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ABSTRACT: A new spherical rectangular finite element based on shallow shell formulation is developed in 
this paper. The element has six degrees of freedom at each corner node, five of which are the essential 
external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The 
displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element 
is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element 
developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard 
spherical shell with simply supported edges.  A reliable finite element package program, ANSYS, is used for 
structural analysis.  The results of the analysis showed that reasonably accurate results were obtained even 
when modeling the shells using fewer elements compared to other shell element types. The element is then 
used in a finite element model to analyze cross shaped spherical roof structures. The distribution of the 
various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched 
beams as stiffeners spanning the two diagonally opposite end corners is investigated.  It is found that the 
stiffeners reduced the deflections and the stresses in the roof structure by considerable value  

1. INTRODUCTION 

Considerable attention has been given to 
applying the finite element method in the analysis 
of curved structures. Grafton and Strome [1] 
developed conical segments for the analysis of 
shell of revolution. Later Jones and Strome [2] 
modified the method and used meridional elements 
which were found to lead to considerably 
improved results for the stresses.  Curved 
rectangular and cylindrical shell elements were 
also developed (Connor and Brebbia [3] Cantin 
and Clough [4] and Sabir and lock [5]). However, 
to model a shell of spherical shape using the finite 
element method triangular and rectangular 
spherical shell elements are needed.  
 

Several spherical shell elements have been 
developed to analyze shells of spherical shape.  
Most notably, the higher order elements of 
Lindberg et al [6], Yang [7] and Dawe [8] have 
resulted in an improvement of the accuracy of the 
results.  However this improvement is achieved at 
the expense of increased computational efforts and 
storage. Meanwhile, a simple alternative strain-
based approach has been used to develop curved 
elements. In this approach, the exact terms 
representing all the rigid body modes and the 
displacement functions representing the element 
strain are determined by assuming independent 
strain functions insofar as it is allowed by the 
compatibility equations (Ashwell and Sabir [9]).  
This approach has been employed successfully in 
the development of different cylindrical, 
hyperbolic and conical shell elements by Sabir et al 
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[9-12] and by Mousa et at [13-15]. These elements 
were found to yield faster convergence when 
compared with other available finite elements.  The 
strain-based approach was also used to develop 
rectangular and triangular spherical shell elements 
(Sabir [16], Sabir and Djoudi [17] and Mousa 
[18]).  These spherical elements possess only the 
five essential external nodal degrees of freedom at 
each corner node and were found to have excellent 
convergence. 
  

Most spherical shell structures are supported by 
circular arched beams.   In finite element analysis, 
these beams are usually modeled using finite 
elements having six degrees of freedom at each 
end node to represent their general three 
dimensional forms of deformation. These six 
degrees of freedom are the usual five essential 
external degrees used in shell analysis together 
with a sixth representing the rotation about the 
normal to the shell surface. It is therefore of 
interest to introduce in the shell an additional 
degree of freedom (as a sixth degree) representing 
this in plane (as drilling) rotation in order to 
enhance the compatibility between the spherical 
shell  and curved beam elements.  
 

The strain based approach, also known as the 
Cardiff Approach, is employed in the present study 
to develop a rectangular strain-based spherical 
shell element has an in-plane rotation as a sixth 
degree of freedom.  A shallow shell formulation is 
used to obtain the displacement fields. The element 
has six degrees of freedom at each of the four 
corners, the rigid modes are exactly represented 
and the straining is based on independent strains 
enforcing the elastic compatibility equations.  
 

The element developed herein is first tested by 
applying it to the solution of a benchmark shell 
problem, and is then used to analyze a four-corner 
cross shaped roof structure. A reliable finite 
element package program, ANSYS, is used for 
structural analysis. The distribution of the various 
components of stress and deflection is obtained. 
The stiffening effect of circular arched central 
beams on the performance of the roof is also 
investigated. 
 
2 DEVELOPMENT OF DISPLACEMENT 

FUNCTIONS FOR THE NEW 
RECTANGULAR SPHERICAL SHELL 
ELEMENT 

 

2.1    Theoretical considerations 
 

A rectangular shallow spherical shell element 
and the associated curvilinear coordinates are 
shown in Figure 1. 
 

 
 

Fig. 1  Coordinate Axes for Rectangular 
Spherical Shell Element 

 
 

For the shown system of curvilinear 
coordinates, the simplified strain displacement 
relationship for the spherical shell elements can be 
written as: 
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Where u, v and w are the displacements in the 

x, y and z axes; yx εε ,  and xyε are the in-plane 
direct and shearing strains; kx, ky, and kxy are the 
changes in-direct and twisting curvatures and r is 
the principal radii of curvatures. 
 

The above six components of strain can be 
considered independent, as they are a function of 
the three displacements u, v and w and must satisfy 
three additional compatibility equations. These 
compatibility equations are derived by eliminating 
u, v and w from Equation 1, hence, they are: 
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In order to keep the element as simple as 
possible and to avoid the difficulties associated 
with internal non-geometric degrees of freedom, 
the developed element should possess six degrees 
of freedom at each of the four corner nodes: u, v, 
w, θ x, θ y andφ .  Thus, the shape functions for a 
rectangular element should contain twenty four 
independent constants. 

 
To obtain the displacement fields due to rigid 

body movements, all the six strains given by 
Equation 1 are equated to zero and the resulting 
partial differential equations are integrated to yield: 
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These displacement fields are due to the six 

components of the rigid body displacements and 
are represented in terms of the constants a 1 to a 6.  
If the element has six degrees of freedom for each 
of the four corner nodes, the displacement fields 
should be represented by twenty four independent 
constants.  Having used six constants for the 
representation of the rigid body modes, the 
remaining eighteen constants are available for 
expressing the displacements due to the strains 
within the element.  These constants can be 
apportioned among the strains in several ways.  
For the present element, the following is proposed: 
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Equation 4 is derived by first assuming the un-
bracketed terms and adding the terms between 
brackets to satisfy the compatibility condition 
(Equation 2).  It is then equated to the 
corresponding expressions in terms of u, v and w 
from Equation 1 and the resulting equations are 
integrated to obtain: 
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The complete displacement functions for the 
element are obtained by adding the corresponding 
expressions for u, v and w from Equations 3 and 5. 
The translational degrees of freedom for the 
element are u, v, w.  The three rotations about the 
x, y and z axes are given by:  
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The Stiffness matrix [K] for the shell element is 
then calculated in the usual manner, i.e.,  
 

[ ] { }[ ]11 −− ∫∫∫= CDBdvBCK TT
 

 
where B and D are the strain and elasticity 
matrices, respectively, and C is the matrix relating 
the nodal displacements to the constant a 1 to a 24. 

 
 
 
 

3      CONSISTENT LOAD VECTOR 
 

The simplest method to establish an equivalent 
set of nodal forces is the lumping process. An 
alternative and more accurate approach for dealing 
with distributed loads is the use of a consistent 
load vector which is derived by equating the work 
done by the distributed load through the 
displacement of the element to the work done by 
the nodal generalized loads through the nodal 
displacements. If a rectangular shell element is 
acted upon by a distributed load q  per unit area in 
the direction of w, the work done by this load is 
given by: 
 

qwdxdy
b

b

a

a
∫∫
−−

=1P  

 
where a and b are the projected half length of the 
sides of the rectangular element in the x and y 
directions, respectively. If w is taken to be 
represented by: 

 
{w} = [NT]{a}=[NT][C-1]{d} 

 
where NT for the present element is given by (see 
Equations 3 and 5): 
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{a} is the vector of the independent constants, 
][ 1−C is the inverse of the transformation matrix 

and {d} is a vector of the nodal degrees of 
freedom.  The work done by the consistent nodal 
generalized force through the nodal displacements 
{d} is given by: 

 
{d}{F}P T

2 =  
 

Hence, from Equations 8, 9 and 10, the nodal 
forces are obtained, i.e.   
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Equation 11 gives the nodal forces for a single 
element; and the nodal forces for the whole 
structure are obtained by assembling the elements’ 
nodal forces. 
  
 
 
4.     PROBLEMS CONSIDERED   
 
4.1   Spherical cap subjected to a point load: 
 
The geometry of the spherical shell considered in 
this section is shown in Figure 2. The shell is 
simply supported on the boundaries of a square 
plan form such that the normal displacement is 
zero along the edges, while the in-plane 
displacements normal to the edges are freely 
allowed to take place. The shell has the following 
dimensions and elastic properties: a = b = 400 mm, 
r = 2400 mm, t = 2.54 mm, E = 7037 kg/mm2 and 
ν  = 0.3.  It is subjected to a point central load p = 
45.4 kg. The symmetry of the shell and loading 
allows consideration of a quadrant of the shell to 
be analyzed.  
 
This spherical cap was analyzed previously by 
Gallagher [19] using a rectangular shell finite 
element with linear membrane displacement 
function for u and v and w.  
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Fig. 2 Spherical Cap 
 
 
Yang [7] has solved this problem by using a 
rectangular finite element, where all the 
displacement components are represented by cubic 
polynomials and also proposed a series (closed 
form) solution.  Later on, Dawe [8] used a quintet 
order triangular element, having 54 degrees of 
freedom to analyze the same shell.  He reported 
that the results obtained were more accurate than 
those given by Yang [7] for the same number of 
elements.  However, this element has an 
excessively large number of degrees of freedom, 
which would require large computational effort to 
perform the analysis using this element.  In 
comparison, the present element includes only six 
degrees of freedom. 
 
The spherical shell described above is analyzed 
here using: the triangular spherical shell element 
that has only five degrees of freedom at each 
corner node, which is given in reference [17]; and 
the rectangular spherical shell element developed 
in the current study.  The results from both 
analyses are compared together and with those 
obtained form the series (closed form) solution 
given by Yang [7].  
 
Convergence tests were carried out for the normal 
deflection at the centre of the shell. Figure 3 shows 

that both elements require only 6×6 mesh size to 
converge to acceptable results with a difference of 
less than 3% in the case of the triangular element 
developed by Sabir and Djoudi [17] and less that 
2.5% in the case of present element compared with 
the series solution, while it was reported that 
Gallagher element [19] gives an error of more than 
10% for the same mesh size. Further investigations 
on the deflection are shown in Figure 4, which 
indicates excellent agreement between the results 
obtained from the present element and the series 
solution for the variation for normal deflecting 
along a centre line.  
 
The direct stress resultant, Nx, and the bending 
moment, Mx, are computed along the centre line 
"ox" in the x direction.  The results obtained from 
the (8×8) meshes are presented in Figures 5 and 6 
for Nx and Mx, respectively. The results obtained 
from the series solution are also shown in the 
figures for comparison. It is noted that the results 
for the membrane stress resultants agree well with 
those obtained from the series solution.  
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Fig. 3 Convergence of W at the Center 

Fig. 4 Variation of W Along "ox" 
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These results clearly show that the response of 
spherical shell can be adequately analyzed using a 
reasonable number of elements to obtain 
convergence of deflection and stresses. The results 
also confirm the suitability of the proposed 
rectangular shell element for the analysis of 
spherical shell roof Structures in the form of a 
cross shaped. This form of structure is often used 
by architects to roof exhibition halls and public 
buildings. The authors found that one of this type 
of roof was implemented in the field.  To the 
knowledge of the authors, no known solution to 
this problem is available in the published literature.  
 
 
 
 
4.2    Analysis of Spherical Cross Shaped Shell 
Roof: 
 
The spherical shell roof structure considered is 
shown in Figure 7. It has a central rise above the 
cornered supports of 4.0 m and a total horizontal 
span between each of the two diagonally opposite 
supports of 18 m. it is spherical in form having a 
radius of curvature of 12.125 m in each of the 
principle directions x and y and a thickness of 100 

mm.  The Young's modulus of the shell material, E 
= 2×109 kg/cm2 and its Poisson's ratio, ν = 0.3. The 
dimensions a and b are taken to be 3.0 m and 6.0 
m, respectively. The cross shaped roof is loaded by 
a normal uniformly distributed load of 500 kg/m2 
and it is assumed to be fixed to rigid supports at all 
four end corners.  
 
Due to symmetry and uniform loading, only one 
quadrant of the shell is analyzed. The conditions 
for symmetry along the centre line require that the 
in-plane displacements and rotations normal to the 
plane of symmetry are zero.  

            
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 5 Variation of Nx Along the Center Line 

Fig. 6 Variation of Mx Along the Center Line
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Fig. 7b Cross Shaped Spherical Shell Roof 

Fig. 7a Cross Shaped Spherical Shell Roof 
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Two models (shown in Figure 8) are used to 
examine the effect of the mesh size needed for the 
analysis of one quarter of the shell on the 
calculated deflections and stresses. In the first 
model, a moderate mesh comprising eighty 
elements is considered (Figure 8b), while the 
second model considered a finer mesh of hundred 
eighty elements (Figure 8c).  
 
 
 
 

 

        
 
 
 
 
 

 
 

 
       
 

 
 
 
 
 
 
 
The analysis was performed and the quantities 
necessary for design are calculated including the 
normal deflections, the direct membrane stress 
resultants in the y and x directions as well as the 
bending stress resultant Mx along the central line 
ox.  Figure 9 shows the distribution of the normal 
deflections of the roof.  The hoop stress, Ny, and 
the direct stress, Nx, are presented in Figures 10 
and 11, respectively. Figure 12 displays the 
bending stress resultant, Mx. 
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Fig. 8 Configuration of Mesh Used in the 
Analyses 

Fig. 9 Radial Deflection along ox 
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Figure 9 shows that the normal deflection along ox 
is almost constant and downward throughout the 
central portion, a, of the shell. Thereafter, the 
deflection decreases and becomes upward reaching 
a maximum of almost the same magnitude as the 
downward deflection at the centre of the shell.  The 
deflection decrease over the last portion, a, of the 
shell until it becomes zero at the corner support.  
 
Figure 10 shows that the hoop stress resultant Ny is 
compressive over the central part and at the 

support along ox, but becomes tensile over a small 
length between the two regions.  On the other 
hand, the direct stress resultant Nx increases 
steadily at a small rate along ox over the central 
region but increases rapidly over the region near 
the support, as shown in Figure 11. This behavior 
is consistent with the membrane theory, which 
gives an almost constant stress resultant Nx in the 
central region (near the crown) and then increases 
rapidly towards the support.  It is also noted from 
Figures 10 and 11 that the magnitude of the 
maximum stress resultant Nx is much larger (one 
order of magnitude) than the maximum of the hoop 
stress, Ny.   
 
Figure 12 shows that the bending stress resultant 
Mx along ox is generally small in the central 
region, for a length of about two thirds of the span. 
Afterwards, it changes sign for a small length but 
increases sharply towards the support with a 
maximum value at the fixed support, as expected.  
 
All the above figures show clearly that, for all 
practical purposes, the results obtained from the 
two models do not differ significantly, confirming 
again the efficiency of the developed element.  
However, the fine mesh was used in the following 
section. 
 
 
4.3    Cross shaped shell with circular arched 
beam stiffeners:  
 
In practice, shells having large spans are stiffened 
by beams. To investigate the effect of such 
stiffening beams on the deflections and stresses, 
the case of cross shaped roof structure stiffened by 
arched beams spanning between two diagonally 
opposite supports is considered.  To investigate the 
effect of the depth of the diagonal arched beam 
stiffeners on the resulting deflections and stresses, 
two cases were considered d = 200 and 400 mm, 
while the width, B is kept at 500 mm.  The layout 
and geometry of the problem considered are shown 
in Figure 13. 
 
 

Fig. 10 Hoop Stress Ny along ox 

Fig. 11 Direct Stress Nx along ox 

Fig. 12 Bending Moment Mx along ox 
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The developed strain–based rectangular spherical 
element is used in the analysis of the spherical 
shell and the diagonal arched beams are idealized 
by a six nodal degrees of freedom beam element. 
The stiffness matrix of the beam is based on cubic 
variation of both the vertical and horizontal 
displacements and linear variation of the axial 
displacement and the angle of twist. Thus, the 
beam element and the strain-based rectangular 
element have the same degrees of freedom and 
complete compatibility is ensured when these 
elements are used in the assembly of the overall 
structural matrix.  
 
After assembling the global stiffness matrix and 
establishing the load vector using Equation 11, the 
derived equilibrium equations were solved and the 
response was obtained. The results reported here 
include the normal deflections, the direct 
membrane stress resultants in the y and x 
directions as well as the bending stress resultant 
Mx along the central line ox.  Figure 14 shows the 
distribution of the normal deflections of the roof.  

The hoop stress, Ny, and the direct stress, Nx, are 
presented in Figures 15 and 16, respectively. 
Figure 17 displays the bending stress resultant, Mx. 
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Fig. 13 Cross Shaped Spherical Shell with 
Stiffening Beams, a) layout; b) geometry 
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Fig. 14 The Effect of Stiffeners On the Deflection 
Along the Center Line "ox" 

Fig. 15 The Effect of Stiffeners On (Ny) 
Along the Center Line "ox" 

Fig. 16 The Effect of Stiffeners On (Nx) 
Along the Center Line "ox" 
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Figure 14 shows that the stiffeners resulted in 
significant reduction of roof deflections. For 
example, the maximum deflection (at the centre) 
decreased by 65% for the shallow beam and 80% 
for the deeper beam case, compared with the case 
of the shell having no stiffeners.  In addition, the 
shell stress resultants decreased significantly. For 
example, Figure 15 shows the direct stress 
resultant Ny has decreased by about 33% and 66%, 
for the cases of d = 200mm and d= 400 mm, 
respectively.  Similar observations can be made 
from Figure 16 with regard to the direct stress 
resultant Nx along ox.  Likewise, the bending 
stress, Mx, has been reduced significantly due to 
the use of the stiffeners as shown in Figure 17.  A 
reduction of about 30% is achieved with the 
thinner beam and about 60% with the thicker 
beam.  
 
 
 
5.   CONCLUSIONS: 
 
A new spherical shell rectangular strain-based 
finite element was developed using shallow shell 
formulations. The element has six degrees of 
freedom at each corner node, the essential five 
external degrees of freedom as well as an 
additional sixth degree of freedom representing the 
in-plane rotation. The element is therefore fully 
compatible with and can be used in conjunction 
with arched beam elements having all the essential 
six degrees of freedom.  
 
The element was verified and validated through the 
analysis of a simply supported square spherical 
shell problem subjected to concentrated load, and 

comparing the results with the predictions of other 
approaches. The results of the analysis showed that 
reasonably accurate results were obtained even 
modeling the shells using fewer elements 
compared to other shell element types.  
 
The developed element was then used in a finite 
element model to analyze the response of cross 
shaped spherical roof structure.  The distribution of 
normal deflection and the various components of 
stresses are evaluated. The results showed that this 
type of shell roof exhibits large deflections at the 
centre and large stresses at the corners because of 
its non uniform shape and supporting conditions. 
The response of the roof stiffened using diagonal 
arched beams was also analyzed.  The diagonally 
lined stiffeners were found to considerably reduce 
the deflections and stresses of cross shaped 
spherical roof structures.  
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