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Abstract 

A significant quantity of waste concrete is produced each year due to the demand for concrete manufacturing, 
which drives the yearly need for raw materials. Recycled aggregate concrete has become a viable remedy as a 
result. It is vulnerable to breaking and has less strength since the hardened mortar is affixed to natural aggregates, 
which presents a problem. The goal of this research is to employ random forests (RF) frameworks to project the 
split tensile strength (STS) of fiber-reinforced recycled aggregate concrete (RAC). The RF framework uses the 
Chimp optimization algorithm (CHOA) and artificial hummingbird optimization (ARHA) to tweak 
hyperparameters and select the best-performing combination. A data set including 257 data points and 10 input 
variables was taken from peer-reviewed published research and arbitrarily split into three phases: training, 
validating, and testing. The RF-AR approach exhibited high reliability, with R2 of 0.9942, 0.9824, and 0.9913 
throughout the training, validating, and testing stages. RF-AR had higher results than RF-CH, with R2 of 0.9796, 
0.9566, and 0.9694, respectively. Considering the values of the Theil Inequality Coefficient (TIC), RF-AR depicted 
the lowest values at 0.0128, 0.0213, and 0.0171 concerning 0.0241, 0.0333, and 0.0318 related to RF-CH 
throughout the training, validating, and testing stages. All in all, the RF-AR strategy performed better, even if the 
RF-CH method was dependable in forecasting the STS of fiber-reinforced RAC. 
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1. Introduction 

From 1928 to 2018, cement production generated roughly 38 billion 
tons of greenhouse gas emissions worldwide. A substantial 71% of this 
huge amount was produced post-1990. In 2019, worldwide cement output 
totaled 4.1 billion tons (Kuijpers, 2020). The use of reclaimed concrete 
waste as a replacement for certain coarse aggregates in the production of 
recycled aggregate concrete (RAC) has become a modern practice in the 
concrete industry (Hassankhani & Esmaeili-Falak, 2024; Moradi et al., 
2022; Zarei et al., 2024). The cost of using recycled aggregate into concrete 
is generally cheaper than utilizing new resources. RAC significantly 
reduces the volume of waste sent to landfills and minimizes the energy and 
carbon emissions associated with the production of novel substances. 

In the manufacturing process, the reclaimed aggregate consistently 
comprises both conventional aggregate and hardened mortar. As a result, 
the strength of the recovered aggregate is inferior to that of conventional 
aggregate, principally due to the intrinsic weakness of the hardened 
mortar and the interfaces between the mortar and conventional aggregate. 
Furthermore, the crushing process results in the development of many 
fissures within the reclaimed aggregate (Babak et al., 2024; Fonseca et al., 
2011; Younis & Pilakoutas, 2013). The constraint substantially impedes its 
prospective applications. Therefore, the cracking characteristics of 
reclaimed aggregate concrete should be prioritized over its other 
mechanical properties. 

The inclusion of different fibers enhances the crack resistance of fiber-
reinforced recycled aggregate concrete (RAC) (Benemaran et al., 2024; 
Chakradhara Rao et al., 2011; Katkhuda & Shatarat, 2017; Meesala, 2019). 
Akca et al. (Akça et al., 2015) conducted a study where polypropylene 
fibers were used to reinforce RAC, and it was demonstrated that both the 
flexural strength and splitting tensile strength increased as the fiber 
content increased. In a separate study, Ali et al. (B. Ali & Qureshi, 2019) 
compared the mechanical attributes of glass fiber-reinforced RAC with 
plain RAC, and a noticeable improvement was observed in the splitting 
tensional resistance of fiber-reinforced RAC. In their research, Gao et al. 
(Gao & Zhang, 2018) conducted a study on the function of steel fiber-
reinforced RAC. They observed a significant improvement in the flexural 
strength as the volume fraction of steel fibers increased. This research 
concludes that the use of fibers significantly improves the crack resistance 
of RAC. It is crucial to acknowledge that multiple actors affect the 
reinforcing mechanism such as fiber type, fiber geometry (length and 
aspect ratio), volume percentage, interfacial bonding between fibers and 
matrix, and fiber dispersion within the matrix. 

Various approaches have been suggested to forecast the cracking 
behavior of plain concrete, including bending tests, analytical methods, 
and mechanical models (Afkhami Hoor & Esmaeili-Falak, 2024; Y. Chen et 
al., 2022; Hu et al., 2022; Sun et al., 2019; Yuan et al., 2020). These 
strategies seek to improve the accuracy of predictions by analyzing several 
aspects. Nonetheless, precisely characterizing the cracking properties of 
concrete remains difficult. These methods aim to enhance forecasting 
reliability by examining influential parameters such as tensile strength, 
fracture energy, modulus of elasticity, aggregate type and size, water-to-
cement ratio, and the microstructure of the cementitious matrix. 

Machine learning methods have emerged as novel approaches for 
tackling various estimating challenges in civil and structural engineering, 
such as predicting crack propagation, compression and tensile properties, 
modulus of elasticity, durability under environmental stressors, and load-
bearing capability of concrete components (Bayrami, 2021; Dawei et al., 
2023; Esmaeili-Falak et al., 2019; Esmaeili-Falak & Benemaran, 2023, 
2024; Esmaeili‐Falak & Sarkhani Benemaran, 2024; Li et al., 2023; Liang & 
Bayrami, 2023; Mohammadi Yaychi & Esmaeili-Falak, 2024s). In their 
research, investigators endeavored to employ machine learning (ML) to 
forecast the cracking conduct of RAC (Amin et al., 2022; Neshatfar & Sekeh, 
2024; Pan et al., 2022). They effectively created several ML models that 
demonstrated outstanding performance. It is important to highlight that 
throughout the development of these ML models, the fundamental 
physical interpretation was overlooked, and the influence of fibers was not 
considered (Kumarawadu et al., 2024). 

Previous research focused mostly on the essential elements utilized in 
the concrete manufacturing process. Furthermore, studies on reinforced 
concrete with recycled aggregates do not account for the influence of 
fibers. The assessment of cracking patterns in recycled aggregate concrete 
(RAC) gets increasingly complex when accounting for the influence of 
recycled aggregates (RA), together with the further complications 
presented by fiber reinforcement in RAC. Given the paucity of research on 
the split tensile strength of fiber reinforced recycled aggregate concrete, it 
is imperative to undertake a comprehensive study to design, validate, and 
evaluate algorithms for forecasting split tensile strength. This study 
develops machine learning techniques for the structural performance of 
fiber-reinforced recycled aggregate concrete. The robust RF framework is 
considered for this purpose. The RF the framework uses the Chimp 
optimization algorithm (CHOA) and artificial hummingbird optimization 
(ARHA) for hyperparameter tweaking and selecting the greatest 
performing combination of hyperparameters (M. A. S. Ali et al., 2022; 
Alnaggar et al., 2022; Bagherabad et al., 2025; Neshatfar et al., 2023; Umba 
et al., 2024). A data set including 257 data points and 10 input variables 
was taken from peer-reviewed published research and arbitrarily split 
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into three phases: testing, validating, and training. The effectiveness of 
every approach was evaluated using a variety of metrics. Additionally, the 
new sensitivity analysis method assesses each parameter's effect on the 
goal. The primary contribution of this work is to assess the fundamental 
principles of several machine learning approaches and to evaluate their 
performance in forecasting the STS of RAC. Additionally, using several 
machines to learn algorithms makes it easier for academics to evaluate and 
contrast their results using the same dataset.  

2. Dataset Pre-Evaluation 

In solid materials, an indirect tensile test is commonly employed to 
investigate their cracking behavior, with the indirect tensile resistance 
acting as strength to cracking. As a result, the indirect tensile resistance of 
Recycled Aggregate Concrete (RAC) is designated as the target variable for 
assessing crack evaluation. At the same time, different influential agents 
are considered input parameters and a collection of statistically and 
physically pertinent input features such as mixture composition, 
aggregate features, fiber content and kind, and mechanical properties are 
included as separate variables in the modeling process. These two sets of 
parameters are the basis for constructing machine learning databases. The 
initial phase of machine learning entails the critical selection of variables 
and data collection, which directly influences the accuracy and practicality 
of soft computing approaches. Conventional soft computing approaches 
often fail to consider the physical significance of parameters, leading to 
constrained simulations and the inability to handle scenarios beyond the 
existing dataset. Hence, physical tests and established mechanical 
approaches are utilized to assist in developing the database. Following the 
established norms for attribute selection, a combined sum of 257 data 
entries was gathered from the available literature sources (B. Ali & 
Qureshi, 2019; Andreu & Miren, 2014; Butler et al., 2013; Chakradhara Rao 
et al., 2011; S. Chen et al., 2022; Das et al., 2018; Dong et al., 2017; Duan & 
Poon, 2014; Etxeberria et al., 2007; Fang et al., 2018; Fathifazl et al., 2011; 
Folino & Xargay, 2014; Gao & Zhang, 2018; Gómez-Soberón, 2002; Ibrahm 
& Abbas, 2017; Katkhuda & Shatarat, 2017; Kou et al., 2007, 2008; Liu et 
al., 2017; Meesala, 2019; Pedro et al., 2015; Pereira et al., 2012; Thomas et 
al., 2013, 2014; Wang et al., 2019; Yang et al., 2008; Younis & Pilakoutas, 
2013; Zega & Di Maio, 2011; Zhang et al., 2014; 郭磊 et al., 2019); this was 
split into three phases: the training stage, representing 70% of the data 
(181 samples), validation stage, representing 15% of the data set (38 
samples), and the testing stage, representing 15% of the data (38 samples) 
(Aghayari Hir et al., 2023; Benemaran, 2023). For this purpose, 
parameters such as water (W), cement (C), natural concrete aggregate 
content (NCA), recycled concrete aggregate content (RCA), 
Superplasticizer (SP), maximum aggregate size of RCA (DMRAC), density of 
RCA (RORCA), water absorption of RCA (WRCA), fibers (FV), fiber type (FT), 
1-Steel fiber, 2-Carbon fiber, 3- Polypropylene fiber, 4-Basalt fiber, 5-Glass 
fiber, 6-Woolen fiber have been considered as input parameters to 
estimate the indirect tensile strength (STS) of recycled aggregate 
concretes.  

The quantitative amounts of the input and output parameters are 
depicted in Table 1. To generate a precise STS, estimate for RCA, ten factors 
are included in models as inputs. Moreover, Fig. 1 showcases frequency 
diagrams illustrating the introduced attributes alongside their 
corresponding targets. It also visualizes input and output data distribution 
and examines any anomalies present. The Pearson correlation coefficient 

is a quantitative measure utilized to assess the degree of linear 
relationship between data points in a scatterplot. Its primary function is to 
gauge the association level between two distinct variables, with a scale 
ranging from -1 to +1. A positive value signifies a positive linear 
correlation, suggesting that an increase in one variable typically 
corresponds with a rise in the other. Conversely, a negative value 
showcases a negative linear correlation, implying that the other tends to 
diminish as one variable rises. Values closer to 0 suggest a weak or 
insignificant linear relationship; conversely, values nearer +1 or -1 signify 
a robust linear association between the variables. Fig. 2 illustrates the 
representation of the Pearson correlation coefficient. 

Failure to appropriately consider the impact of significant positive or 
negative Pearson correlation coefficients on the outcomes may signal an 
ineffective methodology. Instances where variables exhibit poor 
correlation values should be acknowledged due to their significance. 
Therefore, incorporating these inputs in model development should yield 
the highest level of accuracy. As depicted in Fig. 2, the Pearson correlation 
coefficient (PCC) between RCA and NCA is -0.88, indicating a strong 
positive relationship. Additionally, the Pearson correlation coefficient 
(PCC) between RORCA and WRCA is -0.56, representing the most negative 
correlation. 

The core goals of sensitivity analysis in ML research encompass 
examining the effect of input variable modifications on outcomes, 
identifying key factors that affect model performance, boosting 
understanding of the model's behavior across diverse conditions, 
optimizing input variables for desired outcomes, and assisting in risk 
evaluation by pinpointing sensitive variables. Various open-source tools, 
including the Sensitivity Analysis Library (𝑆𝐴𝐿𝑖𝑏), have been introduced 
to simplify the execution of sensitivity investigations (Iwanaga et al., 
2022). SALib offers a range of techniques for conducting comprehensive 
sensitivity analysis, including Sobol, Morris, and 𝐹𝐴𝑆𝑇 methods. 
Decomposing the entire variance of the model output into discrete 
components linked to certain input variables is the fundamental idea 
underpinning 𝐹𝐴𝑆𝑇. This approach allows for identifying variables that 
significantly influence the model output and those with a lesser impact. In 
the context of the 𝐹𝐴𝑆𝑇 methodology, the indicators 𝑆1, 𝑆𝑇, 𝑆2_conf, and 
𝑆𝑇 _conf represent sensitivity-indices specific to this approach. The total-
order sensitivity index for an input variable is defined by 𝑆𝑇, which 
captures the variable's overall influence by considering its direct effect 
(𝑓𝑖𝑟𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟) and interactions with other factors. The 𝑆𝑇 value 
comprehensively assesses the variable's total impact on the outcome. The 
sensitivity analysis results for input parameters on the target variable, 
obtained through the 𝐹𝐴𝑆𝑇 method, are illustrated in Fig. 3, offering 
insights into the influence of each input characteristic. Among the 
attributes analyzed, the 𝑁𝐶𝐴 and 𝐹𝑇 features exhibit the highest ST 
amounts of 0.993 and 0987, outperforming the 𝑅𝐶𝐴, 𝐹𝑉, 𝑊, 𝑅𝑂𝑅𝐶𝐴, 𝑆𝑃, 
𝐷𝑀𝑅𝐴𝐶, 𝑊𝑅𝐶𝐴 and 𝐶 of samples attributes, which recorded values of 
0.974, 0.927, 0.91, 0.866, 0.838, 0.811, 0.722 and 0.591. This is seen as a 
favorable outcome, since it validates the physical correlation and 
predominant influence of aggregate composition and fiber type on the 
mechanical performance of reinforced concrete. These findings align with 
other experimental investigations that emphasize the significance of 
natural aggregate content and fiber reinforcement in enhancing crack 
resistance and tensile properties in concrete composites. 

Table 1. The statistical explanation of the attributes considered 

Phase Index Attributes 
Inputs Target 

𝑊 𝐶 𝑁𝐶𝐴 𝑅𝐶𝐴 𝑆𝑃 𝐷𝑀𝑅𝐶𝐴 𝑅𝑂𝑅𝐶𝐴 𝑊𝑅𝐶𝐴 𝐹𝑉 𝐹𝑇 𝑆𝑇𝑆 
𝑘𝑔/𝑚3 𝑘𝑔/𝑚3 𝑘𝑔/𝑚3 𝑘𝑔/𝑚3 𝑘𝑔/𝑚3 𝑚𝑚 𝑘𝑔/𝑚3 % % − 𝑀𝑃𝑎 

Train 𝑀𝑖𝑛. 98.28 210 0 57 0 10 2010 1.9 0 0 1.38 
𝑀𝑎𝑥. 343.5 600 1143 1474 7.8 25 2640 10.9 7.7 6 7.61 
𝑆𝑡. 𝐷. 37.601 60.996 365.744 392.130 1.626 4.151 159.257 1.845 0.955 1.782 1.078 
𝑆𝑘𝑒𝑤. 1.294 0.360 0.540 0.176 1.581 ‐0.760 ‐0.795 1.088 5.703 0.843 1.015 
𝐴𝑣𝑔. 184.964 371.746 328.168 757.802 1.063 18.367 2424.331 5.518 0.389 1.376 3.041 
𝐾𝑢𝑟𝑡. 5.793 1.189 ‐1.107 ‐0.971 2.087 ‐0.196 0.243 1.785 39.346 ‐

0.932 
1.771 

Validation 𝑀𝑖𝑛. 98.28 158 0 59 0 10 2010 1.9 0 0 1.64 
𝑀𝑎𝑥. 343.5 514.5 1111 1474 3.5 25 2661 10.9 1.5 4 6.2 
𝑆𝑡. 𝐷. 42.916 72.999 362.339 378.943 1.015 4.341 157.346 1.924 0.348 1.459 1.029 
𝑆𝑘𝑒𝑤. 2.135 ‐0.398 ‐0.031 0.540 1.466 ‐0.762 ‐0.831 0.928 2.432 1.636 0.865 
𝐴𝑣𝑔. 188.956 360.552 441.826 607.433 0.606 17.961 2435.421 5.186 0.163 0.763 3.056 
𝐾𝑢𝑟𝑡. 7.608 0.836 ‐1.424 ‐0.572 1.123 ‐0.256 0.774 2.630 6.222 1.202 0.780 

Test 𝑀𝑖𝑛. 98.28 275 0 185 0 10 2010 2.25 0 0 1.43 
𝑀𝑎𝑥. 259 470.1 1132 1474 7.8 25 2640 10.9 5 5 7.02 
𝑆𝑡. 𝐷. 28.743 52.110 333.697 340.756 2.135 4.506 137.273 1.664 0.882 1.805 1.161 
𝑆𝑘𝑒𝑤. ‐0.325 ‐0.549 0.391 0.521 1.888 ‐0.650 ‐0.958 1.315 3.856 0.960 1.027 
𝐴𝑣𝑔. 185.455 370.447 326.705 739.217 1.192 17.000 2458.263 5.045 0.404 1.289 3.173 
𝐾𝑢𝑟𝑡. 1.633 ‐0.479 ‐1.006 ‐0.332 3.229 ‐1.125 1.453 3.234 19.286 ‐

0.784 
2.216 
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Fig. 1 The bar chart of the attributes in the train, validation, and test stages 
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Fig. 2 The matrix visualization of Pearson correlation 

 

Fig. 3 Impact of attributes on the target (Sensitivity analysis) 

3. Employed AI-Based Algorithms  

3.1 Artificial Hummingbird Algorithm (ARHA) 

In (Zhao et al., 2022), a novel bio-inspired improved algorithm called 
AHA was developed to address complex nonlinear optimization problems, 
particularly those involving high-dimensional search spaces, multimodal 
objective functions, and engineering design constraints. The expansion of 
the AHA algorithm aimed to replicate the remarkable flight abilities and 
clever searching strategies exhibited by hummingbirds in their everyday 
environment. The models replicate pivotal, diagonal, and in all directions, 
encompassing different flight abilities employed in diverse searching 
tactics. The search tactics encompass various approaches, such as guided 
searching, regional searching, and migrating searching. These tactics are 
employed, alongside creating a visiting table, to replicate hummingbirds' 
nourishment resource memory performance. The subsequent parts 
comprehensively describe the three primary models utilized in this 
algorithm. Fig. 4 demonstrates three flight treatments of hummingbirds. 

Guided Searching 
To enhance searching, this method incorporates three distinct flight 

conducts. These flights conduct, namely in all directions, diagonally, and 
pivotal flight are effectively simulated by introducing a direction switch 
vector (D) during searching. This vector, fully defined in Ref. (Zhao et al., 
2022), accurately indicates if one or more directions are available in a d-
dimensional area. Ultimately, the guided search conduct is numerically 
expressed as below: 

𝑣𝑖(𝑡 + 1) = 𝑋𝑡𝑎(𝑡) + ℎ. 𝐷. (𝑋𝑖(𝑡) − 𝑋𝑡𝑎(𝑡))   (1) 

The situation of the aim nourishment resource is denoted as 𝑋𝑡𝑎(𝑡), 
while ℎ represents the guiding agent that is generated based on the usual 
distribution and D is the direction matrix/vector that determines the 
direction of the factor’s motion. 𝑋𝑖(𝑡) displays the situation of the ith 
nourishment resource at time t. Equation (1) describes the process of 
hummingbird-guided searching, incorporating different flight patterns. 
This equation enables each present nourishment resource to adjust its 
situation near the aim nourishment resource. The following formula 
determines the update of the ith nourishment resource's situation: 

𝑋𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡)  𝑖𝑓𝑓(𝑋𝑖(𝑡)) < 𝑓(𝑣𝑖(𝑡 + 1))

𝑣𝑖(𝑡 + 1)                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

Regional Searching 
Hummingbirds tend to explore novel nourishment resources after 

consuming the nectar from a specific flower rather than returning to 
previously visited resources. Consequently, these agile birds can easily 
venture to nearby situations within their territory, seeking alternative 
nourishment resources that may surpass their present one. The 
subsequent equation serves as a numerical representation of the regional 

searching tactic employed by hummingbirds to identify potential 
nourishment resources. 

𝑣𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑏. 𝐷. 𝑋𝑖(𝑡)    (3) 
The regional agent, represented by the variable b, is determined by 

the usual distribution. Equation (3) enables every hummingbird, 
irrespective of its situation, to efficiently and easily locate a fresh 
nourishment resource within its nearby area, considering its flight 
abilities. When the regional searching tactic is applied, updating the visit 
table regularly becomes essential. 

Migration Searching 
When nourishment availability diminishes within the vicinity 

regularly visited by a hummingbird, the hummingbird will generally 
relocate to a more distant nourishment resource. In the AHA algorithm, 
migration coefficient is designated to facilitate this movement. Suppose 
the number of repetitions surpasses the predetermined threshold of the 
migration coefficient. In that case, the hummingbird presently positioned 
at the nourishment resource with the lowest rate of nectar replenishment 
will relocate to a nourishment resource accidentally generated within the 
quest area. The visit table will display the revised data regarding the novel 
nourishment resource, as the hummingbird chooses to forsake its 
previous resource in favor of the fresh one. The transition of a 
hummingbird from a nectar resource with the slowest replenishment rate 
to a recently established resource can be determined accidentally by 
utilizing the subsequent relation: 

𝑋𝑤𝑜𝑟(𝑡 + 1) = 𝑙𝑏⃗⃗  ⃗ + (𝑢𝑏⃗⃗⃗⃗  − 𝑙𝑏⃗⃗  ⃗). 𝑟     (4) 

𝑋𝑤𝑜𝑟 (𝑡 + 1) is the fresh location of the worst resolution in the crowd 
at repetition (𝑡 + 1). The vector '𝑟  ' is accidentally assigned within the 

range of 0 and 1. The lowest border (𝑙𝑏⃗⃗  ⃗) and the highest border (𝑢𝑏⃗⃗⃗⃗  ) define 
the limits for each dimension in the improved issue. The algorithm for AHA 
is outlined in Algorithm 1.  

 

Fig. 4 Three flight treatments of hummingbirds (i) axial, (ii) 
diagonal, (iii) omnidirectional flight. 

3.2 Chimp Optimization Algorithm (ChOA) 

The ChOA, an improved algorithm inspired by the normal conduct of 
chimps, operates as a throng-based system and consists of four distinct 
stages: driving, chasing, blocking, and assaulting (Khishe & Mosavi, 2020). 
The initial stage of the ChOA procedure involves the accidental generation 
of chimpanzees. This is achieved by employing numerical methods to 
create groups and assigning chimpanzees accidentally to one or more of 
these four groups. Eqs. (5) and (6) illustrate the victim's inclination and 
endeavor in this context.  

𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑡) − 2𝑓𝑟1 − 𝑓|2𝑟2𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑚. 𝑋𝑐ℎ𝑖𝑚𝑝(𝑡)|(5) 

𝑚 = 𝐶ℎ𝑎𝑜𝑡𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟      (6) 
The value of repetitions is illustrated by 𝑡, the great solution gained so 

far is represented by 𝑋𝑝𝑟𝑒𝑦, and the improved situation of the chimp is 

indicated by 𝑋𝑐ℎ𝑖𝑚𝑝. It is important to mention that the subordinate f 

undergoes a non-linear decline from 2.5 to 0. Additionally, the number of 
𝑟1 and 𝑟2, which are accidentally set within the interval [0,1], contributes 
to the randomness of the algorithm. The Chaotic_vector is denoted by 𝑚 
(Saffari et al., 2022). 

Without information about the initial victim situation, using a victim 
allows for the statistical replication of chimpanzee conduct. As stated in 
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equations (7) and (8), ChOA will select and keep four of the most 
promising chimpanzees it has collected thus far. Meanwhile, other factors 
will be compelled to relocate based on the whereabouts of these top-
performing chimpanzees (Khishe & Mosavi, 2020). 

𝑥(𝑡 + 1) =
1

4
× (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)    (7) 

Whereas 
𝑥1 = 𝑥𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝑎1. |𝑐1𝑥𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑚1𝑥| , 𝑥2 = 𝑥𝐵𝑎𝑟𝑟𝑖𝑒𝑟 −

𝑎2. |𝑐2𝑥𝐵𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑚2𝑥| 

𝑥3 = 𝑥𝐶ℎ𝑎𝑠𝑒𝑟 + 𝑎3. |𝑐3𝑥𝐶ℎ𝑎𝑠𝑒𝑟 − 𝑚3𝑥| , 𝑥4 = 𝑥𝐷𝑟𝑖𝑣𝑒𝑟 − 𝑎4. |𝑐4𝑥𝐷𝑟𝑖𝑣𝑒𝑟 −
𝑚4𝑥|        (8) 

Eventually, the utilization of disorderly parameters is implemented to 
replicate the social incentive behavior of traditional ChOA, as 
demonstrated in Equation (9). 

𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = {
𝐸𝑞. (5)   𝑃𝑚 < 0.5

𝐶ℎ𝑎𝑜𝑡𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟    𝑃𝑚 ≥ 0.5
   (9) 

The ChOA procedure stream illustrates the chimpanzees' conduct in 
response to an accidental quantity, denoted as 𝑃𝑚, within the interval (0,1]. 
In the presence of a quest area with D dimensions, the chimpanzees will 
strategically create hyperspheres surrounding the most improved 
situation discovered thus far. Fig. 5 depicts the location updating of chimps 
and the impacts of |a| on it. 

 

Fig. 5 Location updating of chimps and impacts of |a| on it 

3.3 Random Forests Analysis (RFA):  

The accidental forest algorithm utilizes both continuous and classified 
variables. Its underlying concept revolves around a collection of n decision 
trees. These decision trees consist of accidental variables Xi = (X1, … XP)

T, 
representing input parameters, and accidental variables Yi, representing 
result parameters (Kinga & Adam, 2015). The primary uncertainty lies in 
determining the probability distribution of the connections among the 
variables, denoted as PXY(Xi, Yi). 

In every node, the analyses are conducted using binary division. The 
initial node of the decision tree, referred to as the "root," encompasses 
data regarding all the input parameters. On the other hand, the non-split 
Nodes, known as ultimate nodes, are crucial in determining the decision 
tree's ultimate structure. 

In situations with persistent issues, the division is established by 
determining a specific point of schism. It is assumed that quantities lower 
than this division point will progress towards the left descendant, while 
higher quantities will progress towards the proper descendant. 
Conversely, in classification issues, the forecasted variable is assigned an 

amount from a subset of classes denoted as S = {si,… si}.  The subsets 

representing the selected class expand in the left direction, while the 
remaining subsets expand in the right direction (Ghosh, 2009). 

The partitioning of the offspring within a node occurs after evaluating 
all potential variable combinations and, subsequently, selecting the most 
suitable one based on a specified standard (Breiman, 2001). 

The standard for regression issues is expressed below, as stated in 
(Breiman, 2001). 

𝑄 =
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1      (10) 

In the scenario where there is an issue involving K classes, the Gini 
indicator standard, which is derived from (Breiman, 2001), is utilized with 
y representing the arithmetic meaning of the variable under consideration 
in the node. 

𝑄 = ∑ �̂�𝐾
𝐾
𝐾≠�́� �̂��́�      (11) 

The evaluations of �̂�𝐾 and �̂��́� are derived from the observations of 
classes k and K  ́ in the node, respectively. According to (Breiman, 2001), 
the evaluation of �̂�𝐾 is determined. 

�̂�𝐾 =
1

𝑛
∑ 𝐼(𝑦𝑖 = 𝑘)𝑛

𝑖=1      (12) 

The divisions within the nodes continue until the algorithm's 
collection stop standard is satisfied, at which point the decision tree's 
result variable is revealed.      

The primary objective of the accidental forest algorithm is to identify 
a suitable forecasting subordinate f (X) that can accurately predict the 
entire forest variable Y. This forecasting subordinate f is derived through 
the process of minimizing the loss subordinate 𝐿(𝑌, 𝑓(𝑋)), which is 
established on the foundation of (Hastie et al., 2009). 

𝐸𝑋𝑌 𝐿(𝑌, 𝑓(𝑋))      (13) 
𝐿(𝑌, 𝑓(𝑋))represents the distance between 𝑓(𝑋) and 𝑌, which serves 

as a potential solution for quadratic improved issues formulated using Eq. 
(16). This equation is derived from the work of [39]. 

𝐿(𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))
2
     (14) 

According to [65], it is anticipated that when assessing the lowest of 

EXY (L(Y, f(X))),it signifies that: 

𝑓(𝑥) = 𝐸(𝑌𝐼𝑋 = 𝑥)     (15) 
The Bayes theorem [40] is well-known for regression issues and zero-

one taxonomy duties, expressed as Eq. (16). 
𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌𝑃(𝑌 = 𝑦𝐼𝑋 = 𝑥)    (16) 

Consequently, by utilizing the data gathered from individual decision 
trees h1(x),… , hJ(x), the value of the subordinate 𝑓(𝑥) can be determined, 

resulting in the overall outcome of the forest. In the case of regression 
duties, the subordinate 𝑓(𝑥)calculates the average quantity (17) of the 
individual results obtained, as demonstrated in (Ghosh, 2009):  

𝑓(𝑥) =
1

𝐽
∑ ℎ𝑗(𝑥)𝐽

𝑗=1      (17) 

The prediction made by the jth tree for input x is  ℎ𝑗(𝑥). In taxonomy 

duties, the most commonly forecasted class (18) is denoted as 𝑓(𝑥), as 
mentioned in [34]. 

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 ∑ 𝐼(𝑦 = ℎ𝑗(𝑥))
𝐽
𝑗=1     (18) 

3.4 Coupled RFA Models: RFAA, and RFAC 

Optimizing the RF's basic settings is critical to enhance the 
classification performance and obtain better findings for this 
investigation. The majority of the study focused on three crucial elements: 
𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 (The number of decision trees), 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ (The most significant 

amount of depth for decision trees), and 𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (The highest number 

of features for DTs). 
• 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠: A restricted number of estimators could result in an 

inadequately fitted estimate. The simulation may demonstrate a lack 
of complexity and may not accurately represent the underlying 
patterns in the data. Augmenting the quantity of estimators may 
bolster the model's resilience. However, there is a point at which 
adding more trees may not significantly improve speed and might 
instead increase computational costs. 

• 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ: A modest maximum depth constrains the complexity of 

individual trees. This could lead to underfitting, a situation in which 
the model cannot sufficiently capture complex patterns in the data. 
Trees with a higher maximum depth provide a more substantial 
capacity to capture complex patterns accurately. However, it also 
increases the probability of overfitting, in which the algorithm 
demonstrates excellent results on the training data but operates 
poorly on new, unfamiliar data. 

• 𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: Using a few traits per split might lead to underfitting 

since the trees may not consider enough information to make accurate 
predictions. The presence of a high number of traits per split might 
result in overfitting since it can cause trees to become too specialized 
for the training data. This might lead to insufficient extrapolation of 
new data. 
An outline of the processes that are used in the construction of RF is 

shown below: 
− We cleaned the data, removed missing values, and eliminated 

outliers as necessary during the pre-processing stage. 
− The data set was obtained systematically and divided into three 

sections, one part for analysis, one for validation, and the last part 
for testing, using the ratios suggested by the literature. 

− Both algorithms' hyperparameters were initialized to values 
within predefined intervals before the first RF programs ran. 

− It was achieved by using state-of-the-art optimization techniques 
(ARHA and CHOA) to identify the optimal values for the 
hyperparameters.   

− The RF tests were trained using a unique dataset. The optimal 
hyperparameters were used throughout the validating and testing 
procedures, and further datasets were chosen to assess the 
variables. 

− To evaluate the efficacy of the methodology, appropriate metrics 
are considered and calculated. 

3.5 Metrics  

To evaluate the performance of the developed RF Several metrics were 
considered and calculated. The equations are as follows: 𝑅2, RMSE, 
normalized RMSE, MSE, Theil inequality error, index of agreement, 
performance index, and objective function.  

𝑅2 = (
∑ (𝑛𝑔−�̅�)(𝑧𝑔−�̅�)𝐺

𝑔=1

√[∑ (𝑛𝑔−𝑛)
2𝐺

𝑔=1 ][∑ (𝑦𝑔−�̅�)
2𝐺

𝑔=1 ]

)

2

    (19) 
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𝑅𝑀𝑆𝐸 = √
1

𝐺
∑ (𝑦𝑔 − 𝑛𝑔)

2𝐺
𝑔=1     (20) 

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/�̅�    (21) 

𝑀𝐴𝐸 =
1

𝐺
∑ |𝑦𝑔 − 𝑛𝑔|

𝐺
𝑔=1     (22) 

𝑇𝐼𝐶 =
√

1

𝐺
∑ (𝑦𝑔 −𝑛𝑔 )2

𝐺
𝑔=1

(√
1

𝐺
∑ 𝑦𝑔 

2𝐺
𝑔=1 +√

1

𝐺
∑ 𝑛𝑔 

2𝐺
𝑔=1 )

   (23) 

𝐼𝐴 = 1 −
∑ (𝑛𝑔 −𝑦𝑔 )

2𝐺
𝑔=1

∑ (|𝑛𝑔 −�̅�|+|𝑦𝑔 −�̅�|)2𝐺
𝑔=1

   (24) 

𝑃𝐼 =
1

�̅�

𝑅𝑀𝑆𝐸

√𝑅2+1
     (25) 

𝑂𝐵𝐽 = (
𝑔

𝐺
×

𝑅𝑀𝑆𝐸+𝑀𝐴𝐸

𝑅2+1
)
𝑇𝑟𝑎𝑖𝑛

+ (
𝑔

𝐺
×

𝑅𝑀𝑆𝐸+𝑀𝐴𝐸

𝑅2+1
)
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒

+ (
𝑔

𝐺
×

𝑅𝑀𝑆𝐸+𝑀𝐴𝐸

𝑅2+1
)
𝑇𝑒𝑠𝑡

     (26) 

The observed target, the mean of the observed target, the estimated 
target, and the mean of the estimated target are represented by the 
variables 𝑛𝑔, �̅�, 𝑦𝑔, and �̅�  in these equations, in that order. G indicates the 

count of rows of the database. 𝑔𝑡𝑟𝑎𝑖𝑛, 𝑔𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 and 𝑔𝑡𝑒𝑠𝑡 are the number of 
rows of datasets in the training, validating, and testing subsets, 
respectively.  

4. Simulation Outcome 

This research demonstrates the results of using the 𝑅𝐹 technique with 
the 𝐶𝐻𝑂𝐴 and 𝐴𝑅𝐻𝐴 methods to determine the 𝑆𝑇𝑆 of fiber reinforced 
𝑅𝐴𝐶. Fig. 6 shows the measured and predicted amounts of 𝑆𝑇𝑆 throughout 
the learning, validation, and assessment stages of the 𝑅𝐹 − 𝐶𝐻 and 𝑅𝐹 −
𝐴𝑅 methods. Moreover, the chart shows the ratio of simulated to observed 

𝑆𝑇𝑆. The precision of the techniques for predicting 𝑆𝑇𝑆 was assessed 
using several indicators, including 𝑀𝐴𝐸, 𝑅2, 𝑁𝑅𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸, 𝑇𝐼𝐶, 𝑆𝐼, 

𝐼𝐴, 𝑃𝐼, and 𝑂𝐵𝐽. The rule of the optimization algorithms was to determine 
the optimal values of the hyperparameters, where the results are provided 
in Table 2. Table 3 depicts the assessments of the designs, emphasizing the 
optimal situation and the scores attained during the testing, validating, 
and training phases. In addition, the study compares its results with earlier 
research that used deep neural networks (𝐷𝑁𝑁) (Alarfaj et al., 2024) and 
genetic programming (𝐺𝐸𝑃) (Alabduljabbar et al., 2024) to confirm the 
developed models' dependability and assess the accuracy improvement. 

The 𝑅𝐹 − 𝐶𝐻 and 𝑅𝐹 − 𝐴𝑅 methods show great potential for 
correctly forecasting the 𝑆𝑇𝑆 of fiber reinforced 𝑅𝐴𝐶, according to the 
results. The 𝑅𝐹 − 𝐴𝑅 approach exhibited high reliability, with 𝑅2 of 

0.9942, 0.9824, and 0.9913 throughout the learning, validating, and 
assessment stages. 𝑅𝐹 − 𝐴𝑅 had higher results than 𝑅𝐹 − 𝐶𝐻, with 𝑅2 

values of 0.9796, 0.9566, and 0.9694, respectively. Improving the 
method's reliability might be achieved by including more error-based 
metrics. Smaller numbers suggest more efficacy for specific performance 
requirements. The 𝑅𝐹 − 𝐴𝑅 criteria show much lower values than the 
𝑅𝐹 − 𝐶𝐻 criteria, with a variation of about 50% in the training, validating, 
and testing sections. The 𝑅𝐹 − 𝐴𝑅 version had lower values of the stated 
metrics compared to the 𝑅𝐹 − 𝐶𝐻 method, indicating the reliability of the 
framework in forecasting the 𝑆𝑇𝑆 of fiber reinforced 𝑅𝐴𝐶. For example, 
regarding the values of the 𝑇𝐼𝐶, 𝑅𝐹 − 𝐴𝑅 depicted the lowest values at 
0.0128, 0.0213, and 0.0171 wconcerning0.0241, 0.0333 and 0.0318 
related to 𝑅𝐹 − 𝐶𝐻 for the train, validation and test phases, in that order. 
The comprehensive metric included various metrics in one equation and 
data number of phases called 𝑂𝐵𝐽 were considered (The smaller, the 
better). The values obtained of this index depicted the accep, cap F minus 
cap C, and 𝑅𝐹 − 𝐶𝐻 at 0.1332, with a reduction of almost 50%.  

As can be displayed in Fig. 6b, the simulated 𝑆𝑇𝑆 per observed 𝑆𝑇𝑆 
ratio is shown using the normal distribution technique. A smaller and 
more prominent distribution suggests a greater degree of dependability. 
This distribution makes it evident that throughout the training, validating, 
as well as testing stages, the 𝑅𝐹 − 𝐴𝑅 outperformed the 𝑅𝐹 − 𝐶𝐻. This 
manifests as more defined lower and upper bounds and a more prominent 
peak at one line. 

The scholarly output generated by 𝐷𝑁𝑁 (Alarfaj et al., 2024), and 𝐺𝐸𝑃 
(Alabduljabbar et al., 2024) has been employed to compare the findings of 
this study with a superior method (𝑅𝐹 − 𝐴𝑅). The scheme displayed 
greater accuracy in comparison to both 𝐷𝑁𝑁 (Alarfaj et al., 2024), and 𝐺𝐸𝑃 
(Alabduljabbar et al.,2024), with 𝑅𝐹 − 𝐴𝑅 values above those reported in 
the literature. The reported values of 𝑀𝐴𝐸, 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑃𝐼 were 
compared with those of the 𝑅𝐹 − 𝐴𝑅. Regarding 𝐷𝑁𝑁 (Alarfaj et al., 2024), 
it was observed that great approvement of the 𝑅2 and 𝑃𝐼 values. For 
example, the values of 𝑃𝐼 declined from 0.055 to 0.0136 (Train), and from 
0.038 to 0.0183 (Test). Turning to the result of the 𝐺𝐸𝑃 (Alabduljabbar et 
al.,2024), great improvements were observed considering the values of 
the 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸.  

The 𝑅𝐹 − 𝐴𝑅 strategy performed better, even if the 𝑅𝐹 − 𝐶𝐻 method 
was dependable in forecasting the 𝑆𝑇𝑆 of fiber reinforced RAC, according 
to the previously stated reasoning and the data displayed in Table 3 and 
Fig. 6. 

 

Table 2. The parameters of the created frameworks 

Optimization and initial parameters 
𝐴𝑅𝐻𝐴 Iterations 200 𝐶𝐻𝑂𝐴 Iterations 200 

Population 40 Population 30 
Tries 10 Tries 10 
Migration coefficient 2𝑛 𝑟1 and 𝑟2 [0,1] 

𝑚 Chaotic 
Hyperparameters tunned 𝑅𝐹s 

𝑅𝐹 − 𝐴𝑅 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 36 𝑅𝐹 − 𝐶𝐻 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 45 
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 21 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 18 
𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 41 𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 28 

Table 3. The simulation outcomes and comparison with the literature 

Metrics Phase Frameworks from this study Frameworks from literature 
𝑅𝐹 − 𝐶𝐻 𝑅𝐹 − 𝐴𝑅 𝐷𝑁𝑁 (𝐴𝑙𝑎𝑟𝑓𝑎𝑗 𝑒𝑡 𝑎𝑙. , 2024) 𝐺𝐸𝑃 (𝐴𝑙𝑎𝑏𝑑𝑢𝑙𝑗𝑎𝑏𝑏𝑎𝑟 𝑒𝑡 𝑎𝑙. , 2024) 

𝑅2 Train 0.9796 0.9942 0.914 0.9604 
Validation 0.9566 0.9824   

Test 0.9694 0.9913 0.94 0.9962 
𝑅𝑀𝑆𝐸 Train 0.1551 0.0826  0.226 

Validation 0.215 0.1375   
Test 0.2162 0.1157  0.16 

𝑁𝑅𝑀𝑆𝐸 Train 0.0513 0.0272   
Validation 0.07 0.045   

Test 0.0668 0.0361   
𝑀𝐴𝐸 Train 0.079 0.0374  0.135 

Validation 0.1075 0.0528   
Test 0.1235 0.048  0.12 

𝑇𝐼𝐶 Train 0.0241 0.0128   
Validation 0.0333 0.0213   

Test 0.0318 0.0171   
𝐼𝐴 Train 0.9947 0.9985   

Validation 0.9886 0.9954   
Test 0.9909 0.9975   

𝑃𝐼 Train 0.0256 0.0136 0.055  
Validation 0.0356 0.0226   

Test 0.0343 0.0183 0.038  
𝑂𝐵𝐽  0.1332 0.0687   
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(a) Correlation       (b) Variance ratio 

Fig. 6 The visualization form of the simulation outcomes 

 

           
(a) Train     (b) Validation   (c) Test 

Fig. 7 Performance of models using Taylor diagram 

A Taylor diagram is an effective visual tool for assessing and 
comparing the performance of diverse schemes or simulations against 
observed data, utilizing three key statistical metrics: correlation 
coefficient, standard deviation, and root mean square error. In this 
diagram, the standard deviation is represented by the distance from the 
origin, indicating the variability of the model about the observed data. 
Values approaching 1 suggest a more substantial alignment between 
predictions and actual observations. The angle between the plotted points 
and the horizontal axis illustrates the correlation, while contours 
emanating from the origin signify models with lower errors. Points nearer 
the observation point, typically located along the x-axis, correspond to 
models exhibiting higher errors. This diagram effectively integrates these 
statistical measures into a single graphic, facilitating a straightforward 
comparison of model accuracy, variability, and correlation. The findings of 
this analysis are illustrated in Fig. 7, which presents the developed models 
during three training, validation, and testing steps. A model's proximity to 
the reference point indicates greater accuracy and acceptable reliability. 
Notably, in training and testing, the model identified as 𝑅𝐹 − 𝐴𝑅 is 
positioned closer to the reference point than 𝑅𝐹 − 𝐶𝐻 in all three steps, 
despite 𝑅𝐹 − 𝐶𝐻 demonstrating higher accuracy.  

The research recognizes a restriction in the applicability of the 
suggested models to real-world scenarios. Despite the models being 
meticulously trained, verified, and tested using literature-based data, their 
efficacy may not entirely translate to real-world situations, particularly 
when input variables surpass the original data range. To address this, the 
authors used a multi-phase assessment technique and several 
performance indicators, therefore augmenting model dependability. 
Nonetheless, further measures, such validation using external datasets or 
field testing, are advised to verify the models' relevance in actual building 
settings. 

5. Conclusion 

Machine learning algorithms are created in this work for the splitting 
tensile strength (𝑆𝑇𝑆) of fiber-reinforced recycled aggregate concrete 
(𝑅𝐴𝐶). To do this, the potent random forests (𝑅𝐹) framework is taken into 
consideration. The RF framework uses the chimp optimization algorithm 
(CHOA) and artificial hummingbird optimization (𝐴𝑅𝐻𝐴) for 
hyperparameter tweaking and selecting the greatest performing 
combination of hyperparameters. A data set including 257 data points and 
10 input variables was taken from peer-reviewed published research and 
arbitrarily split into three phases: testing, validating, and training. The 
study compares its results with earlier research that used deep neural 
networks (DNN) (Alarfaj et al., 2024) and genetic programming (𝐺𝐸𝑃) 
(Alabduljabbar et al., 2024) to confirm the developed models' 
dependability and assess the accuracy improvement. 

The 𝑅𝐹 − 𝐶𝐻 and 𝑅𝐹 − 𝐴𝑅 methods show great potential for properly 
forecasting the 𝑆𝑇𝑆 of fiber reinforced 𝑅𝐴𝐶, according to the results. The 
𝑅𝐹 − 𝐴𝑅 approach exhibited high reliability, with 𝑅2 values of 0.9942, 

0.9824, and 0.9913 throughout the learning, validating, and assessment 
stages. 𝑅𝐹 − 𝐴𝑅 had higher results than 𝑅𝐹 − 𝐶𝐻, with 𝑅2 values of 
0.9796, 0.9566, and 0.9694, respectively. 

Regarding the error-based metrics, the 𝑅𝐹 − 𝐴𝑅 criteria showed 
much lower values than the 𝑅𝐹 − 𝐶𝐻 criteria, with a variation of about 
50% in the training, validating, and testing sections. The 𝑅𝐹 − 𝐴𝑅 version 
had lower values of the stated metrics compared to the 𝑅𝐹 − 𝐶𝐻 method, 
indicating the reliability of the framework in forecasting the 𝑆𝑇𝑆 of fiber 
reinforced 𝑅𝐴𝐶.  

Considering the values of the 𝑇𝐼𝐶, 𝑅𝐹 − 𝐴𝑅 depicted the lowest values 
at 0.0128, 0.0213, and 0.0171 concerning 0.0241, 0.0333, and 0.0318 
related to 𝑅𝐹 − 𝐶𝐻 for the train, validation, and test phases, respectively.  

The obtained values of OBJ index depicted the acceptability of the 
𝑅𝐹 − 𝐴𝑅 at 0.0687 concerning 𝑅𝐹 − 𝐶𝐻 at 0.1332, with a reduction of 
almost 50%.  

The scholarly output generated by 𝐷𝑁𝑁 (Alarfaj et al., 2024), and 
𝐺𝐸𝑃 (Alabduljabbar et al.,2024) have been employed, to compare the 
findings of this study with a superior method (𝑅𝐹 − 𝐴𝑅). The framework 
demonstrated greater accuracy in comparison to both DNN (Alarfaj et al., 
2024), and GEP (Alabduljabbar et al.,2024), with 𝑅𝐹 − 𝐴𝑅 values above 
those reported in the literature.  

The Taylor diagram effectively visualizes model performance by 
integrating key statistical metrics, allowing for easy comparison of 
accuracy and variability. While 𝑅𝐹 − 𝐴𝑅 consistently positions closer to 
the reference point than 𝑅𝐹 − 𝐶𝐻 across training, validation, and testing 
phases, 𝑅𝐹 − 𝐶𝐻 still shows higher accuracy. 

The 𝑅𝐹 − 𝐴𝑅 strategy performed better, even if the 𝑅𝐹 − 𝐶𝐻 method 
was dependable in forecasting the STS of fiber reinforced RAC, according 
to the previously stated reasoning and the data. 
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