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Abstract 

With the advancement of the transportation industry, concrete structures are widely utilized in construction due 
to their benefits, including cost-effectiveness and ease of construction. To improve the accuracy of identification 
and damage detection in concrete structures, this study uses acoustic emission technology to obtain various 
waveform parameter features in the structure. It uses Back Propagation Neural Network (BPNN) to improve 
Genetic Algorithm (GA), while combining the K-means++ clustering analysis method for mixed damage 
identification. The results demonstrated that the model’s accuracy in identifying the location of damage was as 
high as 98.46%, and the accuracy of identifying the degree of damage was 97.23%. In terms of Area Under Curve 
(AUC), the model achieved 0.986 with a misclassification rate of only 1.54%. In summary, the research on 
identification and damage detection in concrete structures based on GA combined with clustering analysis 
significantly improves the accuracy and reliability of concrete structure damage detection. This study provides a 
new technical means for health monitoring of concrete structures in engineering practice. 
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1. Introduction 

The rapid development of the national economy of China has led to the 
growing evolution of modern structures towards large-span, high-rise, 
and lightweight directions, and people have put forth higher demands for 
the performance of building materials (Liu et al., 2024). However, with the 
passage of time and the influence of the external environment, concrete 
structures are inevitably subject to various forms of damage, which 
seriously affects their integrity, bearing capacity, and reliability as critical 
infrastructure. Therefore, accurately and efficiently identifying and 
detecting damage in concrete structures has become the focus of current 
attention. At present, commonly used methods for detecting damage to 
concrete structures mainly include visual inspection, ultrasonic testing, 
and Acoustic Emission Technology (AET) (Ullah et al., 2023). AET is a non-
destructive testing method based on monitoring the high-frequency 
elastic waves emitted by materials under stress (Wu et al., 2021). When 
concrete structures suffer from cracks, peeling, corrosion, and other 
damages, stress waves are generated inside the material and propagate to 
the structure surface in the form of Acoustic Emission Signals (AESs). By 
analyzing its characteristic parameters, including frequency, amplitude, 
and duration, the health status, damage type, and damage propagation can 
be determined. The advancement of computer technology and intelligent 
algorithms has led to an increasing number of researchers introducing 
artificial intelligence technology into Structural Health Monitoring (SHM). 
Genetic Algorithm (GA) is an optimization method that simulates natural 
selection and genetic mechanisms and can find the optima by simulating 
the process of biological evolution. Cluster analysis is an unsupervised 
learning method that can maximize the data similarity within the same 
category and minimize the similarity between various categories by 
dividing the dataset into multiple categories (Javadian et al., 2021). 
Therefore, in this context, this study innovatively utilizes GA and 
clustering analysis techniques to extract effective information from 
abundant, intricate AES data, improving the accuracy of concrete structure 
damage detection. 

The study aims to improve the accuracy of damage detection in 
concrete structures, combining GA and K-means++ methods, and applying 
AET for real-time monitoring and evaluation of structural damage. AET, as 
an advanced tool for SHM, can accurately determine the health status of 
structures through waveform feature analysis. The innovation of this 
study lies in the combination of GA and clustering analysis methods, 
providing a more efficient and accurate solution for damage detection of 
concrete structures. 

AET is often applied in Concrete Damage Detection (CDD) due to its 
high sensitivity, strong real-time performance, and non-destructive 
advantages, and has received attention from many experts and scholars. 
Thiele et al. designed a concrete damage evolution detection approach 

using AET combined with ultrasonic testing technology to analyze the 
fatigue process of concrete under Compressive Cyclic Loading (CCL). This 
method measured the strain, elastic modulus, and static strength of 
concrete under CCL through acoustic emission and ultrasonic signals, and 
was feasible (Thiele et al., 2022). Habib et al. developed a method that 
fuses AET with the K-Nearest Neighbor (KNN) algorithm to detect crack 
types. Their approach achieved an accuracy of 96.51% in crack 
classification. Other studies have also explored similar methods, with 
varying results on classification accuracy, highlighting the effectiveness of 
AET in this application (Habib et al., 2020). Van Steen et al. proposed using 
AET to obtain the acoustic emission source characteristics of chloride-
induced corrosion damage in reinforced concrete to improve the accuracy 
of health monitoring of concrete structures. It combined the time-
frequency characteristics provided by continuous wavelet transform to 
effectively distinguish the location of acoustic emission sources, 
significantly improving the accuracy of concrete structure health 
monitoring (Van et al., 2022). Li et al. proposed using AET for full load test 
acoustic emission energy analysis to monitor the damage status of 
reinforced concrete sewage pipelines. The study investigated the 
evolution trend of mechanical properties and acoustic emission 
monitoring indicators under load, effectively detecting the degree of 
damage and destruction of reinforced concrete sewage pipeline structures 
(Li et al., 2022). 

GA plays an important role in damage identification and classification. 
Toma et al. suggested a hybrid motor current data-driven method to 
enhance the accuracy of motor bearing fault diagnosis. This method 
extracted statistical features from the motor current signal and used GA to 
reduce the quantity of features and choose the most vital ones. It 
effectively enhanced the precision of fault diagnosis (Toma et al., 2020). 
Alexandrino et al. constructed a CDD method that fuses Multi-objective GA 
(MOGA), neural network, and fuzzy decision-making to lift the accuracy of 
CDD. It utilized Back Propagation Neural Network (BPNN) to robustly 
optimize the damage detection model, effectively improving detection 
accuracy (Alexandrino et al., 2020). Civera et al. proposed an MOGA 
strategy based on robust optimal sensor placement to improve the 
accuracy of loss detection in building infrastructure engineering. This 
method placed sensors on building structures for signal collection and 
analyzed the signals through MOGA. This method could effectively detect 
potential damage to building structures (Civera et al., 2021). To address 
this limitation, unsupervised learning methods have gained attention for 
their ability to detect anomalies without prior labeling. Eltouny et al. 
proposed a Bayesian optimization unsupervised learning method to 
improve the performance of building SHM. This method combined 
density-based unsupervised learning and GA for damage localization and 
detection, with good potential and robustness in detecting and locating 
structural damage (Eltouny et al., 2021). 

Original Article 

Electronic Journal of Structural Engineering 

https://dx.doi.org/10.56748/ejse.25765
https://ejsei.com/ejse
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:rk13938230870@126.com


31  Electronic Journal of Structural Engineering, 2025, Vol 25, No. 3 

In summary, existing literature mostly uses AET and GA for damage 
detection, and some studies combine clustering analysis, such as Toma et 
al.'s research. This paper proposes combining improved GA and cluster 
analysis to enhance the accuracy and robustness of the model, maintaining 
high detection accuracy in different interference environments. This paper 
uses AEP monitoring and combines AEP analysis with improved GA to 
effectively identify deep or hidden damages such as crack propagation and 
interface delamination. In addition, existing research is mostly limited to 
detecting shallow surface damage or conducting experimental verification 
under specific conditions. 

2. Identification and Damage Detection of 
Concrete Structures 

This study first uses AET for CDD. The required waveform signal 
features are extracted through Acoustic Emission Parameter (AEP) 
analysis, and the damage is identified and classified using improved GA 
and clustering analysis methods. 

2.1 Damage Identification in Concrete Structures 
Using AET 

The widespread application of concrete structures in various 
engineering projects makes them susceptible to external loads and 
environmental changes during long-term use, resulting in various 
damages such as cracks, peeling, and corrosion. Traditional damage 
detection methods, such as visual inspection and ultrasonic testing, 
although able to detect surface or shallow damage to a certain extent, have 
significant limitations in detecting deep or concealed damage (Yuan et al., 
2022). AET can monitor the propagation of stress waves inside the 
structure in real time, thereby capturing damage signals such as crack 
propagation and interface delamination inside the concrete (Kim et al., 
2020). Therefore, this study utilizes AET to monitor the signals generated 
by the failure of concrete structures themselves. The detection principle of 
AET is displayed in Fig.1.  
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Fig.1 Principle of AET Testing 

In Fig.1, firstly, the acoustic emission source is excited inside the 
tested material, generating stress waves that are transmitted to the 
surface of the structure through the coupling interface. After removing 
background noise through a transducer, the acoustic emission instrument 
captures waveform signals and processes, displays, and analyzes them. 
Acoustic emission sources generally propagate elastic waves in the 
propagation modes of transverse waves, longitudinal waves, and surface 
waves (Zou et al., 2022; Azimi et al., 2020). The calculation of transverse 
wave velocity is shown in equation (1). 

𝑣𝑡 = √
𝐸

2𝜌(1+𝜎)
      (1) 

In equation (1), 𝑣𝑡  is the velocity of transverse waves, 𝐸 means the 
elastic modulus,  𝜌 denotes the density, and 𝜎 is the Poisson's ratio. The 
formula for longitudinal wave velocity is shown in equation (2). 

𝑣𝑙 = √
𝐸(1−𝜎)

𝜌(1−2𝜎)(1+𝜎)
     

 (2) 

In equation (2), 𝑣𝑙 is the velocity of longitudinal waves. The expression 
for the amplitude of sound waves is shown in equation (3). 

𝑀 = 𝑀0𝑒−𝜍𝑑       (3) 

In equation (3), 𝑀 means the amplitude of the acoustic emission wave.   
𝑀0 refers to the amplitude at the sound emission source. 𝑒  corresponds to 
the base of the natural logarithm. 𝜍  denotes the attenuation coefficient. 𝑑  
is the propagation distance of acoustic emission waves in the material 
(Zhang et al., 2020). However, the amount of waveform signal data 
detected by AET from the tested material is very large. Therefore, it is 

needed to use AEP analysis methods for signal processing to extract 
feature parameters that can characterize damage information. The 
analysis of AEP is exhibited on Fig.2. 
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Fig.2 Analysis of Acoustic Emission Parameters 

In Fig.2, multiple key features can be extracted from the waveform 
parameters of the AES, including ringing count, energy, amplitude, rise 
time, duration, etc. Among them, the threshold voltage, as the setting value 
for noise filtering, is usually set to 30 dB to ensure effective signal while 
removing environmental noise (Hebbi et al., 2023). In acoustic emission 
analysis, B-value is one of the commonly used parameters, particularly 
suitable for describing the characteristics of crack activity (Tibaduiza et 
al., 2020; Mangalathu et al., 2020). B-value is usually related to the energy 
and amplitude data of Acoustic Emission Events (AEE), used to reflect the 
different stages and mechanisms of crack propagation. Therefore, this 
study uses B-value as a parameter index for CDD, as shown in equation (4). 

𝑙𝑜𝑔10 𝑁 = 𝐴 − 𝐵𝑀     (4) 

In equation (4), 𝐵 is the CDD parameter index B-value, used to 
describe the energy distribution characteristics. 𝐴 is a constant 
representing the overall activity of the AEE.  𝑁 is the number of events with 
an amplitude ≥𝑀. By calculating the B-value size, the activity 
characteristics of concrete cracking can be determined. A high B-value 
indicates a relatively stable cracking process, while a low B-value indicates 
that the cracks inside the structure are expanding more vigorously and are 
about to undergo instability and failure (Yilmaz et al., 2024). The formula 
for the damage variable 𝐷 is given by equation (5). 

𝐷 =
𝑆𝑓

𝑆𝑐𝑑
       (5) 

In equation (5), 𝑆𝑓 is the loss area of concrete cracks, and 𝑆𝑐𝑑   is the 

damage area when the concrete completely fractures. The calculation of 
the number of AEEs 𝑁𝑆  is given by equation (6). 

𝑁𝑆 =
𝑁𝑐𝑑

𝑆𝑐𝑑
       (6) 

In equation (6), 𝑁𝑐𝑑  is the cumulative number of AEEs during the 
complete fracture process of concrete. The stress level 𝑌 generated by 
them 𝑁𝑐𝑑  is shown in equation (7). 

𝑌 = 𝛼𝑁𝑐𝑑 + 𝛽 𝑙𝑛(1 + 𝜀𝑁𝑐𝑑)     (7) 

In equation (7), 𝛼 , 𝛽 ,  and  𝜀  all represent the loss coefficients of the 
acoustic emission rate theory. 

2.2 Damage Detection Model Based on Improved 
GA and Clustering Analysis 

After collecting the signal characteristics of concrete structures 
through AET in this study, further processing and analysis of these signals 
are needed to achieve accurate damage identification and classification. 
Currently, common methods for damage identification of AESs mainly 
include feature extraction methods, clustering analysis methods, deep 
learning-based damage identification methods, and hybrid methods 
(Stepinac et al., 2020). To handle the constraints of a single method in 
practical applications, the paper combines the advantages of multiple 
methods and adopts a hybrid approach for damage identification. GA, as a 
commonly used method in deep learning-based damage recognition, has 
the advantages of strong global search capability, wide applicability, and 
good parallelism. However, traditional GA suffers from slow convergence 
speed, and it is easy to fall into local optima (Pan et al., 2020). Therefore, 
this study improves GA by introducing BPNN. BPNN can continuously 
adjust weights and thresholds through its three-layer network structure, 
thereby further refining the solution space based on global optimization. 
Fig.3 shows the BPNN structure. 

In Fig.3, the BPNN structure includes layers of input, hidden, and 
output. The input layer receives candidate solutions from the GA 
optimization process and passes these signals to the hidden Layer. The 
hidden layer transforms the input signal through a nonlinear activation 
function to generate richer feature representations. The output layer 
calculates the final result of damage recognition or optimizes the objective 
function value based on the output of the hidden layer. Through the 
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backpropagation algorithm, BPNN can continuously adjust the weights 
and thresholds in the network based on the error between the output 
results and the actual target, thereby minimizing the error and optimizing 
the objective function. Therefore, combining BPNN with GA's global search 
capability can finely resolve space based on global optimization and 
improve the overall optimization effect. Fig.4 shows the model framework 
built on improved GA. 
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Fig.3 Diagram of BPNN 
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Fig.4 A Damage Detection Model Framework on the Basis of 
Improved GA 

In Fig.4, in the model framework, the parameters of BPNN and GA are 
initialized first, and the population structure of GA is defined after 
randomly assigning weights and thresholds. The next step is to initialize 
the population configuration and calculate the fitness value of the initial 
population. By determining whether fitness meets the requirements for 
selection, crossover, mutation, and other operations, the optimal weights 
and thresholds are ultimately obtained and used as input data for the 
BPNN input layer. After adjusting the three-layer network structure of 
BPNN, the model can obtain the optimal result through judgment. The 
fitness value is shown in equation (8). 

𝐹 = 𝜏(∑ |𝑂𝑖 − 𝑂𝑖
′ |𝑛

𝑖=1 )     (8) 

In equation (8), 𝐹 is the fitness value, 𝜏 is the proportionality 
coefficient, 𝑛 is the number of nodes, 𝑂𝑖   and 𝑂𝑖

′   are the true and predicted 
outputs of the 𝑖 -th node. The probability 𝑃𝑖 of the 𝑖 -th individual being 
selected is shown in equation (9). 

𝑃𝑖 =
𝐹𝑖

∑ 𝐹𝑗
𝑚
𝑗=1

      (9) 

In equation (9), 𝑚 is the gross of individuals. 𝐹𝑖  and  𝐹𝑗   are the fitness 

values of individuals 𝑖 and 𝑗 . The mathematical expression for crossover 
operation is shown in equation (10). 

{
𝑎𝑘𝑗
′ = 𝑎𝑘𝑗 × (1 − 𝜓) + 𝑎𝑖𝑗 × 𝜓

𝑎𝑖𝑗
′ = 𝑎𝑖𝑗 × (1 − 𝜓) + 𝑎𝑘𝑗 × 𝜓

    (10) 

In equation (10), 𝑎𝑘𝑗
′   and 𝑎𝑖𝑗

′  are the 𝑗 -th gene value of the new 

individual 𝑎𝑘
′   and 𝑎𝑖

′  .  𝜓  is a random number within the [0,1]. The 
expression for the mutation operation is shown in equation (11). 

  

{
𝑎𝑖𝑗 = 𝑎𝑖𝑗 + (𝑎𝑖𝑗

𝑚𝑎𝑥 − 𝑎𝑖𝑗) × ∅, 𝑟 ≥ 0.5

𝑎𝑖𝑗 = 𝑎𝑖𝑗 + (𝑎𝑖𝑗
𝑚𝑖𝑛 − 𝑎𝑖𝑗) × ∅, 𝑟 < 0.5

  (11) 

In equation (11),  𝑟 is a random number and 𝜙 is the variation 
amplitude factor. 𝑎𝑖𝑗

𝑚𝑎𝑥  and 𝑎𝑖𝑗
𝑚𝑖𝑛  are the maximum and minimum of the 

gene 𝑗 in the individual 𝑖. The mathematical formula for the variation 
amplitude factor is shown in equation (12) (Mariniello et al., 2021). 

𝜙 = 𝑟 (1 −
𝑔

𝑔𝑚𝑎𝑥
)    (12) 

In equation (12), 𝑔  and 𝑔𝑚𝑎𝑥  are the current and maximum iterations. 
The K-means++ algorithm is widely utilized in clustering analysis methods 
for damage identification due to its good clustering effect. Therefore, this 
study adopts a hybrid method combining improved GA and the K-means++ 
algorithm for damage detection. To evaluate the clustering effect, this 
study uses the Silhouette Coefficient (SI) to measure the quality of 
clustering results, as shown in equation (13) (Salkhordeh et al., 2023). 

𝑆𝐼(𝑢) =
𝑑̄𝑥𝑢−𝑑̄𝑥𝑢,𝐶𝑢

𝑚𝑎𝑥{𝑑̄𝑥𝑢−𝑑̄𝑥𝑢,𝐶𝑢}
     (13) 

In equation (13), 𝑆𝐼(𝑢)  is the SI of the 𝑢 -th data sample. 𝑑̄𝑥𝑢
  and 𝑑̄𝑥𝑢,𝐶𝑢

  

are the average distance from sample point 𝑥𝑢  and 𝑥𝑢  to all other points 
in its cluster and cluster 𝐶𝑢. The formula for the Davies-Bouldin Index 
(DBI) is shown in equation (14). 

𝐷𝐵𝐼 =
1

𝑦
∑ 𝑚𝑎𝑥

𝑣≠𝑢

𝑦
𝑢=1 (

𝑅𝑢−𝑅𝑣

𝑑𝑢𝑣
)     (14) 

In equation (14). 𝑅𝑢  and 𝑅𝑣  are the radii of clusters 𝑢 and 𝑣 .  𝑦 is the 
number of clusters. 𝑑𝑢𝑣  is the distance between 𝑢 and 𝑣  (Luo et al., 2022). 
The clustering radius can represent the radius and degree of dispersion of 
the cluster, as shown in equation (15). 

𝑅𝐶𝑢
= {

1

|𝐶𝑢|
∑ |𝑥𝑢 − 𝑥𝐶𝑣

|
𝑞

𝑥𝑢∈𝐶𝑢
}

1

𝑞
    (15) 

In equation (15), 𝑅𝐶𝑢
 is the degree of dispersion of cluster 𝐶𝑢 . 𝑞 is the 

index of distance measurement, and the smaller the value of 𝑅𝐶𝑢
 , the 

better the clustering effect. By combining improved GA and k-means++, 
the accuracy and efficiency of damage identification can be effectively 
improved, thereby achieving more efficient and reliable SHM. To improve 
recognition accuracy, this paper has made improvements based on 
traditional GA, adopting fitness function optimization and cross-mutation 
strategy, increasing local search ability, and enhancing the algorithm's 
global optimal solution ability. Combining the K-means++ clustering 
analysis method can maintain high clustering performance and low 
misclassification rate on large-scale datasets. 

3. Performance Verification of 
identification and damage detection in 
concrete structures methods 

After setting up the experimental environment, this study first verified 
the recognition performance of concrete structures based on AET and then 
analyzed the damage detection models built on improved GA and 
clustering analysis. 

3.1 Experimental Platform Setup and 
Environment Configuration 

An acoustic emission sensor model from Physical Acoustics 
Corporation is selected for signal acquisition to verify the performance of 
the identification and damage detection in concrete structures methods. A 
high-performance computing platform equipped with an Intel i7 
processor, 32GB RAM, and 1TB SSD is used for data processing, and 
MATLAB software is used for model training. LabVIEW software is used to 
control the data acquisition system and sensors and monitor experimental 
data in real-time. PyTorch is used as a deep learning framework for data 
processing and neural network training. 

To further verify the robustness of the proposed identification and 
damage detection in concrete structures method in complex 
environments, a confusion experiment is designed to test the model’s 
performance under these conditions by introducing different types of 
interference factors. These experiments aim to simulate various 
environmental noises and interferences in practical applications, ensuring 
that the model can maintain efficient and stable performance even in 
complex backgrounds. To simulate noise interference in actual 
environments, different types of background noise are introduced in the 
experiment, including vibration noise, electronic noise, and 
electromagnetic interference. The introduction of noise is achieved by 
adding external vibration sources and electromagnetic interference 
equipment to the experimental site, simulating the noise conditions in 
common industrial environments. Confusion experiment steps: Firstly, an 
acoustic emission sensor is used to collect signals, and the AESs in the 
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concrete structure under different interference conditions are recorded. 
By introducing interference such as background noise, the training model 
identifies different types of damage under these conditions. Finally, by 
calculating the confusion matrix of the model in various interference 
environments, the accuracy of damage detection in different types of 
damage recognition is evaluated. Table 1 lists the specific configuration. 

Table 1. Experimental Environment Configuration 

Category Device Model 
Data Acquisition 
Equipment 

Acoustic Emission 
Sensor 

Physical Acoustics 
Corporation 

Data Acquisition 
Card 

National Instruments 
(NI) PCI-6115 

Computing 
Platform 

Computer Intel i7/32GB RAM/1TB 
SSD 

Software Tools MATLAB R2023b 
Programming 
Language 

Python 3.8+ 

Deep Learning 
Framework 

PyTorch 1.8 

Development 
Environment 

2019LabVIEW 

Power Supply 
Equipment 

Power Supply Unit EPS-4000 

3.2 Performance Verification of Concrete 
Structure Identification Based on AET 

To verify the effectiveness of AET in identifying concrete structures, 
this study selects ordinary concrete specimens with dimensions of 
100mm×100mm×300mm and subjects them to continuous stress 
treatment. The surface of the test piece is equipped with a Physical 
Acoustics Corporation model acoustic emission sensor for signal 
acquisition. The study applies continuous stress to concrete specimens 
and observes the changes in AES parameter characteristics. In Fig.5 (a), as 
external stress grows, the amplitude of the AES shows a trend of first 
increasing, then stabilizing, and then decreasing. In the first 65 seconds, 
the amplitude gradually increases, and between 65 seconds and 300 
seconds, the amplitude remains stable, while after 300 seconds, the 
amplitude significantly decreases. AET can effectively reflect the dynamic 
changes of concrete structures during the stress process. In Fig.5 (b), the 
trend of energy change is also similar to the amplitude change, showing a 
slow increase in energy in the early phase, with a stable trend in the middle 
phase and a sharp decrease in the later stage. This state further confirms 
the AET’s accuracy in identifying changes in concrete structures.  
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Fig.5 Changes in Parameter Characteristics of AES 

To further analyze the crack propagation in concrete structures, the 
changes of concrete specimens before and after crack formation are 
studied and observed. The crack propagation in concrete structures is 
shown on Fig.6. Before the formation of cracks, the internal structure of 
the concrete component is intact, and no obvious cracks are observed. 

After the formation of cracks, penetrating cracks appear inside the 
concrete components, further indicating the damage evolution process of 
concrete under external stress. 

(a) Concrete component diagram before crack formation

(b) Diagram of concrete components after crack formation
 

Fig.6 Crack propagation diagram of concrete structure 

To further measure the effectiveness of the concrete structure 
identification method built on AET, the changes in B-value under different 
stress types, such as compressive stress (ranging from 0 to 50 MPa) and 
tensile stress (ranging from 0 to 20 MPa), are compared. In Fig.7 (a), under 
low stress, the B-value shows a slow decreasing trend over time, 
decreasing from the initial 3.12 to 2.98. This indicates that under low 
stress, the damage process of concrete structures is relatively slow, and 
crack propagation is relatively stable. In Fig.7 (b), under high stress, the B-
value starts from 3.12 and decreases to 3.01 after 75 seconds of variation. 
Between the 75 s and the 95 s, the decrease in B-value significantly 
increases. Between 95s and 100s, the B-value sharply decreases and 
eventually drops to 1.23. Under high stress, the crack propagation speed 
in concrete structures accelerates, and the instability process of the 
structure gradually becomes apparent. In summary, the change in B-value 
can effectively demonstrate the propagation of cracks and the instability 
process of structures. This change is compared with the real crack 
formation and propagation data obtained from visual and displacement 
measurements. Additionally, other quantitative measurements, such as 
strain gauges and crack width monitoring, are also used to further validate 
the AET accuracy in identifying concrete structure damage. 
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 Fig.7 Changes in B-value under Different Stress Conditions 

To test the effectiveness of this recognition method in practical 
applications, the study collects parameter changes that gradually increase 
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with external loads in different actual engineering environments, as 
shown in Table 2. The variation trends of amplitude, B-value, and energy 
of AESs are consistent in different engineering environments. Taking the 
experimental group of concrete bridges as an example, as the external 
road slowly rises, the amplitude of the AES rises from 0.5 to 2.1. This 
indicates that as the load increases, micro-cracks and defects inside the 
concrete are gradually activated, leading to an enhancement of AESs. In 
addition, the B-value decreases from 3.1 to 2.2, reflecting the acceleration 
of the crack propagation process. The energy change from 0.2 to 0.8 
indicates that energy consumption gradually increases with the increase 
of load. The actual dynamic changes are measured through crack width 
monitoring and strain gauges and compared with the variations in AES 
parameters. The crack width increases from 0.1 mm to 0.5 mm, and the 
strain increases from 0.2% to 1.5%. The consistency between the 
measured dynamic changes and AES trends provides empirical evidence 
for the effectiveness of identification technology in practical applications. 

Table 2. Parameter Changes in Different Practical Engineering 
Environments 

Engineering 
environment 

Time/s Amplitude B-value Energy 

Concrete bridge 0 0.5 3.1 0.2 
50 1.2 2.95 0.5 
100 2.3 2.7 1.0 
150 2.8 2.5 1.3 
200 2.1 2.2 0.8 

Concrete floor slab 0 0.8 3.15 0.3 
50 1.5 2.95 0.6 
100 2.4 2.7 1.0 
150 3.1 2.5 1.4 
200 2.8 2.4 1.2 

Concrete dam 0 1.1 3.05 0.4 
50 2.2 2.9 0.8 
100 3.5 2.7 1.1 
150 4.0 2.5 1.5 
200 3.1 2.2 1.2 

3.3 Performance Verification of Damage 
Detection Model on the Basis of Improved 
GA and Clustering Analysis 

Epochs

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

u
ra

cy
/%

10 30 50 70 90

10

30

50

90

70

Improve GA clustering

(a) Comparison of Accuracy in Identifying 

Damage Locations

Epochs

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

u
ra

cy
/%

10 30 50 70 90

10

30

50

90

70

(b) Comparison of accuracy in identifying the 

degree of damage

SVM
DNN
RF

Improve GA clustering

SVM
DNN
RF

 

Epochs

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

u
ra

cy
/%

10 30 50 70 90

10

30

50

90

70

Improve GA clustering

(a) Comparison of Accuracy in Identifying 

Damage Locations

Epochs

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

u
ra

cy
/%

10 30 50 70 90

10

30

50

90

70

(b) Comparison of accuracy in identifying the 

degree of damage

SVM
DNN
RF

Improve GA clustering

SVM
DNN
RF

 
Fig.8 Comparison of Accuracy of Different Damage Detection 
Models 

To verify the proposed model, this study compares the model with 
three other advanced algorithms, namely Support Vector Machine (SVM), 
Deep Neural Network (DNN), and Random Forest (RF). Fig.8 shows the 
accuracy of various models. In Fig.8 (a), the accuracy of the research model 
in damage location recognition is as high as 98.46%, which is 12.64%, 
15.83%, and 10.42% higher than the 85.82%, 82.63%, and 88.04% of SVM, 
DNN, and RF models, respectively. In Fig.8 (b), the accuracy of the research 
model in identifying the degree of damage is 97.23%, which is 8.15%, 
11.23%, and 7.69% higher than 89.08%, 85.00%, and 90.54% of other 
models. Overall, the research model has excellent performance in damage 
detection. 

To further validate the performance, the comprehensive performance 
of different models is compared in three experiments. In Table 3, the 
comprehensive performance indicators of the research model are 
significantly better than those of models. The precision, recall, and F1-
Score of the research model reach 97.12%, 96.78%, and 96.95%, while the 
performance of other models in these three indicators does not exceed 
90%. In terms of AUC, the value of the research model is as high as 0.986, 
which is 10.66%, 13.07%, and 7.75% higher than the comparison model. 
Additionally, the computation time of the research model is only slightly 
2.2 seconds longer than that of the SVM model, which still has an 
advantage in computation time compared to DNN and RF. The 
Misclassification Rate (MCR) of the research model is only 1.54%, while 
the MCRs of other models are all greater than 10%. In the second and third 
experiments, the research model also demonstrates superior 
performance, with accuracies of 97.20% and 97.05%. The average 
precision of the three experiments is as high as 97.12%. The average recall 
rate and F1-Score are 96.81% and 96.87%, indicating that the research 
model maintains a high level of performance under different experimental 
conditions. In summary, the research model has demonstrated superior 
performance in damage detection. 

Table 3. Comprehensive Performance of Four Models 

The number 
of 
experiments 

Index Improved 
GA 
clustering 

SVM DNN RF 

1 Precision/
% 

97.12 83.50 81.87 87.32 

Recall/% 96.78 84.92 80.45 88.67 
F1-Score/% 96.95 84.21 81.15 87.00 
AUC 0.986 0.891 0.872 0.915 
Calculation 
time/s 

20.5 18.3 31.4 25.6 

MCR/% 1.54 14.18 17.37 11.96 
2 Precision/

% 
97.20 83.74 81.90 87.40 

Recall/% 96.71 84.35 80.85 88.22 
F1-Score/% 96.83 83.11 81.89 87.25 
AUC 0.987 0.895 0.875 0.901 
Calculation 
time/s 

20.3 18.2 31.5 25.6 

MCR/% 1.52 14.2 17.0 11.81 
3 Precision/

% 
97.05 83.92 81.80 87.52 

Recall/% 96.95 84.42 80.89 88.20 
F1-Score/% 96.84 83.25 81.11 87.36 
AUC 0.983 0.891 0.872 0.911 
Calculation 
time/s 

20.7 18.2 31.6 25.70 

MCR/% 1.51 14.25 17.30 11.95 

To verify the clustering performance, this study compares it with 
other advanced clustering algorithms. The selected algorithms include K-
means, hierarchical clustering, and Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN). Fig.9 shows the performance 
comparison of different clustering methods. In Fig.9 (a), the SI value of the 
improved GA clustering method used is as high as 0.98, while the SI values 
of K-means clustering, hierarchical clustering, and DBSCAN are 0.87, 0.79, 
and 0.93. The SI values of the research method increased by 11.22%, 
19.38%, and 5.10% compared to other methods. In Fig.9 (b), the DBI value 
of the research method is the lowest, only 0.24, which is 70.73%, 59.32%, 
and 47.82% lower than the 0.82, 0.59, and 0.46 values of other models. 
The research model has significantly better clustering performance than 
other clustering algorithms. 

To verify the performance of the model in practical applications, this 
study evaluates its performance in different scenarios through confusion 
experiments. In Fig.10 (a), the correct recognition probability is higher 
than 0.94 for different types of injuries. The correct identification 
probabilities of damage types such as cracks, corrosion, fatigue, and wear 
reach 0.98, 0.95, 0.94, and 0.96. In Fig.10 (b), the damage detection 
accuracy outperforms 0.91 under different environmental noise 
interferences. Under complex environmental conditions such as vibration, 
temperature changes, electronic interference, and electromagnetic 
interference, the damage detection accuracy of the model still remains at 
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0.93, 0.92, 0.91, and 0.92. The research model has high efficiency and 
stability under different types of damage and interference environments. 
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 Fig.9 Performance Comparison of Different Clustering Methods 
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Fig.10 Confusion Experiment 

4. Conclusions 

Health monitoring and damage detection of concrete structures have 
always been important topics in the engineering field. To optimize the 
accuracy of damage detection in concrete structures, this study adopted 
an improved GA combined with clustering analysis technology to identify 
and detect concrete damage by analyzing the variation law of AEP data. 

AET could effectively capture damaged information of concrete structures 
and accurately display the dynamic changes of concrete structures. The 
accuracy of the research model in identifying the location and degree of 
damage exceeded 98%, significantly better than other advanced models. 
In the comprehensive performance assessment, the precision, recall, and 
F1-Scores of the research model reached 97.12%, 96.78%, and 96.95%, 
with an AUC value of 0.986 and an MCR of only 1.54%. In addition, the 
improved GA clustering method also performed well in clustering 
performance, with SI values and DBI of 0.98 and 0.24, obviously better 
than other clustering methods. In the confusion experiment, the correct 
recognition probability under different types of damage was higher than 
0.94, and the damage detection accuracy under different environmental 
noise interferences was higher than 0.91. In summary, the proposed 
concrete structure damage detection method based on GA and cluster 
analysis improves the accuracy and reliability of detection and provides a 
new technical means for SHM in practical engineering. Future research can 
further integrate deep learning techniques to enhance the adaptability of 
models in complex environments and explore the identification of more 
types of structural damage. 

 Although this method has achieved good results in 
experimental environments, there are still some limitations in current 
research, one of which is model simplification. Especially when dealing 
with complex situations that may be encountered in practical engineering, 
simplified assumptions may not fully reflect the true structural behavior. 
For example, the research model did not fully consider the dynamic 
response and damage accumulation process of concrete structures under 
earthquake or other extreme loads. This may result in different application 
effects in practical engineering compared to laboratory environments, 
especially when evaluating seismic performance. Simplified models may 
not fully reflect the behavior of concrete structures under earthquake 
action. 
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