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Abstract 

Compressive strength (CS) is a crucial property of high-performance concrete (HPC) as it determines its ability 
to withstand applied stress without breaking or deteriorating. It ensures structural stability and durability and, 
hence, resistance to various types of external loads, which is critical for infrastructure serviceability over a long 
period of time. Whereas slump (SL) is indicative of the uniformity and workability of HPC, it affects the ease of 
placing and consolidation, as well as construction quality and efficiency. Mix design optimization, through proper 
balancing between CS and SL, enhances the capability of HPC to meet the stringent operational standard for heavy 
applications like bridges, high-rise buildings, and nuclear facilities concerning safety and longevity with cost-
effectiveness while constructing the projects. The research estimated the CS and SL of the HPC by advanced 
machine learning (ML) regression frameworks such as Adaptive boosting regression (ADAR), Support vector 
regression (SVR), and two optimizers: Giant Armadillo Optimization Framework (GOA) and Chef Based 
Optimization Framework (CBOA). Combining these frameworks with an optimizer result in a novel hybrid 
framework that offers enhanced precision and functionality. Results show that the ADA+GOA (ADGA) model 
performs the best in predicting CS, achieving an RMSE of 2.451 and an R² value of 0.992. In comparison, the 
ADA+CBOA (ADCB) model also outperforms the base ADA model, with an RMSE of 3.618 and an R² value of 0.982. 
Notably, the SVR and its hybrid variants exhibit poorer performance, with higher RMSE and lower R² values 
compared to the ADA-based models. These results then emphasize the capability of hybrid ML frameworks to 
predict the characteristics of concrete with a good degree of accuracy. 
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1. Introduction 

Compressive strength (CS) is one of the most important mechanical 
parameters characterizing the material capability to bear axial 
compressive stresses without breakdown (Vu et al., 2020). CS plays a very 
significant role in the design and analysis of elements of construction in 
different branches of engineering sciences, namely civil, mechanical, and 
engineering (Moccia et al., 2021; Tasevski et al., 2019). The value of CS is 
usually determined following standardized test procedures specific to 
particular industries or regulatory requirements (Liu and Li, 2019). 
Logically, it defines CS as the maximum stress a material can bear without 
failure (Paudel et al., 2023). It is quantified in terms of pressure per unit 
area, such as MPa or pounds per square inch (Khajavi et al., 2025; Sadaghat 
et al., 2024), and for concrete-arguably one of the most common 
substances whose is tested the CS usually expressed as f'c (Napoli and 
Realfonzo, 2020; Tavana Amlashi et al., 2023). A number of factors 
contribute to CS for a material, namely, permeability, moisture, aggregate 
distribution, and microstructure (Murali et al., 2023). Within concrete, for 
instance, CS is a function of the water-to-cement ratio, type and size of 
aggregate, conditions of curing, and admixtures present (Malhotra, 1956; 
Naeim et al., 2024b). CS consideration might be crucial for materials with 
respect to the structural design and analysis. This functionality allows 
designers to analyze the strength and durability of structures such as 
dams, bridges, buildings, and highways (Ni and Wang, 2000). If the CS of 
building materials is kept at, or above, design specifications, then 
engineers are able to reduce the risk of structural failure and promote a 
longer service life for structure and infrastructure (Kim and Yi, 2002). 

Several influential factors affect CS, one of the fundamental properties 
of concrete. First, the water-cement ratio is quite critical; the intensity is 
usually greater when the ratio is lower due to reduced porosity and better 
hydration of the cement (Salem and Pandey, 2015). Second is the 
aggregate-cement ratio; the strength is affected by a well-graded 
aggregate mix since improvements in packing and interlocking result in 
improved strengths (Abdullahi, 2012). Third, the quality of the ingredients 
themselves is one of the influencing factors on strength: cement, 
aggregate, and water might contain contaminants or have poor grading 
that can result in matrix weakness (Aginam et al., 2013a; Ngugi et al., 2014; 
Obi Lawrence, 2016). Fourth, curing conditions come into play: under the 
most favorable conditions of moisture and temperature, normal hydration 
is usually fully developed (Atiş et al., 2005). Fifth, another critical factor 

involves age; strength normally gains with time as a result of hydration; 
the rate, however, depends on curing circumstances (Pourbaba et al., 
2018). The presence of admixtures can alter hydration kinetics or increase 
workability and affect the strength of concrete (Sharma, 2021). The 
seventh is the surrounding conditions, temperature, and humidity during 
curing and service life that determine the characteristics of strength 
growth and durability (Ambroziak and Ziolkowski, 2020). Lastly, the 
overall mix design, with its additives and proportions in concrete, governs 
the overall performance. It is well recognized that the understanding and 
control of these parameters have a close bearing on achieving optimum CS 
in concrete applications (Aginam et al., 2013b). 

The slump (SL) of high-performance concrete (HPC) is a measure of 
consistency or workability, which is relevant to most building applications 
(Yen et al., 1999). It is done by investigating the settlement or deformation 
of a cone of fresh concrete subjected to a given amount of compacting 
(Chen et al., 2014). The SL test, according to recognized standards such as 
ASTM C143 or EN 12350-2, is done by filling fresh concrete into a metal 
cone, compacting it by vibration in layers, and then removing the cone and 
measuring the subsidence of the concrete mass vertically (Mahajan et al., 
2020; Tan et al., 2017). With improved aggregate distribution and 
enhanced material properties, HPC also exhibits favorable slump 
characteristics. The type and proportion of cementitious materials, water-
cement ratio, chemical admixtures, aggregate gradation, and 
supplemental cementitious materials are some factors that would affect 
an SL (Naeim et al., 2024a). These together constitute the rheological 
behavior of the concrete mixture, hence its flowability, viscosity, and form-
sustaining ability. In the passive voice, many factors affect the SL of the 
HPC (Islam et al., 2012). The water/cement ratio is correctly controlled to 
provide the appropriate slump while sustaining strength and durability 
(Zhutovsky and Kovler, 2017). In this respect, chemical admixtures, 
including superplasticizers, are habitually used to improve workability 
and to prevent SL loss throughout the life of concrete, for instance, 
(Dushimimana et al., 2021; Farzadnia et al., 2011). 

Accordingly, supplementary cementitious materials such as fly ash or 
silica fume could modify the rheological properties of concrete mix and 
thereby influence SL behavior (Mosaberpanah and Umar, 2020). Well-
graded aggregates, with proper particle size distribution, tend to have 
internal cohesion and reduce segregation; hence, it may affect SL 
variability (Hasan et al., 2022). Understanding the SL characteristics of 
HPC is of paramount importance for proper consolidation, placement, and 
finishing during construction (Parande, 2013). Correct SL values are 
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necessary for engineers and contractors to modify mixed designs and 
construction methodologies to meet project specifications and operational 
expectations. SL control in HPC improves construction efficiency and the 
long-term operation and reliability of infrastructure (Jonnalagadda and 
Chava, 2023). 

1.1  Related Works 

Recently, according to Ahmad, Aynaz, and Furqan et al. (A. Ahmad et 
al., 2021a, 2021b, 2021c; Algaifi et al., 2021; Amin et al., 2021; Ruggieri et 
al., 2021; Shah et al., 2022), ML frameworks have shown a significant 
ability in predicting cement-based material properties. Support vector 
regression (SVR) and Artificial neural network (ANN) are some of the 
common machine learning (ML) methods that Alexandridis et al. 
(Alexandridis et al., 2015) successfully used to predict the properties of 
concrete such as CS, split-tensile strength, elastic modulus, and so on 
(Chaabene et al., 2020; DeRousseau et al., 2018; Song et al., 2021a). Thus, 
they are considered individual frameworks. Many fields of study have, in 
fact, shown that through the integration of results from a discrete 
framework into an ensemble ML model pattern, the accuracy of 
predictions can be considerably better (Chaabene et al., 2020). However, 
few workers in this area have used EML to predict factors. AdaBoost and 
Random Forest (RF) are learning methods that can improve accuracy 
prediction based on numerous regression tree forecasts combined 
through voting on the conclusion (Sun et al., 2021). Ahmad et al. (W. 
Ahmad et al., 2021) adopted solo and EML methods in estimating the CS of 
concrete and comparing their precision. EML methods were proven to 
forecast the outcomes with superior accuracy compared to solo 
methodologies. However, the independent process also yielded acceptable 
results. Song et al. (Song et al., 2021b) performed an experimental study 
to predict, by independent techniques, the C-S of concrete containing 
ceramic waste. It was observed from the study that the output from the 
prediction model matched the experimental results. Abuodeh et al. 
(Abuodeh et al., 2020) predicted, by using the ANN technique, the C-S for 
ultra HPC and stated that ANN worked adequately in the prediction of 
results. Consequently, the current research focuses on the use of advanced 
techniques in predicting the properties of concrete. Extensive research on 
HPC's mechanical properties often involves time-consuming lab 
procedures. To address this, ML approaches were explored for predicting 
28-day CS. 

1.2  Innovations 

The paper has introduced a hybrid machine learning model 
incorporating ADAR and SVR with new metaheuristic optimizers, 
including the Giant Armadillo Optimization Framework (GOA) and the 
Chef-Based Optimization Framework (CBOA). Needless to say, the new 
hybrid models that are proposed have outperformed conventional 
methods in stand-alone with respect to better prediction precision and 
functionality. It presents a comparative performance evaluation of such 
frameworks using comprehensive performance metrics, including RMSE 
(Root Mean Square Error), R² (Coefficient of Determination), MAE (Mean 
Absolute Error), SI (Scatter Index), and MNB (Mean Normalized Bias), for 
bringing out the effectiveness of such framework’s ineffective prediction 
of major concrete properties like CS and SL. Among those, some of the 
novelties of this research are the huge dataset analyzed to influence the 
effect of critical factors such as the water binder ratio, fly ash, water, silica 
fume, superplasticizer dosage on the properties of HPC. This degree of 
precision would suggest that predictive modeling could serve to raise 
mixed design performance regarding operational efficiency and material 
optimization. 

2. Datasets and ML Frameworks 

2.1 Description of the Dataset 

In this study, water binder ratio, fly ash, water, silica fume, and 
superplasticizer are of considerable importance in affecting the CS and SL 
of the HPC, based on the objective. A relationship between each of these 
properties and anticipation using ML in CS and SL will be explored. 
− Water Binder Ratio: The water/binder ratio is one of the most critical 

parameters in the mix design of concrete, as it influences both CS and SL. 
ML frameworks consider how different water/binder ratios affect these 
properties by training models with datasets of ratios versus the 
corresponding CS and SL values for proper predictions of property 
change. 

− Fly Ash: Fly ash is one of the ordinary pozzolanic materials widely used 
in HPC for supplementary cementitious components. ML frameworks 
analyze the CS and SL value datasets regarding the proportion for 
estimating the optimum content of fly ash that may provide the desired 
properties in concrete. 

− Water: Added water highly affects CS and SL in concrete. After training 
on datasets for the water-cement ratio and the respective concrete 

properties, the ML framework can predict how much water would yield 
target characteristics in concrete. 

− Silica Fume: Silica fume is an amorphous SF supplementary 
cementitious material that greatly improves the strength and durability 
of concrete. The ML framework can peruse a dataset of SF concentration 
with CS and SL values to estimate the optimum dosage for different 
concrete performances. 

− Superplasticizer: Superplasticizers enhance concrete workability 
without adding water. ML frameworks, trained in datasets of 
superplasticizer dosages and their effects on CS and SL, can predict the 
optimal dose to achieve desired concrete properties. 

Basically, ML can delve deep into the inter-relationships among water 
binder ratio, fly ash, water, silica fume, and superplasticizer content and 
their varying effects on CS and SL in HPC. With the help of ML frameworks, 
investigators are able to reach the optimal concrete mix designs that could 
meet the specified operation standards from various construction 
applications. Next, the varying influences exerted by different factors on 
CS and SL are elaborated in detail with the help of Table 1 and Fig. 1. 

Table 1. The statistical properties of the input factor of CS-SL. 

Factors Indicators 
Category Min Max Avg St. Dev. 

W/B (%) Input 18.000 45.000 31.095 8.701 
W (kg/m3) Input 140.000 180.000 162.143 12.009 
s/a (%) Input 35.000 53.000 42.143 5.323 
FA (%) Input 0.000 20.000 5.714 7.911 
AE (kg/m3) Input 0.000 0.078 0.031 0.029 
SF (%) Input 0.000 25.000 6.429 8.330 
SP (kg/m3) Input 1.890 36.500 10.956 8.513 
CS (MPa) Output 38.000 123.000 74.402 26.437 
Slump(mm) Output 95.000 260.000 203.132 25.645 

  

  

  

Fig. 1 The contour plot for the relation between the input and 
output variables. 

Fig. 1 presents contour plots illustrating the relationships between 
input and output variables in HPC mix design. Each plot analyzes three 
variables: two input parameters (X and Y) and one output variable (Z), 
representing either CS or SL. The selection of relationships, W with W/B, 
FA with s/a, and SP with SF, was based on their critical role in determining 
HPC properties. W and the W/B significantly influence both workability 
and strength, making their relationship essential for optimizing HPC 
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performance. Similarly, FA and the s/a affect the mixture’s cohesiveness, 
particle packing, and overall durability. The interaction between SP and SF 
is also crucial, as these admixtures improve the rheological properties and 
mechanical performance of HPC. These contour plots provide a visual 
representation of how variations in input parameters impact the key 
performance metrics of HPC, aiding in the optimization of mix design. 

2.2 Operation Evaluator 

The performance of the proposed models was evaluated using 
multiple statistical metrics to ensure accuracy and reliability. Root Mean 
Square Error (RMSE) measures the average deviation between predicted 
and actual values, with lower values indicating better performance. The 
Coefficient of Determination (R²) assesses how well the model explains 
variance in the data, where values closer to 1 signify stronger predictive 
capability. Mean Absolute Error (MAE) quantifies the average magnitude 
of errors, providing a straightforward measure of prediction accuracy. The 
Symmetric Mean Absolute Percentage Error (SI) ensures a scale-
independent evaluation of errors, making it useful for comparative 
analysis. Lastly, the Mean Normalized Bias (MNB) identifies systematic 
over- or under-prediction tendencies, offering insights into model bias. 
The equation of the evaluation metrics is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)𝑛
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Here 𝑦𝑖  shows the measured value, �̂�𝑖  shows the predicted value, 
�̅� shows the mean value of the predicted value, and 𝑛 is the number of 
samples. 

3. Results and Discussion 

The results and discussion section comprehensively evaluates the ML 
models' performance in predicting HPC properties. The analyses were 
conducted by training the models on the dataset optimizing 
hyperparameters to maximize prediction accuracy. The models were then 
tested using a separate dataset to evaluate generalization capability. 
Performance was assessed using several statistical metrics, including 
RMSE, R², MAE, SI, and MNB, which provide insights into the model's 
accuracy, bias, and error distribution. The results were compared between 
base models and their hybrid counterparts, highlighting the impact of 
optimization algorithms on predictive performance. Additionally, 
sensitivity analysis was conducted to determine the most influential input 
parameters affecting CS and SL. The discussion interprets these findings in 
the context of practical applications, emphasizing the importance of 
optimizing HPC mix designs for enhanced structural performance and 
longevity. 

3.1 Convergence Curve 

Convergence curves are graphical representations of the iterative 
optimization processes of frameworks. The convergence curve represents 
the error reduction trends across the subsequent cycles by plotting an 
operation indicator representative, including error-against-cycle number 
or computing effort. A convergence curve showing a monotonous decrease 
in error indicates that the model is progressively closer to an ideal 
solution. On the other hand, the plateau and fluctuating curves may signify 
some issues with model convergence or poorly adjusted parameters. The 
investigation of the convergence curve enables researchers to gauge the 
convergence rate-ultimately the stability and anticipation precision of 
frameworks, thus enabling more appropriate decisions along the steps of 
model selection and refinement. 

The following convergence curve in Fig. 2 compares the RMSE rates of 
SVCB, SVGA, ADCB, and ADGA frameworks under CS and SL targets. 
Comparing the results from these frameworks under the CS target, it is 
seen that the lowest error is contributed by the ADGA model with an RMSE 
value of 2, which starts the cycle process with an error value greater than 
6. Subsequently, the ADCB model, with an RMSE value of 2.5 at cycle 80, 
demonstrates its potential as the second-best model, at least within this 
context. Conversely, the SVGA and SVCB frameworks, with RMSE values of 
4 and 6, respectively, indicate weaker functionality compared to the 
frameworks mentioned earlier. 

Under the SL target, the SVCB model, with an RMSE value of almost 8 
at cycle 60, demonstrates weaker functionality compared to the SVGA 
model, which exhibits an RMSE value of nearly 6, and the ADCB model, 
with an RMSE value of practically 5 at cycle 80. Considering these 
observations, akin to the CS target, it is anticipated that the ADGA model, 
with an RMSE value of 4, showcases superior functionality compared to 

the previously mentioned frameworks in this comparison (Trojovská and 
Dehghani, 2022). 

 

Fig. 2 The convergence curve for the presented hybrid 
frameworks 

3.2 Frameworks Comparison 

The outcomes of the utilized frameworks in the Training, Testing, and 
Validation steps are compared in Table 2 under CS and SL targets. In the 
evaluation between the ADA model and its hybrid counterparts, the ADGA 
model emerges as the top performer during the training step, boasting an 
RMSE value of 2.451. Subsequently, the ADCB model displays superior 
operation with a reduced error, recording an RMSE value of 3.618 
compared to the ADA model's RMSE value of 4.451, particularly under the 
CS target. Transitioning to the SL target, within the realm of SVR and its 
hybrid variations, the base SVR model exhibits the highest error with an 
RMSE value of 4.451 during the training step. Surpassing this, the SVCB 
model showcases a notable decrease in error, registering an RMSE value 
of 3.618, indicative of enhanced operation relative to the base model. 
However, the SVGA model outshines both the base SVR and SVCB models, 
manifesting the lowest RMSE value of 2.451, thereby establishing its 
superiority in error mitigation. This comparison analysis demonstrates 
the effectiveness of hybrid frameworks in optimizing anticipated precision 
under a variety of scenarios (Silveira et al., 2009). 
 

In the assessment of the CS and SL MPa of the ADA model and its 
hybrid forms across different targets and steps, notable distinctions 
emerge in Fig. 4. Under the CS target, during the validation step, the ADGA 
model outperforms the ADCB model due to its outcome closely aligning 
with the measured value, indicating superior precision and predictive 
capability. Conversely, under the SL target in the testing step, a 
comparative analysis between the ADCB and ADA frameworks reveals 
contrasting operations. Here, the ADA model exhibits inferior functionality 
compared to the ADCB model, primarily evidenced by its higher precision. 
In contrast, the precision value of the ADCB model demonstrates a closer 
approximation to the measured value, signifying its enhanced predictive 
precision and reliability in SL targets. In general, the data highlights the 
complex operation differences between the ADA model and its hybrid 
equivalents, underscoring the need to take into account both target-
specific and step-specific parameters when evaluating predictive 
effectiveness. 
In Fig. 5, the subsequent plot provides an overview of the frequency and 
error values of the employed frameworks across SL and CS targets. For 
instance, in the CS target, a comparison between the ADGA and ADCB 
frameworks demonstrates that the frequency of ADGA frameworks during 
the training step is approximately 35, accompanied by an error close to 
zero. Conversely, the frequency of ADCB frameworks hovers around 30, 
exhibiting a higher spread error compared to the ADGA model. Shifting 
focus to the SL target, a comparative analysis between the ADGA and ADCB 
frameworks highlights the operation disparity. The ADGA model, with a 
frequency of 65 and an error percentage close to zero, emerges as the more 
functional option. In contrast, the ADCB model registers a frequency of 48, 
coupled with an error percentage that deviates further from zero 
compared to the ADGA model. This underscores the superior efficacy of 
the ADGA model in minimizing errors and achieving higher frequency 
counts within the SL target.   

In Fig. 6, the error density of the presented frameworks in the various 
steps is depicted along the median line, representing zero error. For 
instance, during the training step of the CS target, the error density of 
ADGA is superior to that of ADCB. Additionally, it is noted that the error 
density of ADA is wider than that of ADCB and ADGA. In the SL target, 
during the training step, the error density of the ADA model is observed to 
deviate notably from zero or the median line. Conversely, the operation of 
the ADCB model surpasses that of the base model, with its error density 
nearly approaching the median line, albeit not as close as the ADGA model. 
Notably, the ADGA model exhibits the highest error density on the median 
line, indicating a more centralized distribution of errors on 0.
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Fig. 3 The dispersion of the presented models based on CS and SL 

Table 2. The result of developed models for CS and SL 

 Model Step Index values 
RMSE R2 MAE SI MNB 

CS 

ADGA Train 2.451 0.992 1.943 0.033 -0.005 
Validation 3.849 0.982 2.764 0.053 0.006 
Test 3.418 0.981 2.733 0.045 -0.003 

ADCB Train 3.618 0.982 2.903 0.048 -0.013 
Validation 4.714 0.972 3.271 0.065 0.002 
Test 4.229 0.971 3.193 0.056 -0.008 

ADA Train 4.451 0.972 3.584 0.060 -0.008 
Validation 5.097 0.970 4.198 0.071 -0.009 
Test 5.262 0.958 4.002 0.070 0.002 

SVGA Train 5.717 0.957 4.914 0.077 -0.001 
Validation 6.039 0.956 4.962 0.084 -0.019 
Test 6.661 0.935 5.807 0.088 -0.041 

SVCB Train 6.443 0.948 5.580 0.086 -0.011 
Validation 7.447 0.943 6.586 0.103 -0.043 
Test 6.964 0.931 6.329 0.092 -0.048 

SVR Train 7.441 0.932 6.521 0.100 0.013 
Validation 7.775 0.928 6.417 0.108 0.037 
Test 7.639 0.912 6.544 0.101 0.014 

SL 

ADGA Train 3.580 0.976 2.524 0.018 0.000 
Validation 7.111 0.968 5.728 0.036 -0.005 
Test 6.925 0.958 5.278 0.033 -0.005 

ADCB Train 4.434 0.964 3.336 0.022 0.001 
Validation 7.839 0.961 5.417 0.039 -0.007 
Test 7.777 0.935 6.195 0.037 -0.004 

ADA Train 5.152 0.953 4.146 0.025 0.001 
Validation 8.479 0.947 6.377 0.043 -0.005 
Test 7.828 0.928 6.272 0.038 0.000 

SVGA Train 2.451 0.992 1.943 0.033 -0.005 
Validation 3.849 0.982 2.764 0.053 0.006 
Test 3.418 0.981 2.733 0.045 -0.003 

SVCB Train 3.618 0.982 2.903 0.048 -0.013 
Validation 4.714 0.972 3.271 0.065 0.002 
Test 4.229 0.971 3.193 0.056 -0.008 

SVR Train 4.451 0.972 3.584 0.060 -0.008 
Validation 5.097 0.970 4.198 0.071 -0.009 
Test 5.262 0.958 4.002 0.070 0.002 
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Fig. 4 The correlation of anticipated and measured values for CS and SL 

 

 

 

Fig. 5 The histogram distribution for the error percentage of the developed models 
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Fig. 6 The violine symbol plot for the errors of proposed frameworks 

3.3 Attributes Analysis 

SHAP (Shapley Additive Explanations) is a method used to interpret 
machine learning models by assigning each feature an important value 
based on its contribution to the model's predictions. It is rooted in 
cooperative game theory, providing fair and consistent feature 
importance, allowing for transparent and interpretable model results. 

Fig. 7 presents the results of the SHAP analysis, which offers a deeper 
understanding of the impact of each input variable on the model's output. 
SHAP values allow us to assess the contribution of each feature to 
predictions, providing transparency and interpretability in machine 
learning models. In the case of CS, the W/B and SP have the most 
significant influence, reflecting their key roles in enhancing the strength of 
high-performance concrete. The W/B controls the hydration process, 
affecting concrete’s density and strength, while SP improves workability 
and compaction, indirectly influencing the concrete's strength. On the 
other hand, the AE shows minimal impact on the CS predictions, 
suggesting that its effect on strength is relatively smaller compared to the 
other factors. For SL, the analysis reveals that SP and W are the most 
influential variables, which aligns with their known role in regulating the 
flowability and consistency of concrete mixtures. SP helps reduce the 
viscosity of the mix, improving workability without compromising the 
strength, while W directly affects the concrete’s consistency and ease of 
placement. Interestingly, the W/B has the lowest impact on slump, 
indicating that, while it affects both CS and SL, its effect on slump is less 
pronounced than the other variables. These findings underscore the 
importance of specific input parameters in determining the performance 
of high-performance concrete, with each variable contributing differently 
to the outcome. The SHAP analysis helps identify the dominant factors but 
also assists in making data-driven decisions to optimize mix design for 
improved performance in both CS and SL.  

 

Fig. 7 The SHAP sensitivity analysis for the impact of the input 
variables on the model's output. 

3.4 Practical implications of the study 

The results of this study highlight the effectiveness of hybrid machine 
learning frameworks in accurately predicting CS and SL in HPC. These 
findings have significant practical implications for the construction 
industry, particularly in large-scale infrastructure projects where both 
mechanical performance and workability must be optimized. 
1. Enhanced Structural Performance and Safety 

The ADA+GOA (ADGA) model, achieving an R² of 0.992 with the 
lowest RMSE of 2.451, offers a precise predictive tool for estimating 
CS. This level of accuracy ensures that concrete mixtures meet the 
required load-bearing capacity, reducing risks associated with 
structural failure in critical applications such as bridges, high-rise 
buildings, and nuclear facilities. The ability to accurately predict CS 
before actual casting minimizes the likelihood of material wastage 
due to insufficient strength, thereby enhancing the reliability and 
safety of HPC structures over their service life. 

2. Optimized Workability and Construction Efficiency 
SL influences the ease of placement and consolidation, and 
optimizing its prediction ensures better control over concrete 
pouring and compaction processes, reducing inconsistencies during 
construction. By employing hybrid ML models, engineers can fine-
tune mix proportions to balance workability with strength, reducing 
the need for excessive on-site adjustments, which can lead to cost 
overruns and project delays. 

3. Cost-Effective and Sustainable Mix Design 
The ability of ML models to predict HPC properties with high 
precision enables construction professionals to design concrete 
mixes efficiently, minimizing material overuse and optimizing the 
use of cement, aggregates, and additives. This optimization leads to 
lower carbon emissions in concrete production, aligning with 
sustainable construction initiatives. The ADGA model's superior 
accuracy ensures that engineers can reduce overdesign margins, 
thus promoting material efficiency and lowering costs without 
compromising durability. 

4. Limitations of SVR-Based Models and Future Considerations 
The poorer performance of SVR and its hybrid variants suggests that 
support vector regression may not be ideal for CS prediction, 
possibly due to nonlinear complexities in the dataset that require 
more adaptable frameworks like adaptive boosting (ADAR). Future 
research could explore incorporating additional hybrid optimizers 
or deep learning approaches to refine predictions further and 
extend applicability to various environmental conditions and 
material compositions. 
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4. Conclusions 

The objective of this study is to estimate the compressive strength 
(CS) and slump (SL) of HPC using sophisticated ML regression 
frameworks, namely Adaptive Boosting Regression (ADAR) and Support 
Vector Regression (SVR), and employing two optimizers, namely Giant 
Armadillo Optimization Framework (GOA) and Chef Based Optimization 
Framework (CBOA). To enhance model outcomes, a decision was made to 
combine the frameworks with optimizers, creating new hybrid 
frameworks with increased precision and functionality. The results 
indicate that during the training step, the ADGA model exhibits the best 
operation in the CS target with an RMSE of 2.451 and an R2 value of 0.992. 
Subsequently, the ADCB model demonstrates improved functionality 
compared to the base model ADA, with an RMSE of 3.618 and an R2 value 
of 0.982. It is noteworthy that the operation of the SVR model and its 
hybrid forms is inferior to the ADA model in the CS target. While 
demonstrating the effectiveness of hybrid ML frameworks in predicting CS 
and SL in HPC, this study has certain limitations. One key limitation is 
dataset representativeness, as the data primarily comes from controlled 
experimental studies and published literature, which may not fully 
capture real-world variations in material properties, environmental 
conditions, and regional differences. A diverse dataset was used to 
mitigate this, and rigorous preprocessing techniques were applied to 
remove inconsistencies. However, future studies should incorporate 
larger and more regionally varied datasets to enhance model 
generalizability. Model selection bias is another factor, as the study 
primarily focused on ADAR and SVR combined with optimization 
algorithms (GOA and CBOA). While these models were chosen based on 
their strong regression capabilities, alternative ML techniques could be 
explored in future research. Additionally, computational cost is a 
consideration, as hybrid ML models with optimization algorithms require 
higher processing power, which may limit real-time implementation. 
Future work should focus on improving computational efficiency through 
feature selection techniques and lightweight model architectures. Lastly, 
while the study relied on existing experimental datasets for validation, 
direct experimental verification of predicted CS and SL values was not 
conducted. Future research should integrate laboratory testing to validate 
model predictions and assess discrepancies in theoretical and actual 
results. By addressing these limitations through careful dataset selection, 
model validation, and comparative analysis, this study enhances the 
reliability of its findings. Future extensions should focus on expanding 
datasets, testing additional ML models, and validating predictions 
experimentally to strengthen the practical applicability of ML-driven HPC 
mix design optimization. 
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