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Abstract 

Fracture characteristics of concrete remain a focal point of current research. Traditional experimental 
approaches and finite element simulations face limitations in the study of concrete fracture behavior. The novel 
combined finite-discrete element method (FDEM) offers pronounced advantages for investigating concrete 
fracture at the mesoscopic scale. In this paper, utilizing the FDEM approach, a mesoscale concrete model 
encompassing aggregates, mortar, and the interfacial transition zone was constructed. Three-point bending 
simulations on concrete beams with precast cracks revealed the mesoscopic fracture processes and 
characteristics. Results showed that as beam height increases, the fracture energy of the specimens first increases 
then decreases, and the ductility index decreases. Additionally, as the crack height ratio increases, the beam's 
fracture energy gradually lowers, while the ductility index initially rises then falls. This study provides insights 
into beam fracture mechanisms and properties, contributing to the failure analysis of concrete structures at the 
engineering scale. 
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1. Introduction 

Concrete is the most extensively used construction material in the 
world, with broad applications in the field of civil engineering. 
Understanding its failure mechanisms is critical for ensuring the safety of 
concrete structures (Yankelevsky 2024). Despite this, the complexity and 
heterogeneity of its components means that the mechanisms behind 
concrete failure, specifically under complex stress states, remain 
inadequately understood. The height of the ligaments directly impacts the 
fracture process in concrete and the consequent release of energy. This 
process is influenced by parameters such as the height of the beam and the 
ratio of crack height to depth. Previous experiments have investigated 
concrete's size effects: in three-point bending tests of beams, it was 
observed that the fracture energy of a specimen first increases and then 
decreases with an increase in beam height (Tang et al. 2022; Yin and Hu 
2021). It reduces as the crack height ratio of the specimens increases (Xue 
et al. 2023; Yin et al. 2023), and the energy released per element length of 
crack propagation is contingent on the state of the fracture process zone 
(FPZ) (Yin et al. 2024). For smaller structures, the size effect is predictable, 
with material randomness defining the statistical distribution of nominal 
strength (Bažant 2004). However, when sample sizes become too large, 
the measured energy according to RILEM standards becomes unreliable 
(Guo and Gilbert 2000). Additionally, conventional testing methods 
struggle to detect the internal processes and mechanisms driving damage 
and failure in concrete. 

Within the matrices of concrete, a distinctive boundary layer evolves 
between the aggregate components and the mortar substance, recognized 
as the Interfacial Transition Zone (ITZ). Residing within the confines of 
this ultra-thin band, ranging from merely 30µm up to 100µm, amplifies the 
inherent difficulty in developing a precise finite element model. 
Furthermore, the ITZ's strength and elasticity modulus notably fall short 
in comparison to the mortar. This disparity significantly influences the 
creation and propagation of fissures in concrete (Chen et al. 2024; Liu et 
al. 2024; Zhu et al. 2024). At present, the finite element method encounters 
substantial limitations, hindering its capability to mirror the ITZ's unique 
geometric structure and its role in inciting and escalating cracks in the 
specimens. This constraint obstructs the advancement of research 
exploring the damage and failure mechanisms in concrete, particularly on 
a microscale. Turning towards the discrete element methods (DEM), a 
predominant assumption that elements maintain rigidity introduces an 
additional complexity. To authentically replicate the aggregate's shape 
and size characteristics, a multitude of elements become obligatory, 
consequently compromising computational efficiency. 

Amidst these challenges, the Finite-Discrete Element Method (FDEM) 
surfaces as an innovative solution, efficiently addressing the concerns 

aforementioned. The strength of FDEM lies in its ability to discretize a 
region through the integration of cohesive elements positioned amidst 
solid ones. Employing the discrete element method, contact forces and 
relative displacements between discrete elements are evaluated, whereas 
deformation and stress experienced by each discrete body are solved 
using finite element techniques. This approach facilitates a detailed 
overview of specimen cracking and failure, depicting them through the 
damage and annihilation of the cohesive elements. Diverging from 
traditional fracture mechanics, cohesive elements forego established 
crack initiation criteria, treating crack propagation as a continuous 
degradation of the cohesive elements' material properties. As a direct 
result, this method can substantially alleviate or even eradicate the stress 
singularities at crack tips. Researchers (Wang and Xu 2024; Zhang Ruilin 
et al. 2023) formulated homogenized XFEM models for three-point 
bending beams and equivalent pure bending beams, respectively. Direct 
comparison of these simulations with experimental studies revealed 
minor inconsistencies; the simulated peak loads registered marginally 
higher than the actual experimental outcomes. This discrepancy is 
attributed to these models' inability to account for the aggregate interlock 
action. Subsequently, Chen (Chen et al. 2022) went on to devise a 
mesoscale model, although it unfortunately fell short of illuminating the 
underlying fracture mechanisms and the influence of size effects. 

Building on the foundation of the FDEM method, this study creates 
several mesoscale concrete models of concrete beam with varying beam 
depths and different notch-to-depth ratio for three-point bending tests, 
taking into consideration the ITZ. Numerical simulations for three-point 
bending tests are performed to gain insights into the mechanisms driving 
the formation and progression of primary cracks within the concrete 
beams. The study deliberates on the role aggregates and ITZ play in 
shaping the evolution of the stress field during crack expansion. 
Furthermore, an in-depth analysis considers the effects of beam depth and 
notch-to-depth ratio on several aspects: beam fractures, the P-CMOD 
curve, fracture energy, and the ductility index. The cumulative findings of 
this research serve as an essential reference for a thorough understanding 
of the mechanisms underlying fracture and destruction in concrete 
structures. 

2. Numerical Modeling Method  

2.1 Generation of mesoscopic model 

The mesoscopic structure of concrete consists of Mortar and 
randomly distributed aggregates within it. The well-known Walraven 
formula found on the Fuller curve was applied to compute of the quantity 
of aggregates featuring a particle size of dl, positioned anywhere within a 

Original Article 

Electronic Journal of Structural Engineering 

https://dx.doi.org/10.56748/ejse.25667
https://ejsei.com/ejse
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:wuyamin410@163.com


47  Electronic Journal of Structural Engineering, 2025, Vol 25, No. 1 

two-dimensional cross-section, as articulated in the ensuing explanation 
(Ma et al. 2016): 

 𝑁 = [𝑝𝑐(𝑑𝑙+1 < 𝑑0) − 𝑝𝑐(𝑑𝑙 < 𝑑0)]
𝐴

𝐴𝑙
  (1) 

Where: A represents the planar area of the two-dimensional section. 
Al represents the cross-sectional area of aggregate with a particle size of 
dl. 

The content of aggregates within the mesoscopic model was 
calculated based on the concrete mix ratio and aggregate gradation. A 
program to generate and place random polygonal aggregate models was 
written in Matlab, utilizing the Monte Carlo method. Random polygonal 
aggregates were placed within the specified two-dimensional area in such 
a manner that the resultant models satisfied the requirements of non-
overlapping and minimum gaps between aggregates. Accordingly, 
mesoscopic geometric models of concrete with various sizes or 
proportions were obtained (Figure 1(a)). These geometric model entities 
were then imported into Abaqus, where Boolean operations were 
conducted. Different element sets for aggregates and the Mortar were 
established, followed by meshing, which resulted in the mesoscopic finite 
element model of the concrete (Fig. 1(b)).                 

  
(a) Geometry model (b) FEM model 

   
Fig.1 Mesoscale model 

In this study, zero-thickness COH2D4 elements in ABAQUS were 
utilized, and the FDEM was implemented via the user subroutine interface. 
An explicit dynamic analysis was employed to solve the problem, which 
effectively avoided convergence issues. After meshing the mesoscopic 
structure of the concrete, cohesive elements were inserted along every 
mesh line within the mesoscopic structure using an internally developed 
code. The general procedure for inserting cohesive elements into such a 
mesoscopic structure is given by (Zhou et al. 2020), and listed below: 

(1) Acquire the node and element files. 
(2) Read the node coordinates and element arrays and determine the 

number of entity elements that each shared node belongs to. 
(3) Duplicate the nodes. 
(4) Discretize the entity elements. 
(5) Insert cohesive elements. 
(6) Determine the material types of cohesive elements based on the 

element sets to which they belong. 
Based on the mesoscopic structure of concrete, this study identified 

three types of interface elements, namely, the mortar-mortar (internal 
mortar) interface elements, aggregate-mortar interface elements, and 
aggregate-aggregate interface elements, as shown in Figure 2. This model 
simulates the formation of cracks by embedding zero-thickness cohesive 
elements in potential crack regions. It has the ability to simulate the 
extension and merger of micro-cracks and can capture the entire evolution 
process of the FPZ (Fracture Process Zone). 

   
(a) Mortar-Mortar (b) Aggregates-

Mortar 
(c) Aggregates-

Aggregates 
Fig. 2 Cohesive element in mesoscale model 

2.2 Constitutive Model 

The XFEM model for concrete is composed of triangular solid elements 
and cohesive elements. The solid elements utilize a linear elastic 
constitutive model, whereas the constitutive model for the cohesive 
elements is defined through a combination of traction-separation and 

damage evolution. The stress status of the cohesive elements adheres to 
elastic traction-separation prior to reaching the damage threshold. Upon 
reaching this threshold, it transitions into the damage evolution stage. This 
stage persists until the cohesive element surpasses the failure threshold, 
consequently leading to its removal and the formation of a crack at that 
specific location. 

 
(a) Single mode 

 
(b) Mixed mode 

Fig. 3 Cohesive constitutive model 

Given that the bilinear model aptly characterizes the fracture behavior 
of brittle materials and ensures computational efficiency, it has been 
selected to define the traction-separation relationship for cohesive 
elements. Figure 3(a) depicts the traction-separation constitutive curve of 
the bilinear model, featuring a softening segment. The notations δP and δf 
denote the initial cracking displacement and the failure displacement, 
respectively. The fracture energy, Ge, corresponds to the area under the 
curve bounded by the triangle in the figure. Initially, it is postulated that 
the relationship between displacement and stress is linear, possessing a 
stiffness denoted by K=σP/δP Once the stress attains its peak value, the 
cohesive element transitions into the softening stage, wherein cracks 
initiate and extend, accompanied by a monotonic decline in stress with 
increasing displacement. The element is considered failed and 
subsequently removed when the stress falls to zero. 

In order to characterize the damage arising from the interplay of 
normal and shear deformation at interfaces, an effective relative 
displacement, denoted as dm, has been introduced. The initial onset of 
damage within a cohesive element is assessed using the squared nominal 
stress criterion. Point A represents the damage threshold: damage 
commences within the cohesive element once its nominal stress aligns 
with Equation (2). 

(
⟨𝑡𝑛⟩

𝑡𝑛
𝑚𝑎𝑥)

2
(
⟨𝑡𝑠⟩

𝑡𝑠
𝑚𝑎𝑥)

2
= 1    (2) 

Where, the variables   and   signify the maximal nominal stresses 
correspond to pure tensile and pure shear stress conditions, respectively. 
The Macaulay operator is represented by the angular brackets. Figure 3(b) 
presents a detailed illustration of the coupling between two independent 
deformation modes. The terms σI, σII, and σMix provide the traction forces 
associated with the commencement of fracture in pure mode I, pure mode 
II, and mixed mode, respectively. Correspondingly, δI, δII, and δMix denote 
the associated displacements for these modes. For an in-depth 
understanding of the coupling relationship between independent Type I 
and Type II fractures, readers are directed to reference [16]. 

2.3 Three-Point Bending Simulation Model of 
Beams 

In this study, modeling was conducted on concrete beams with five 
different beam depths and five different notch-to-depth ratios. The span-
to-depth ratio S/D of all specimens was set as 4, with the thickness B as 40 
mm. The details of the numerical model setup are illustrated in Figure 4. 
Previous empirical studies (Wu et al. 2011) and numerical calculations 
(Zhou and Chen 2019) have consistently indicated that damage is localized 
near the notch area, while the rest of the beam remains mostly undamaged 
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throughout the entire loading process. Consequently, the "multi-scale" 
approach adopted in this paper focuses on the mid-section of the beam. As 
such, the mesoscale structure and cohesive element models are only 
utilized near the prefabricated crack in the mid-section of the beam, while 
the remaining parts of the beam are modeled using a homogeneous 
material that reflects the elastic response of concrete. To mitigate the 
effect of mesh size on simulation results, informed by prior findings (Li 
and Guo 2019; Omar et al. 2022; Baktheer et al. 2024), the element size in 
all mesoscopic parts of the model was set to 2 mm, and 20 mm in other 
parts. Some scholars have calibrated the parameters based on the 
macroscopic mechanical properties of concrete derived from laboratory 
experiments, achieving relatively ideal simulation outcomes (Malachanne 
et al. 2018; Zhou et al. 2021; Huang et al. 2022). In this study, concrete with 
a uniaxial compressive strength of 30 MPa is used as an example. And the 
volumetric fraction of the aggregate, determined based on the mix ratio, is 
calculated to be 0.68. Referencing previous study from Zhou (Zhou et al. 
2021), the material properties adopted of the FDEM model are listed in 
Table 1, where Magg, MITZ, and Mmortar respectively denote the 
properties of interface components for aggregate, ITZ, and mortar.  

 
Fig. 4 Mesoscale FDEM model of concrete beam 

Table 1. Parameters for the solid elements and cohesive elements 
from Zhou (Zhou et al. 2021) 

 Aggregate Mortar Magg MITZ Mmortar 
Elastic 
modulue/GPa 

60 30 60 15 30 

Density (kg/m3) 2800 2300 2800 2000 2300 
Poisson's ratio 0.2 0.2 - - - 
Maximum 
allowable tensile 
stress (MPa) 

- - 16 2.3 4.7 

Maximum 
allowable shear 
stress (MPa) 

- - 64 9.2 18.8 

Type I fractured 
energy (N/mm) 

- - 0.08 0.03 0.06 

Type Ⅱ fracture 
energy (N/mm) 

- - 0.8 0.3 0.6 

3. Mechanism of Mesoscopic Fracture  

   
t1=0.0050 s t2=0.0100 s t3=0.0136 s 

   
t4=0.0150 s t5=0.0158s t6=0.0162 s 

Fig. 5 Forming and evolution of main crack (unit: mm) 

The model with a beam depth of 300 mm taken as an example to 
examine the mesoscopic fracture mechanism of concrete beams under 
three-point bending load. The process of localized fracture at the tip of the 
prefabricated crack in the current mesoscopic concrete beam is depicted 
in Figure 5. As illustrated in Figure 6, Points A and B are in the pre-peak 
phase, Point C is near the peak load, and Points D, E, and F are in the post-
peak phase. The generation of cracks at the fracture tip involves a main 
crack along with several microcracks. In the pre-peak phase, the main 
crack is extremely small (at Points A and B). At the peak (Point C), the crack 
width significantly increases, reaching 0.038 mm. At Point D, the crack 
begins to extend, and at this point, the load curve starts to decline rapidly. 

By Point E, main microcracks also appear in the mortar. At Point F, the 
microcracks connect with the initial main crack, forming a wider crack that 
continues to spread. This simulated process of concrete crack 
development is consistent with experimental observations made through 
DIC and X-ray (Bhowmik and Ray 2019; Skarżyński and Tejchman 2021). 
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Fig. 6 Load-time curve 

Figure 7 presents a contour map of the principal stress evolution in 
the midspan of the beam, where the stress evolution characteristics within 
the Fracture Process Zone (FPZ) serve to uncover the fracture mechanisms 
of concrete. In the initial stages of loading, the overall stress within the 
beam is relatively low, with no significant stress concentration observed 
at the tip of the pre-existing crack (Figure 7(a)). As the load increases, a 
concentration of the principal tensile stress appears near the tip of the pre-
existing crack (Figure 7(b)). At the peak load, microcracks begin to form 
near the ITZ around the tip of the pre-existing crack (Figure 7(c)). As the 
main crack emerges at the tip of the pre-existing fissure and interconnects 
with the microcracks at the ITZ, the principal compressive stress at the top 
of the beam begins to diminish. This indicates the transition of the loading 
into the post-peak stage. When the crack encounters aggregate particles, 
its direction of expansion changes, and it meanders along the ITZ 
propagating upwards (Figure 7(d)). The main crack extends by bridging 
across the interfaces of microcracks surrounding adjacent aggregates 
(Figure 7(e)), widening progressively, leading to the beam’s near-total loss 
of load-bearing capacity (Figure 7(f)). Due to the random spatial 
distribution of aggregates, the path of crack evolution is highly irregular. 
As the main crack grows, stress concentration occurs near the crack tip, 
giving rise to many new microcracks, while some of the earlier formed 
microcracks cease to grow or even close. Furthermore, following cracking, 
the stresses within the elements are released. 

 
 (a) t1=0.0050s (b) t2=0.0100s (c) t3=0.0136s 

 
 (d) t4=0.0150s (e) t5=0.0158s (f) t6=0.0162s  

Fig. 7 Evolution of in-Plane principal stress 

4. Size effect of concrete fracture 
characteristics  

4.1 P-CMOD curve 

The P-CMOD curves obtained from three-point bending simulations of 
beams with varying depths and notch-to-depth ratio are shown in Figures 
8. These results are comparable to the experimental data presented in 
literature (Karihaloo et al. 2003; Lu and Hu 2015; Chen et al. 2020; Wang 
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et al. 2021). In Figure 8 (a), the notch-to-depth ratio of the beam models 
consistently 0.3, while the beam depths are 50 mm, 100 mm, 200 mm, 300 
mm, and 400 mm, respectively. As the beam height increases, the load P 
decreases more rapidly in the post-peak phase of the P-CMOD curve, which 
indicates that the crack extension is faster in large-sized specimens. This 
may be because in larger specimens, microcracks within the material are 
more likely to accumulate and interact, which can lead to faster crack 
propagation and a quicker decrease in load. In Figure 8 (b), the depth of 
beam models is 300 mm, while the notch-to-depth ratio are 0.1, 0.2, 0.3, 
0.4, and 0.5 respectively. The CMOD values corresponding to the peak 
loads of specimens with different notch-to-depth ratio are similar. This 
suggests that the initiation of crack propagation is not significantly by the 
notch geometry. This implies that, regardless of the notch-to-depth ratio, 
once the crack starts propagating, the material's resistance to fracture 
reaches a similar threshold, leading to comparable CMOD values at peak 
load. 

 
(a) 

 
(b) 

Fig. 8 Comparison of the numerical simulation results of P-CMOD 
(sim) with the experimental results (exp) in the literature: (a) 
different depths; (b) different notch-to-depth ratios 

4.2 Fracture Toughness 

Crack initiation toughness, KIC, is a key material property that 
represents the material's resistance to crack initiation before the crack 
reaches an unstable propagation stage. For a three-point bending test, the 
crack initiation fracture toughness can be calculated using the following 
formula (Tada et al. 1973; Golewski 2023):  

𝐾IC =
3𝑃𝑆

2𝐵𝐷2
√𝜋𝑎0𝑌    (3) 

 𝑌 =
1.99−

𝑎0
𝐷
(1−

𝑎0
𝐷
)(2.15−3.93

𝑎0
𝐷
+2.7(

𝑎0
𝐷
)
2
)

√𝜋(1+2
𝑎0
𝐷
)(1−

𝑎0
𝐷
)3/2

    (4) 

 
Fig. 9 Variations of fracture Toughness with height 

Where, P represents the crack initiation load, which is the load applied 
at the moment the crack begins to propagate. And S is the span length, B is 
the specimen's thickness, and D denotes the specimen's depth. 
Additionally, a0 is the depth of the precast crack, while Y is the geometry 
correction factor, which is dependent on the crack size. 

For three different specimen sizes of concrete beam, the KIC are 
calculated and shown in Figure 9. The calculated KIC values decrease with 
increasing specimen size. This indicates that larger specimens exhibit a 
reduction in crack initiation fracture toughness. 

4.3 Fracture Energy and Ductility Index 

Fracture Energy (Gf) refers to the energy required to extend a crack 
over a unit area of the surface and is closely related to the fracture process. 
It is calculated based on the three-point bending fracture energy formula 
and the load-deflection (P-δ) curve obtained from the experiment, as 
shown in equation (5) (Wang et al. 2017). The Ductility Index (Du) is used 
to measure the ductility properties of a specimen and is the ratio of 
Fracture Energy (Gf) to the peak load (Pmax). The calculation method is 
provided in equation (6) (Wang et al. 2017). 

𝐺𝑓 =
𝑊0

𝐴𝑙𝑖
=

∫ 𝑃(𝛿)𝑑𝛿
𝛿𝑚𝑎𝑥
0

𝐵(𝐷−𝑎0)
    (5)  

𝐷𝑢 = 𝐺𝑓/𝑃𝑚𝑎𝑥     (6) 

Where, W0 represents the work done by the external load, which is 
the area enclosed by the P-δ curve and the x-axis. δmax is the maximum 
opening displacement of the initial crack mouth. Ali is the area of the 
fracture zone of the specimen.  

In the post-peak stage of the P-CMOD curve, when the load is reduced 
to about 1/5 of the peak load, the P-CMOD curve enters a slowly declining 
phase. And the fracture development slows down afterwards. Therefore, 
when calculating the fracture energy, only the part before the load drops 
to 1/5 of the peak load is considered. The simulation data of beam models 
with different depths are substituted into equations (5) and (6) 
respectively to calculate their fracture energy and ductility index. The 
results are plotted in Figure 10. 
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Fig. 10 Variations of fracture energy and ductility index with 
depth 

As the beam depth increases from 50 mm to 400 mm, the fracture 
energy of the sample shows a trend of first increasing and then decreasing, 
indicating a certain size effect. It is caused by changes in the effective 
length ratio of the fracture surface and the uneven distribution of local 
fractured energy on the fracture ligament. When the beam depth is less 
than 200 mm, the increase in fracture energy with the increase in beam 
depth is due to the change in the effective length ratio of the fracture 
surface; the fracture toughness of the concrete is only related to the 
properties of the concrete at the tip of the prefabricated fracture. As the 
depth of the beam increases, the development of the fracture becomes 
more complete, the fracture process area between the initiation and 
instability of the beam becomes longer, the effective length ratio of the 
fracture increases, and the fracture energy increases. 

From a macroscopic perspective, the increase in beam depth leads to 
the crack encountering more aggregates during its initiation and 
development process. The tortuosity and length of the crack propagation 
path increase, resulting in the specimen generating more and wider micro-
cracks during the failure process. Thus, the ratio of the actual cracking area 
to the nominal fracture area is higher. Therefore, the fracture of energy 
gradually increases as the beam depth increases. However, when the beam 
depth reaches a certain level, the development of cracks under the load 
becomes sufficient. The increase in beam depth will no longer affect the 
effective length ratio of the fracture surface, and thus, the fracture energy 
no longer increases significantly. 

For beams that are taller than 200 mm, the fracture energy slightly 
decreases as the beam depth increases. This decrease is caused by the 
uneven distribution of local fractured energy on the fractured ligament. 
The unevenness of the local fracture energy is due to the localized 
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differences in the fractured tip elements and the varying constraints at the 
boundaries. Due to boundary effects, the local constraints on the fracture 
ligament of larger beams are relatively smaller compared to smaller 
beams. Therefore, there is a slight decrease in the average fracture of 
energy. However, it can be anticipated that when the beam depth is 
sufficiently high, the impact brought by boundary effects can be neglected. 

Moreover, as the beam depth increases, the ductility index of the beam 
gradually decreases, which means that brittleness increases. This may be 
because the higher the beam, the higher the peak load, and the greater the 
work done by the load per unit CMOD increases, thereby accelerating the 
crack propagation and failure of the beam. From a mathematical 
perspective, as the depth of the beam increases, the peak load 
continuously increases, while the fracture energy cannot continue to 
increase. Therefore, as the ratio of the two, the ductility index will 
continuously decrease, and this trend will not change. 

The fracture energy and ductility index obtained from model 
simulations with different notch-to-depth ratio are shown in Figure 11, 
where the beam depth of the beam models is uniformly 300 mm. As the 
notch-to-depth ratio increases, the fracture energy of the beam gradually 
decreases. This is because for specimens with smaller notch-to-depth 
ratios, the fracture process zone from initiation to unstable failure is 
longer, and the tortuosity of cracks generated under the influence of 
aggregates is greater. Thus, the ratio of the actual length of the crack to the 
nominal effective length, that is, the effective length ratio of the fracture 
surface, is larger, resulting in greater fracture energy of the specimen. 
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Fig. 11 Variations of fracture energy and ductility index with 
notch-to-depth ratio 

Moreover, when the notch-to-depth ratio is less than 0.3, the ductility 
index slightly increases with the increase of the notch-to-depth ratio. 
When the notch-to-depth ratio is greater than 0.3, the ductility index of the 
specimens no longer changes significantly. On one hand, this is because the 
presence of precast cracks can lead to a certain degree of stress 
concentration when the concrete beam is subjected to force. However, 
when the notch-to-depth ratio is small, the impact of this stress 
concentration is less, and the range of plastic deformation in the beam is 
relatively larger. Therefore, the ductility index will slightly increase. 
However, when the notch-to-depth ratio exceeds a certain value, the 
plastic deformation capability of the concrete is significantly weakened 
due to the impact of stress concentration. This is primarily manifested by 
fractures along the precast cracks, leading to no significant change in the 
ductility index. On the other hand, this may be due to fluctuations caused 
by differences in aggregate distribution among different models. Overall, 
as the notch-to-depth ratio increases, the ductility index of the models all 
falls within the range of 0.025±0.0045 m^-1. Compared to changes in the 
ductility index caused by variations in beam depth, the impact of the 
notch-to-depth ratio on the beam's ductility index is minimal. 

5. Conclusion 

This paper has established a micro-scale numerical model of concrete 
based on the FDEM method. Through the simulation of three-point 
bending of beams, it has unveiled the micro-fracture process and 
mechanisms of concrete beams and analyzed the influence patterns of 
beam depth and different notch-to-depth ratio on the fracture energy and 
ductility index of concrete. The main conclusions are as follows: 

(1) The generation of cracks at the tip of the void is actually composed 
of a main crack and numerous micro-cracks. Due to the 
concentration of the principal tensile stress, the initial major 
macro-crack appears near the tip of the pre-formed void at the 
load peak. As the crack begins to extend, the load curve rapidly 
declines. The crack propagates along the ITZ near the aggregate, 
extends by bridging the ITZ around adjacent aggregates, and 
ultimately forms a through crack. 

(2) As the beam height increases, the load P decreases more rapidly 
in the post-peak phase of the P-CMOD curve, which indicates that 

the crack extension is faster in large-sized specimens. Besides, the 
CMOD values corresponding to the peak loads of specimens with 
different notch-to-depth ratio are similar. This suggests that the 
initiation of crack propagation is not significantly influenced by 
the notch-to-depth ratio. 

(3) The fracture performance of small-scale beams exhibits certain 
size effects. As the beam depth increases from 50 mm to 400 mm, 
the fracture toughness of the specimens decreases. And the 
fracture of energy shows a trend of first increasing and then 
slightly decreasing. With the increase in the notch-to-depth ratio, 
the fracture energy of the beams gradually decreases, while the 
variation in the ductility index is not significant. 
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