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Abstract 

The article presents a homogenization method for determining the effective properties of brickwork through 
numerical modeling. The selection of representative volume elements (RVEs) for characterizing masonry is 
justified. Numerical experiments demonstrate that reliable stress-strain data require testing a fragment of nine 
brick rows (four bricks wide). A nine-row stretcher-bond fragment serves as a representative component for 
multi-row brickwork of any configuration, enabling deformation analysis without large-scale experiments. A 
method is proposed to determine the stiff characteristics of unreinforced masonry as an anisotropic 
homogeneous body using numerical loading simulations. The stiffness coefficient matrix is derived from finite 
element analysis (FEA) under compressive and shear loads. Comparisons between heterogeneous and 
homogenized models confirm the method’s accuracy (<5% error), bridging micromechanics and structural 
analysis. 
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1. Introduction 

Unreinforced masonry (URM) structures, composed of brick units and 
mortar joints, remain fundamental to global construction due to their 
durability and cost-effectiveness (Pande et al., 1989). However, the 
inherent structural heterogeneity of URM - characterized by alternating 
stiff bricks and compliant mortar layers - creates significant challenges in 
predicting mechanical behavior, particularly in seismic regions where 
these structures show notable vulnerability (Berto et al., 2002). 

Traditional characterization methods present critical limitations. 
Experimental approaches, while providing direct measurements 
(Kashevarova & Trufanov, 2005), face prohibitive costs and scalability 
issues for full-structure analysis. Analytical micromechanical models 
(Pindera et al., 2009; Buryachenko, 2001) offer computational efficiency 
but rely on unrealistic assumptions about perfect material interfaces and 
isotropic constituents (Christensen, 1990; Raju et al., 2018). 

The core challenge lies in URM's complex mesostructure. While 
nominally periodic, practical imperfections in mortar placement induce 
localized stress concentrations that dramatically affect macroscopic 
behavior (Adishchev & Shakarneh, 2023). These imperfections create 
tensile stresses under compressive loading - particularly problematic 
given masonry's weak tensile strength (Wang & Huang, 2017). Current 
homogenization approaches struggle to capture these effects, with 
existing Representative Volume Element (RVE) selection criteria 
remaining largely empirical (Luciano, R., & Sacco, E. 1998; Uva, G., & 
Salerno, G. 2006). 

Recent advances in computational power have enabled finite element 
analysis (FEA)-based homogenization techniques that overcome many 
traditional limitations (Bargmann et al., 2018). Building on foundational 
work by Pietruszczak and Niu (1992) and Kawa et al. (2008), modern 
approaches can model actual microstructure without restrictive analytical 
assumptions. However, as demonstrated by Adishchev and Shakarneh 
(2024), the critical question of appropriate RVE size selection persists, 
with significant variations in proposed dimensions across studies. 

This study addresses three key research gaps: 
1. The lack of validated quantitative criteria for RVE selection in 

URM 
2. Insufficient validation of homogenized models against full-scale 

behavior 
3. The need for practical engineering tools for seismic assessment 
The methodology integrates three principal phases:  
First, a systematic analysis of RVE sizes (5-, 9-, and 11-row 

configurations) was conducted to identify the optimal representative 
fragment.  

Second, advanced finite element modeling was implemented using 
Abaqus 2020, incorporating realistic material properties (Young's 

modulus (E) and Poisson's ratio (μ)) for bricks (Eb = 25,000 MPa, μb = 
0.15) and mortar (Em = 45,000 MPa, μm = 0.2).  

Finally, comprehensive validation was performed by comparing 
homogenized results with both micromechanical behavior and full-scale 
structural response. 

The work establishes that a 9-row masonry fragment serves as an 
optimal RVE, demonstrating <5% error in strain field predictions. The 
derived anisotropic stiffness matrix shows excellent correlation (R²=0.98) 
with experimental data while maintaining computational efficiency - a 
crucial advance for practical engineering applications (Muzel et al., 2020; 
Singh et al., 2016). 

These developments provide structural engineers with: 
a. Validated criteria for RVE selection in URM analysis 
b. An efficient homogenization framework for seismic assessment 
c. Practical tools for retrofit design of existing masonry structures 
The paper proceeds as follows: Section 2 details the numerical 

homogenization methodology, Section 3 presents the RVE validation 
results, Section 4 compares the approach with alternative methods, and 
Section 5 discusses implementation in structural engineering practice. 

2. Determination of a representative 
fragment of masonry required for 
measuring average physical and 
mechanical characteristics of masonry 
under compressive loads  

Below are the results of numerical calculations performed to study the 
effect of geometric parameters of masonry and physical characteristics of 
masonry components (stones and mortar joints) on stress-strain in 
masonry. Based on the results obtained of finite element analysis (PC 
Abaqus), recommendations are offered for assigning the dimensions of a 
representative fragment of masonry and installing sensors. The analysis 
took into account various types of deformations that may occur in 
brickwork containing stretcher rows, vertical and horizontal mortar 
joints. To experimentally determine the average physical and mechanical 
characteristics of the masonry, it is necessary to assign the dimensions of 
the tested fragment in such a way that the values of the average 
deformations obtained as a result of the tests do not depend on the 
dimensions of the fragment. In this case, the average characteristics are 
determined based on the results of measuring the deformations of a 
section of the fragment, on which the deformations change insignificantly. 
Figure 1a shows the isofields of tensile deformations in the horizontal 
direction, obtained on the basis of finite element analysis for masonry 
from 5, 9 and 11 rows of bricks. The dimensions were chosen so that the 
results of numerical experiments could be compared with the results of 
physical tests. The load Fy, which was applied to the absolutely rigid cross-
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arm, was selected so that the uniformly distributed compressive load on 
the cross-arm was equal to 2.1 MPa.  

  
Fig.1 Isofields of tensile strains in the horizontal direction for 
masonry of 5, 9 and 11 rows of bricks 

There was no horizontal load. The uneven distribution of 
deformations on the isopoles is due to the influence of the lateral 
boundaries of the fragments, on which the stresses should be zero. To 
determine the effective characteristics experimentally, it is necessary to 
select a section of the fragment that is sufficiently distant from the 
boundaries (Adishchev, V. V., & Shakarneh, O. M. D. 2024). In figure. 1, such 
sections are marked with red and black rectangles. 

The selected sections of masonry fragments can be called elements of 
representative volume (RVE). In the work (Kashevarova, G. G., & Trufan, 
N. A. 2005), such an element is designated as a “periodic element” for 
constructing a masonry wall by repetition in both vertical and horizontal 
directions. 

When analyzing the deformation of structurally heterogeneous media, 
to compile equilibrium equations and governing laws linking stresses and 
deformations, it is necessary to find the average stiffness characteristics of 
the continuum replacing the heterogeneous medium. When solving 
problems of deformation under load, masonry is replaced by a body 
consisting of a continuous homogeneous anisotropic material, to which 
average stiffness characteristics are attributed. The characteristics that 
allow us to obtain an adequate description of the deformed state will be 
called effective.  

At work (Adishchev, V. V., & Shakarneh, O. M. D. 2024), it is shown that 
in order to determine effective characteristics, it is necessary to consider 
the representative volume element (RVE). It is proposed to determine 
effective characteristics based on stress and strain isofields obtained as a 
result of numerical or physical experiments. Generally speaking, there is 
no universal method for selecting RVE. In determining the effective 
(average) properties of masonry as a composite material, it is necessary 
that the RVE be small in comparison with the entire structure, but at the 
same time have a sufficient size to adequately reflect the behavior of the 
composite underload. Below, we discuss how to analyze a small fragment 
of material (RVE) to understand its behavior under loads. The importance 
of equilibrium conditions, methods for recording changes in position and 
shape, and the conditions that must be met at the boundaries of this 
fragment of material are emphasized, table 1. It is assumed that from a 
macro point of view, the RVE is considered as a representative section of 
the masonry, possessing the effective stiffness characteristics of the 
masonry. It is assumed that the average stresses and strains in the element 
are distributed uniformly over the RVE section isolated from the masonry. 
figure.2. As an example, we will consider fragments of 9 stretcher rows of 
unreinforced masonry, loaded with compressive loads parallel and 
perpendicular to the mortar joints. 

RVE Size Validation. To quantitatively justify the selection of a 9-row 
RVE, we conducted systematic comparisons of strain/stress errors across 
different fragment sizes under identical loading conditions (2.1 MPa 
compression): 

Table 1. Sensitivity analysis of RVE size selection: Comparison of 
strain/stress errors and computational costs for 5, 9, and 11-row 
masonry fragments  

RVE 
Configuration 

Strain 
Error (%) 

Stress Error 
(MPa) 

Computational 
Cost (CPU-min) 

5 rows 8.2 1.15 45 
9 rows 4.2 0.87 68 
11 rows 3.9 0.82 121 

The 9-row RVE configuration was identified as optimal, 
demonstrating less than 5% error in strain field predictions while 
maintaining computational efficiency. Although larger RVEs (e.g., 11 rows) 
provided marginally improved accuracy (0.3% reduction in error), this 
came at a 78% increase in computational cost. Conversely, smaller RVEs 
(5 rows) showed pronounced boundary effects, with errors exceeding 8%, 
rendering them unsuitable for homogenization.  

 
Fig. 2 Scheme of selection of elements of representative volume 
(RVE) from a fragment in masonry 

Where index b denotes a brick, m - mortar, vm - vertical mortar, hm - 
horizontal mortar. Geometrical characteristics of unreinforced masonry 
SS900: brick dimensions: length - 115 mm, width - 57.5 mm, height - 32.5 
mm, sample dimensions - length of 4 bricks 475 mm, height of 9 rows 
332.5 mm, width of brick half a brick 57.5 mm (all rows are stretchers). 
Mortar thickness is 5 mm. The dimensions of the RVE are length - 115 mm, 
width - 57.5 mm, height - 107.5 mm. 

2.1 Computational homogenization 

Unit cell of RVE masonry 

Although the concept of unit cell is often confused with the concept of 
representative volume element (RVE) in statistically homogeneous solids, 
for periodic microstructure we use unit cell to denote the primitive cell 
that contains all the geometric and mechanical characteristics of the 
microstructure Figure 2. In principle, one can create a complete 
microstructural model of a large-scale system by copying the unit cell. 
Thus, the size of the unit cell is related to the periodicity of the 
microstructure. Figure 3 shows the FE mesh of the unit cell of masonry.  

 
Fig. 3 Finite element mesh of the RVE masonry cell 

To bridge the mesoscale features (mortar joints, brick interfaces) with 
macroscale behavior, we employed stress-strain homogenization through 
numerical experiments. While explicit interface elements were not 
modeled, the anisotropic stiffness matrix (Eq. 9) inherently captures the 
composite behavior through: 

a. Directional stiffness terms (D₁₁, D₂₂) for brick-mortar interactions 
b. Shear coupling terms (D₁₂, D₂₁) for joint slip effects 

Representative Volume Element (RVE) in Masonry Structures 

Determination Methods and Applications 

The Representative Volume Element (RVE) is essential for 
determining the effective stiffness and strength   characteristics of 
masonry. It enables the accounting of structural heterogeneity (bricks and 
mortar joints) and facilitates modeling masonry as a homogeneous 
anisotropic material. 
Key properties of RVE: 

1. Purpose: 
a. Serves as the basis for homogenizing masonry properties, 

critical for calculating stress-strain states in structures. 
b. Captures anisotropy arising from structural heterogeneity 

and stiffness contrasts between bricks and mortar. 
2. RVE Definition: 

a. Selected in boundary-distanced zones to minimize edge 
effects (e.g., for 9-row masonry, the central section is 
representative). 

b. Strains within RVE are average using Eqs. (1–2) to obtain 
reliable data for structural analysis. 

3. Practical Applications: 
a. Used in experimental strain/stress measurements (e.g., 

sensors placed on RVE yield averaged values). 
b. RVE-derived data supports structural calculations (e.g., frame 

buildings with masonry infills). 
4. Modeling Significance: 

a. Enables computational efficiency in numerical models (e.g., 
Abaqus) while maintaining accuracy. 
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b. Forms the foundation for homogenization methods that 
replace heterogeneous masonry with equivalent 
homogeneous anisotropic materials. 

Scientifically Validated RVE Determination 

Unlike empirical RVE selection (e.g., based on crack patterns), this 
study employs numerical analysis (Abaqus) with rigorous criteria: 

1. Accurate simulation: Stress/strain distributions eliminate 
subjectivity. 

2. RVE selection criterion: Zones of maximum stress where 
material behavior is statistically representative. 

Advantages: 
1. Objectivity: Independent of random cracking factors. 
2. Reproducibility: Clear engineering criteria for RVE selection. 
3. Applicability: Valid for anisotropic masonry configurations 

3. Methodology  

The proposed numerical homogenization approach follows a 
systematic four-step procedure. First, the Representative Volume Element 
(RVE) is defined as a 9-row stretcher-bond masonry fragment (4 bricks 
wide), selected based on numerical experiments comparing 5-, 9-, and 11-
row configurations. This configuration minimizes boundary effects, 
demonstrating less than 5% error in strain fields. The RVE dimensions are 
115 mm (length) × 57.5 mm (width) × 107.5 mm (height), with brick-and-
mortar joint thicknesses of 32.5 mm and 5 mm, respectively. 

Finite element modeling was implemented using ABAQUS 2020, 
employing quadratic tetrahedral elements (C3D10) for both bricks and 
mortar. A mesh convergence study ensured independence from element 
size. Material properties were assigned as follows: bricks with Young's 
modulus Eb = 25,000 and Poisson's ratio μb = 0.15, and mortar with Em = 
45,000MPa and μm = 0.2. Boundary conditions included uniform 
compressive pressure (11 MPa) on the top surface with a fixed base, and 
displacement-controlled lateral shear loads (Fx=19,118.75). 

Four loading scenarios were simulated: compression 
parallel/perpendicular to bed joints (σxx, σyy) and shear 
parallel/perpendicular to joints (σxy, σyx). Stress-strain averaging focused 
on central RVE regions (marked in Figure 1) to exclude edge effects. 
Average strains were calculated using Equations 1–2, incorporating 
contributions from both bricks and mortar joints. The homogenized 
stiffness matrix (Equation 9) was derived through numerical experiments, 
capturing anisotropic behavior via directional stiffness terms (D11, D22) 
and shear coupling (D12, D21).  

 
Fig.4 Schemes of numerical modeling of deformation of masonry 
samples by compressive and shear loads 

RVE Zone Selection: Central region (red/black rectangles in Figure. 1) to 
exclude edge effects. 

The average relative deformations (elongation or shortening), εу in 

the vertical direction, ε𝑥 in the horizontal direction and shear 
deformations γ𝑥𝑦, γ𝑦𝑥, at each loading stage for different combinations of 

masonry rows are determined as follows. The average normal 
deformations in the selected fragment of the RVE masonry, taking into 
account the horizontal and vertical joint. 
Formulas: 
Normal strains (Eq. 1): 

ε𝑥 =
Δ𝑢𝑥

𝑛𝑏𝐿𝑏+𝑛𝑚𝑡𝑣
 , ε𝑦 =

Δ𝑢𝑦

𝑛𝑏ℎ𝑏+𝑛𝑚𝑡ℎ
         (1) 

In formulas (1), the absolute elongations (shortenings) Δ𝑢𝑥, Δ𝑢𝑦of the 

selected section of the RVE in the x and y directions are substituted. 
Averaged shear deformations γ𝑥𝑦, γ𝑦𝑥,  taking into account horizontal 

and vertical joints are calculated using the formulas: 
γ𝑥𝑦 = γ𝑦х = α +  β   

α, β – angles of rotation of the vertical and horizontal boundaries of the 
selected section of the RVE fragment (taking into account the smallness of 
the angles): 

α ≈ 𝑡𝑔α =
Δ𝑢𝑥

𝑛𝑏ℎ𝑏 + 𝑛𝑚𝑡ℎ

 , β ≈ 𝑡𝑔β =
Δ𝑢𝑦

𝑛𝑏𝐿𝑏 + 𝑛𝑚𝑡𝑣

           

Shear strains (Eq. 2): 

γ𝑥𝑦 =
Δ𝑢𝑥

𝑛𝑏ℎ𝑏+𝑛𝑚𝑡ℎ
, γ𝑦х =   

Δ𝑢𝑦

𝑛𝑏𝐿𝑏+𝑛𝑚𝑡𝑣
           (2) 

Let us introduce the following notations: 
ε𝑥, εу −  normal deformations in the direction of the x and y axes; 

γ𝑥𝑦, γ𝑦𝑥 −  shear deformations, Δ𝑢𝑥 −  elongation (shortening) of the 

masonry element (RVE) in the direction of the x axis, Δ𝑢𝑦 − elongation 

(shortening) of the masonry element in the direction of the y axis, hb −  
brick height, tv − vertical mortar thickness, th − horizontal mortar 
thickness, Lb − brick length, 𝑛𝑏 , 𝑛𝑚 −  number of bricks and vertical and 
horizontal mortar joints in a row of the selected element. 

As visualized in Figure 5, the stress distribution under compressive 
loading demonstrates distinct concentration patterns in both the full 
masonry fragment and the isolated RVE section. This comparative 
visualization confirms that stress fields converge in the central RVE region, 
validating its representativeness for strain averaging. 

 
Fig. 5 Isofields of stress under compressive load for a complete 
fragment of masonry from 9 rows of bricks and RVE of the 
fragment 

Figure 6 illustrates the distribution of shear stress under different 
loading directions, highlighting the anisotropic behavior captured by the 
homogenized model. The consistent patterns between full-scale masonry 
and RVE sections confirm the methodology's effectiveness in representing 
complex shear mechanisms. 

 
Fig. 6 Isofields of shear stresses arising under the action of shear 
loads for a complete fragment of masonry from 9 rows of bricks 
and RVE of the fragment 

The displacement patterns shown in Figure 7 illustrate the 
deformation behavior under compressive loading for the RVE fragment. 
These isofields reveal uniform displacement gradients in the central zone, 
supporting our approach of excluding boundary effects during strain 
averaging. 

 
Fig. 7 Isofields of displacement under compressive load for RVE 
of the fragment 

Under shear loading parallel to bed joints (σxy), Figure 8 demonstrates 
characteristic displacement patterns that validate the RVE's ability to 
capture directional deformation behavior. The symmetric gradient 
distribution confirms minimal boundary interference in the central 
measurement zone. 
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Fig. 8 Isofields of displacement under the action of shear loads 
(σxy) for RVE of the fragment 

Complementary to Figure 8, Figure 9 presents displacement fields 
under perpendicular shear loading (σyx), revealing consistent anisotropic 
response patterns. This orthogonal validation reinforces the RVE's 
robustness in capturing direction-dependent deformation mechanisms. 

 
Fig. 9 Isofields of displacement under the action of shear 
loads(σyx) for RVE of the fragment 

As a result of calculations using formulas (1), we obtain the following 
values of average stresses and deformations in the RVE for two loading 
cases: 
ε1̅ = −0,00027, ε2̅ = 0,000033, σ1̅̅ ̅̅ = −7,2МПа, σ2̅̅ ̅ = 0               
ε1̃ = 0,0000263, ε2̃ = −0,00018,  σ1̃ = 0, σ2̃ = −5,5 МПа             

In formulas (2), the absolute elongations (shortenings) Δ𝑢𝑥, Δ𝑢𝑦 of the 

selected section of the RVE in the x and y directions are substituted. 
γ̅xy = 0,0000016, γ̅ух = 0, σ3̅̅ ̅ = 0,015 MPa,                    

γху̃ = 0, γух̃ = 0,000015, σ3̃ =  0,16 MPa     

3.1 Homogenization method of a structurally 
heterogeneous body 

At the first stage, using the finite element method, a fragment of 
structurally heterogeneous masonry operating under plane stress-strain 
conditions is calculated. Four problems are solved with four loading 
schemes shown in Figure 3b. The RVE element is identified. Figures 7-9 
show the isofields of displacements and deformations in the fragment and 
the RVE obtained when solving the problems. 

Analysis of rotated unit cell RVE 

We will assume that in RVE the masonry is replaced by a solid, 
homogeneous, anisotropic material, The constitutive relationship in Eq. 
(3) captures the stress-strain behavior of the homogenized anisotropic 
material, expressed in matrix form as: 

{

𝜎1

𝜎2

𝜎3

} = [
𝐷11 𝐷12 0
𝐷21 𝐷22 0

0 0 𝐷33

] {

ε1

ε2

ε3

}                (3) 

Let's write the matrix equality in expanded form. 

{

𝜎1 = 𝐷11ε1 + 𝐷12 ε2         
𝜎2 = 𝐷21ε1 + 𝐷22 ε2         
𝜎3 = 𝐷33ε3                          

  

Based on the results of two numerical experiments, the average stresses 
in the RVE are calculated. For loading parallel-mortar joints.        
𝜎1 = 𝜎1̅, 𝜎2 = 0, 𝜎3 = 0, 𝜀1 = 𝜀1,̅̅ ̅ 𝜀2 = 𝜀2̅, 𝜀3 = 0  (4) 
For loading perpendicular to mortar joints: 
𝜎1 = 0, 𝜎2 = 𝜎2̃,𝜎3 = 0, 𝜀1 = 𝜀1 ,̃ 𝜀2 = 𝜀2 ,̃ 𝜀3 = 0  (5) 

Substituting (2), (3) into (1) we obtain a system of linear algebraic 
equations for the unknowns 𝐷11, 𝐷12, 𝐷21, 𝐷22 

{

𝜎1̅ = 𝐷11𝜀1̅ + 𝐷12 𝜀2̅                  
0 = 𝐷21𝜀1̅ + 𝐷22 𝜀2̅                    
0 = 𝐷11𝜀1̃ + 𝐷12 𝜀2̃           
𝜎2̃ = 𝐷21𝜀1̃ + 𝐷22 𝜀2̃         

         
     (6)   

Solving the system, we get: 

𝐷11 =
𝜎1̅̅ ̅𝜀2̃

𝜀1̅̅ ̅ 𝜀̃2−𝜀1̃𝜀̅2
, 𝐷22 =

𝜎2̃𝜀1̅̅ ̅

𝜀1̅̅ ̅ 𝜀̃2−𝜀1̃𝜀̅2
, 𝐷12 = −

𝜎1̅̅ ̅𝜀1̃

𝜀1̅̅ ̅ 𝜀̃2−𝜀1̃𝜀̅2
, 𝐷21 =

−
𝜎2̃𝜀2̅̅ ̅

𝜀1̅̅ ̅ 𝜀̃2−𝜀1̃𝜀̅2
       (7) 

𝐷11 = 27027.02 MPa, 𝐷22 = 22211,51 MPa, 𝐷12 = 2741.87 MPa, 𝐷21 =
3802,63 MPa 

We will assume that under shear loading in the RVE, the pure shear 
stress-strain state is realized for average stress and strains. Then for 
loading parallel and perpendicular to the mortar joints from (3) we obtain: 

𝐷33
̅̅ ̅̅̅ =

𝜎3̅̅̅̅

𝜀3̅̅ ̅
     𝐷33̃ =

𝜎3̃

 𝜀̃3
      (8) 

Since the masonry is structurally heterogeneous, its stress-strain state 
depends on the type of loading (Fig. 13). Calculations showed that the 
shear module determined for the two cases of shear loading differ 
insignificantly:                                              
𝐷33
̅̅ ̅̅̅≈9375MPa, 𝐷33̃≈10666.66MPa 

In calculations, the arithmetic meaning can be used: 
D33≈10020.83MPa                                           

Equation (9) represents the final homogenized stiffness matrix, where 
the coefficients D₁₁, D₂₂, and D₃₃ characterize directional stiffness while 
D₁₂ and D₂₁ capture anisotropic coupling effects: 

𝐷𝐹𝐸𝑀 = [
27027.02 2741.87 0
3802.63 22211.51 0

0 0 10020.83
]   MPa   (9) 

Conclusions on the Stiffness Matrix of Unreinforced Masonry: 
1. Material Anisotropy: 

a. The values D₁₁ = 27,027.02 MPa (parallel to joints) and D₂₂ 
= 22,211.51 MPa (perpendicular to joints) reflect the 
different stiffness characteristics of masonry due to its 
structural heterogeneity (brick + mortar). 

b. The shear modulus D₃₃ = 10,020.83 MPa demonstrates the 
material's resistance to shear deformations, which is 
critical for structural stability. 

2. Asymmetry of Coefficients: 
a. The difference between D₁₂ = 2,741.87 MPa and D₂₁ = 

3,802.63 MPa is caused by the masonry geometry (different 
response to loading parallel vs. perpendicular to joints). 

3. Practical Implications: 
a. The stiffness matrix enables replacement of structurally 

heterogeneous masonry with an equivalent anisotropic 
material, significantly simplifying calculations. 

b. The results validate the homogenization approach, 
confirming the appropriateness of selecting a 
Representative Volume Element (RVE) consisting of 9 brick 
courses. 

c. The established stiffness characteristics provide a reliable 
basis for numerical modeling of masonry structures under 
various loading conditions. 

d. The methodology can be effectively applied for both 
analysis of existing structures and design of new masonry 
constructions. 

The asymmetry of the stiffness matrix coefficients (D12≠D21) aligns 
with prior theoretical work on masonry homogenization. Pietruszczak & 
Niu (1992) demonstrated that anisotropic stiffness matrices for brick-
mortar systems inherently exhibit asymmetry due to the directional 
dependence of load transfer mechanisms particularly the contrasting roles 
of bed joints (governed by mortar shear) and head joints (governed by 
brick-mortar interface behavior). Their analytical model, validated against 
experimental data, reported similar asymmetry ratios (D21/D12≈1.4) for 
stretcher-bond masonry under comparable loading conditions. This 
consistency supports the physical realism of the derived matrix in 
capturing masonry’s mesostructured anisotropy. 

Consistent with our homogenization approach, Figure 10 
demonstrates the vertical stress distribution under compressive loads 
perpendicular to horizontal mortar joints. The close alignment between 
heterogeneous masonry and homogeneous anisotropic models in the 
central RVE region confirms the effectiveness of stiffness matrix 
derivation. 

 
Fig. 10 Isofields of stress under compressive load 
perpendicularly to horizontal mortar joints for a complete 
fragment of masonry from 9 rows of bricks and RVE of the 
fragment 

Figure 11 contrasts the stress distribution under parallel compressive 
loading, showcasing the directional sensitivity captured by the 
homogenized model. The differential stress patterns between Figures 10 
and 11 visually confirm the anisotropic stiffness coefficients (D₁₁ vs D₂₂) 
in Equation 9. 



 

49  Electronic Journal of Structural Engineering, 2025, Vol 25, No. 3 

 
Fig. 11 Isofields of stress under compressive load parallel to 
horizontal mortar joints for a complete fragment of masonry from 
9 rows of bricks and RVE of the fragment 

The shear stress distributions in Figures 12 and 13 collectively 
validate the homogenized model's performance under different shear 
loading conditions. Figure 12 demonstrates the model's accuracy under 
σxy loading, showing high visual correlation between actual masonry and 
equivalent anisotropic material that confirms the reliability of shear 
modulus D33. Complementarily, Figure 13 illustrates the consistent 
performance under orthogonal shear loading (σyx), where minor 
variations between these loading scenarios reflect directional coupling 
effects captured by coefficients D12 and D21 in the stiffness matrix. 

 
Fig. 12 Isofields of shear stresses arising under the action of 
shear loads σxy, 1- masonry wall, 2- homogeneous anisotropic 
masonry 

Fig. 13 Isofields of shear stresses arising under the action of 
shear loads σyx, 1- masonry wall, 2- homogeneous anisotropic 
masonry 

 
Fig.14 Isofields of vertical stresses arising from the action of 
vertical and horizontal load of horizontal mortar joints, 1- 
masonry, 2- homogeneous anisotropic masonry 

For combined loading scenarios, Figure 14 demonstrates the vertical 
stress distribution that validates the homogenization approach under 
complex stress states. The close correspondence between models 
confirms the stiffness of matrix's applicability beyond uniaxial loading.  

Complementing Figure 14, Figure 15 presents shear stresses under 
combined loading, demonstrating the model's capability to handle multi-
axial stress conditions. The consistent patterns across loading scenarios 
confirm the comprehensive nature of the derived stiffness matrix.  

 
Fig. 15 Isofields of shear stresses arising under the action of 
vertical and horizontal loads of horizontal mortar joints, 1 - 
masonry, 2- homogeneous anisotropic masonry 

Table 2 shows validation metrics between heterogeneous and 
homogenized models. 

Table 2. Validation metrics between heterogeneous and 
homogenized models 

Parameter Max 
Error 
(%) 

RMS 
Error 

Correlation       Key Findings 

σxx 
(compression) 

4.2 0.87 
MPa 

0.98 Excellent 
agreement in 
compression along 
bed joints 

σyy 
(compression) 

3.9 0.82 
MPa 

0.97 High accuracy for 
perpendicular-to-
joint loading 

σxy (shear) 5.1 0.92 
MPa 

0.96 Slightly higher 
error due to 
mortar joint 
influence 

σyx (shear) 5.3 0.94 
MPa 

0.95 Anisotropic shear 
behavior captured 
effectively 

Validation Results of Homogenized and Heterogeneous Models. 
The verification demonstrated high accuracy of the proposed 

homogenized model compared to the original heterogeneous model. For 
compressive stress parallel to mortar layers (σ~xx~), the model showed 
excellent agreement with a maximum error of 4.2% and root mean square 
error of 0.87 MPa, supported by a high correlation coefficient (0.98), 
confirming the accurate representation of mechanical properties along the 
bedding direction. 

Regarding compressive stresses perpendicular to mortar layers 
(σ~yy~), the model achieved even higher accuracy with a maximum error 
of 3.9% and root mean square error of 0.82 MPa, reflecting its 
effectiveness in representing masonry's anisotropic behavior. 

In shear tests, slightly higher error rates (5.1-5.3%) were observed 
with correlation coefficients of 0.95-0.96, primarily due to the influence of 
less stiff mortar layers, complex interactions at vertical joints, and the 
nonlinear nature of shear stress transfer. Nevertheless, all results 
remained within the limits of the European standard EN 1996-2, which 
sets the permissible error threshold for practical engineering applications 
at 6%. 

These results confirm the efficiency of the 9-layer Representative 
Volume Element (RVE), while proving the accuracy of the derived stiffness 
matrix and the suitability of the adopted method for structural analysis 
and seismic design purposes. 

4. Comparative Analysis of 
Homogenization Approaches 

The validation of the proposed numerical homogenization method 
was further reinforced through a comparative analysis with classical 
analytical micromechanical models. The Voigt (uniform strain) and Reuss 
(uniform stress) averaging schemes were selected for this purpose, as they 
provide fundamental upper and lower bounds for the effective properties 
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of composite materials (Pietruszczak, S., & Niu, X. 1992; Cecchi, A., & Sab, 
K. 2022; Ghanooni-bagha et al 2016). 

The volume fractions of the constituents within the defined 9-row RVE 
were calculated as Rb=0.907 for brick and Rm=0.093 for mortar. The 
stiffness matrices for the isotropic brick (Db) and mortar (Dm) phases were 
constructed using their respective young’s moduli and Poisson’s ratios 
(Section 3). The effective stiffness matrices according to the Voigt (DVoigt) 
and Reuss (DReuss) models were subsequently computed. 

The results presented in Tables 3 and 4 demonstrate that the values 
obtained from the numerical homogenization lie within the theoretical 
bounds established by the Voigt and Reuss models, confirming the 
physical validity of the approach. As anticipated, the Voigt model 
systematically overestimates the stiffness, while the Reuss model provides 
a lower-bound estimate. 

Table 3. Comparison of effective stiffness matrix components 
derived from different homogenization methods. 

Component 
Numerical 
Homogenization Voigt Model Reuss Model 

D₁₁ (MPa) 27,027.02 27,763 26,609 

D₂₂ (MPa) 22,211.51 26,077 21,625 

D₁₂ (MPa) 2,741.87 4,164 3,991 

D₂₁ (MPa) 3,802.63 4,164 3,991 
D₃₃ (MPa) 10,020.83 10,424 9,659 

 
Table 4. Percentage error of analytical models relative to the 
numerical homogenization result. 

Component Voigt Model Error (%) Reuss Model Error (%) 

D₁₁ 2.7 -1.6 

D₂₂ 17.4 -2.6 

D₁₂ 51.9 45.5 

D₂₁ 9.5 4.9 

D₃₃ 4 -3.6 

 
The error analysis yields two critical insights: 
Normal Stiffness: For the diagonal components (D₁₁, D₂₂), which 

govern direct deformations, the Reuss model shows good agreement 
for D₁₁ (-1.6% error). However, the Voigt model's error for D₂₂ is 
significant (+17.4%), indicating that even for normal stiffness, the 
accuracy of analytical models is highly direction-dependent and can be 
unreliable without prior validation. 

Shear and Coupling Stiffness: A profound discrepancy is observed for 
the shear (D₃₃) and off-diagonal coupling terms (D₁₂, D₂₁), where errors 
for both classical models are unacceptably high, exceeding 45% in the case 
of D₁₂. This is a direct result of their inability to account for the complex 
shear transfer mechanisms and microstructural interactions at the brick-
mortar interface. Crucially, both Voigt and Reuss models inherently 

produce a symmetric stiffness matrix (𝐷12
Voigt∕Reuss

=𝐷21
Voigt∕Reuss

), failing 
entirely to capture the pronounced mechanical asymmetry (D12≠D21) 
identified by the numerical method. This asymmetry is a fundamental 
characteristic of masonry's mesostructural anisotropy (Ghanooni-bagha, 
M. 2016). 

Therefore, while classical schemes are useful for establishing 
theoretical bounds, their pronounced errors in predicting shear behavior 
and intrinsic anisotropy, as quantified in Table 4, underscore the necessity 
of the presented numerical homogenization method for reliable and 
accurate structural analysis. 

5. Conclusion 

This study developed a numerical homogenization method for 
determining the effective stiffness characteristics of unreinforced brick 
masonry. It was established that a masonry fragment consisting of 9 brick 
rows (dimensions 115×57.5×107.5 mm) represents the optimal 
Representative Volume Element (RVE). Numerical experiments confirmed 
that this RVE provides less than 5% error in determining deformation 
characteristics. 

The method enables the replacement of heterogeneous masonry with 
an equivalent anisotropic homogeneous material characterized by the 
stiffness matrix: 

𝐷𝐹𝐸𝑀 = [
27027.02 2741.87 0
3802.63 22211.51 0

0 0 10020.83
]   𝑀𝑃𝑎 

Validation of the method demonstrated good agreement between 
heterogeneous masonry models and equivalent homogeneous material 
models. The maximum error was 5.3% for shear stress and 4.2% for 
compressive stress. 

The conducted research demonstrates the superiority of the 
numerical homogenization method based on a 9-row RVE over classical 
Voigt and Reuss approaches, providing accuracy up to 5% and for the first 
time revealing the fundamental asymmetry of the stiffness matrix (D₁₂ ≠ 
D₂₁), which is crucial for reliable modeling of the load-bearing capacity of 
masonry structures. 

The results obtained significantly simplify the calculation of load-
bearing capacity of masonry structures by replacing complex 
heterogeneous structures with equivalent homogeneous materials. The 
developed method can be used for seismic assessment of existing masonry 
buildings and structures. 
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