25, No. 3 

In Fig. 7(a), the BPNN has a high localization accuracy for the damaged 
bridge structure under different noise conditions. It is less affected by the 
noise conditions, and the average accuracy of localization is 85%. 
Meanwhile, DBN and SVM are more affected by the noise and have a lower 
localization accuracy for the bridge structure. DBN achieves a localization 
accuracy of 74.25% at its highest and 56.54% at its lowest. The SVM 
algorithm has the highest localization accuracy, 17.21% and the lowest is 
7.54%. The proposed BPNN model suggests that, as noise increases 
gradually, localization accuracy first decreases and then gradually 
recovers under noiseless conditions. This phenomenon may be related to 
the BPNN model's adaptive ability. When noise is low, the model begins to 
deviate from proper feature extraction and judgment, resulting in 
decreased localization accuracy. As noise levels increase, the BPNN model 
gradually learns to identify more discriminative and representative 
feature patterns in noisy data by continuously optimizing its weights and 
thresholds. This allows BPNN to more accurately identify damaged bridge 
features, resulting in improved localization accuracy. In Fig. 7(b), the 
quantitative accuracy of the BPNN model for the damaged bridge structure 
is high under conditions without noise influence, reaching 98.54%. With 
increasing noise, the quantitative accuracy gradually decreases, but the 
average accuracy remains at 90%. DBN has a quantitative accuracy of only 
57.21% under noiseless conditions. Under the influence of increasing 
noise, the accuracy gradually decreases to 47.25%. SVM's accuracy is only 
45.87% under noiseless conditions. The results of the three different 
algorithms for bridge structure multi-damage identification accuracy are 
shown in Fig. 8.   
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Fig. 8 Identification Results of Multiple Structural Damages 

In Fig. 8(a), the BPNN has high accuracy in recognizing damage to the 
bridge structure under different working conditions. The highest accuracy 
reaches 94.32%, and the lowest accuracy is 82.14%. Compared with the 
DBN algorithm, the BPNN's accuracy is higher by about 5%. The SVM 
algorithm in different working conditions, for the bridge structure with 
multiple damage recognition accuracy is low, the highest accuracy of only 
31.28%. The SVM algorithm has a lower accuracy in recognizing multiple 
damages of bridge structures under different working conditions, with a 
maximum accuracy of 31.28%. In Fig. 8(b), the BPNN maintains high 
accuracy in recognizing multiple types of damage to bridge structures 
under different levels of noise. In contrast, the recognition accuracy of the 
DBN and SVM algorithms decreases with increasing noise levels. Under the 
influence of 30% noise, the accuracy of DBN and SVM decreases to less 
than 50%, and the accuracy of BPNN remains above 90% under the 
influence of 30% noise. The accuracy of BPNN under the influence of 30% 
noise is still maintained at more than 90%. This demonstrates that the 
BPNN can accurately recognize multiple types of damage to a bridge 
structure under different working conditions and degrees of noise.  

 
 

3.2 Validation of the Effectiveness of Secondary 
Damage Identification Using Vehicle-Bridge 
Coupling 

After identifying and localizing the bridge damage structure using the 
BPNN, the bridge is subjected to varying degrees of damage for secondary 
identification to improve detection accuracy. This is achieved by analyzing 
various vehicle-bridge coupling parameters. The study uses vehicles 
traveling across three damaged bridge decks with respective damage 
coefficients of 0.1, 0.5, and 0.9 to examine the application of the vehicle-
bridge coupling recognition model in conjunction with the BPNN. Fig. 9 
shows the vehicle displacements taking place at various spans of the 
damaged bridge deck structure.   
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Fig. 9 Vehicle Displacement with Different Span Damages 

In Fig. 9(a), when the damage degree of the bridge is 0.1, the 
displacement of the vehicle over the bridge increases gradually at the 
beginning. When it reaches 15 s, the displacement decreases gradually. At 
the 25th s, the displacement begins to be biased towards 0 mm. When the 
damage degree of the bridge is 0.5, the fluctuation of the displacement 
curve of the vehicle over the bridge becomes larger. At the 30th s, the 
displacement is biased towards 0 mm. When the bridge is 0.9, the vehicle 
starts to produce a large displacement at the beginning and is still being 
displaced at the cut-off time of the experiment. The vehicle displacement 
across the bridge begins to be large at the very beginning and is still 
occurring at the end of the experimental time. In Fig. 9(b), in the middle of 
the bridge span, when the damage degree of the bridge structure is 0.1, the 
displacement curve of the vehicle starting to drive over the bridge tends 
to be 0mm. When the time reaches about 20s, the displacement starts to 
be generated. When the damage degree of the bridge is 0.5, the 
displacement starts to occur when the vehicle drives over the bridge in 
about 10s. When it reaches its 20s, the displacement of the vehicle starts 
to intensify. When the damage level of the bridge structure is 0.9, the 
displacement of the vehicle starts when it crosses the bridge. Moreover, 
the displacement is still occurring until the end of the experiment. The 
above results show that when the bridge structure is damaged to a lower 
degree, the bridge damage location cannot be recognized by the vehicle 
displacement. However, when the bridge structure is damaged to a higher 
degree, the bridge damage location can be recognized by the displacement 
generated by the vehicle driving over the bridge deck. Fig. 10 shows the 
wavelet coefficients of vehicles at different span locations.   
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Fig. 10 Different Damping Wavelet Coefficients of Vehicles at 
Different Span Positions 

As displayed in Fig. 10(a), when the span position is full, the wavelet 
coefficients of the various vehicle damping nearly overlap and do not differ 
significantly. This has a negative impact on identifying the bridge's 
damaged structure, and there are fluctuations in the damaged areas of the 
structure. However, the trend of the wavelet coefficients of the three types 
of damping curves tends to be similar, which makes locating the damaged 
structure more difficult. In Fig. 10(b), when the span position becomes 
1/4, the wavelet coefficients of different damping of the vehicle overlap 
less. Moreover, there are more obvious fluctuations of wavelet coefficients 
in the damaged parts of the bridge structure, which can recognize the 
damaged structure of the bridge with higher accuracy. The above results 
show that for the vehicle-bridge coupling, different damping of vehicles 
has an effect on the identification and localization of the damaged bridge 
structure. Furthermore, the different damping of vehicles in the 1/4 span 
position has a higher accuracy for the identification of the damaged bridge 
structure. The wavelet coefficients of different speeds of vehicles in 
different span positions are as Fig. 11.   
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Fig. 11 Wavelet Coefficients of Vehicles at Different Speeds in 
Different Span Positions 

In Fig. 11(a), when the vehicle is in the middle of the bridge and 
traveling at 2 m/s, the wavelet coefficient change curve is smoother and 
less fluctuating. This improves the ability to recognize the damaged local 
structure of the bridge. The loss position of the bridge can be calculated 
using the vehicle-bridge coupling equation. When the vehicle speed is kept 
at 3m/s, the fluctuation of wavelet coefficient change curve is more 
obvious. At this time, the vibration of the vehicle driving over the bridge 
can be observed to a larger extent. When the vehicle speed is kept at 5m/s, 
the wavelet coefficient change curve fluctuates violently. At this time, the 
wavelet coefficient fluctuation has obscured the fluctuation caused by the 
damaged structure of the bridge, resulting in the inability to accurately 
identify the location of the damaged structure of the bridge. In Fig. 11(b), 
it is obvious that in the position of 1/4 span of the bridge deck, which is 
consistent with Fig. 11(a), the vehicle-bridge coupling calculations can be 
carried out at a lower speed to recognize the location and degree of the 
damaged structure of the bridge at a lower level. When the speed is too 
high, the fluctuation change curve is violent, and the vehicle-bridge 
coupling calculation cannot be carried out at a higher level. It is obvious 
that when the bridge damaged structure is recognized by vehicle-bridge 
coupling, the bridge structural damage can be recognized better when the 
speed is lower, but not better when the speed is higher. To verify the 
practical application of the proposed method, the effect is tested on a 
bridge with three types of damage. High-precision sensors are used to 
collect vibration response data of the bridge under different working 
conditions. The collected data is then preprocessed with filtering and 
noise reduction. The preprocessed data is divided into training and testing 
sets at a ratio of 7:3. Then, compare the accuracy and recall of the proposed 
method with those of traditional BPNN, Faster RCNN, and YOLOv5s. The 
results are shown in Table 2. 

Table 2. Comparison of Accuracy and Recall of Four Methods 

Method Accuracy/% Recall/% 
BPNN 88.75 86.49 
Faster RCNN 91.34 88.98 
YOLOv5s 90.13 88.37 
Proposed method 95.62 94.91 

In Table 2, the proposed method has the highest accuracy and recall, 
at 95.62% and 94.91%, respectively. These values are 6.87% and 8.42% 
higher than those of traditional BPNN. 

4. Conclusion 

The study proposes a method of identifying and localizing bridge 
structural damage using BPNNs and axle interaction to address the 
problem of continuous detection and maintenance of bridge damage. The 
findings demonstrated that BPNN has high recognition accuracy for 
localizing damaged structures under various working conditions. The 
lowest accuracy was 88.32%, and the highest was 94.12%. Additionally, 
the identification process is faster and more seamless, with recognition 
accuracy roughly 10% higher than that of the DBN and SVM algorithms. 
The BPNN is less affected by noise and can achieve over 85% localization 
accuracy even when there is varying degrees of noise interference. In 
contrast, the DBN and SVM algorithms are more affected by noise and can 
only achieve an average accuracy of about 50% in recognizing the degree 
of damage to the bridge structure. In the identification of damaged bridge 
structure through vehicle-bridge coupling, it can better identify and 
localize the damage degree of bridge structure through displacement. 
When the damping is different, the wavelet coefficient change of the 
damping can be used to accurately recognize the location of the bridge 
damage structure and the degree of damage when the vehicle drives over 
the bridge. When crossing the bridge, the vehicle's speed is kept below 3 
m/s, causing its wavelet coefficient curve to fluctuate significantly. The 
time at which the change occurs can be used to pinpoint the location of 
bridge damage, with recognition accuracy as high as 80%. In summary, the 
suggested approach can precisely pinpoint the location and extent of 
structural deterioration of a bridge, but only when identifying structural 
damage caused by vehicles driving over the bridge deck. Future repairs 
will consider the location and multi-structural damage caused by vehicles 
moving across the bridge deck.  
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