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Abstract 

In recent years, fiber-reinforced polymers (FRP) have emerged as a highly effective solution for strengthening 
reinforced concrete (RC) structures. However, accurately assessing the fire resistance of FRP-strengthened 
members remains a significant challenge due to the limited guidance available in current building codes, often 
leading to conservative and cost-intensive evaluations. Experimental testing and numerical analysis required for 
such assessments are resource-demanding, highlighting the need for more efficient methods. This study 
investigates the application of machine learning (ML) techniques to predict the fire resistance of FRP-
strengthened RC beams. Twelve ML models, including eight ensemble methods and four traditional approaches, 
were employed. The models were trained using a comprehensive dataset comprising over 21,000 data points 
obtained from numerical simulations and experimental tests. The dataset captured variations in geometric 
configurations, insulation strategies, loading conditions, and material properties. To enhance predictive accuracy, 
Bayesian optimization and k-fold cross-validation were applied for model tuning, while the Shapley Additive 
Explanations (SHAP) method was utilized to assess the relative importance of features influencing fire resistance. 
Among the models tested, Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Light Gradient 
Boosting (LGBoost), and Gradient Boosting (GRB) demonstrated superior performance, achieving accuracy rates 
exceeding 92%. Key factors identified as significantly affecting fire resistance included loading ratio, area of 
tensile reinforcement, insulation depth, concrete cover thickness, and FRP area. The findings underscore the 
potential of ensemble ML techniques over traditional methods for accurately predicting the fire resistance of FRP-
strengthened RC beams, offering critical insights for optimizing design practices and enhancing structural fire 
safety. 
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1. Introduction

The deterioration of structural components in buildings and bridges 
caused by factors like aging, material degradation, insufficient 
maintenance, and seismic activity has spurred the search for efficient and 
cost-effective repair methods. Traditional approaches include member 
replacement, externally bonded steel plates, supplementary elements 
addition, external post-tensioning, and concrete jackets or steel 
reinforcements (Chen et al., 2020). While effective, these methods often 
entail increased deadload and substantial implementation time. An 
emerging alternative method involves the utilization of fiber-reinforced 
polymers (FRP) for retrofitting reinforced concrete (RC) structures. FRP 
strengthening has gained rapid acceptance due to its efficiency and cost-
effectiveness, attributed to characteristics such as lightweight, exceptional 
strength, corrosion resistance, and durability. FRP materials, with their 
ability to be shaped conveniently, offer versatility in construction 
applications (Abuodeh et al., 2020). Precise prediction and assessment of 
the strengthening effect in RC beams using FRP are crucial for evaluating 
effectiveness and design comprehensively. Two principal methods, 
namely, externally bonded (EB) and near-surface-mounted (NSM) 
techniques, are commonly employed in strengthening RC beams using 
FRP. While these approaches have demonstrated effectiveness in 
enhancing the flexural and shear capacity of RC structures, it is essential 
to recognize that FRP reinforcement presents limitations, particularly in 
scenarios involving exposure to fire. 

The challenges associated with FRP performance during fire exposure, 
including polymer matrix decomposition, loss of strength and stiffness 
properties, and degradation of the bond between FRP and concrete, are 
key considerations limiting its widespread adoption, particularly in fire-
resistant building designs. Consequently, it is crucial to prioritize 
addressing fire resistance concerns to enable the wider application of FRP 
strengthening in RC structures, thereby safeguarding structural integrity 
and ensuring overall safety. Traditionally, the determination of fire 

resistance for FRP-strengthened RC beams has primarily relied on 
theoretical analysis and experimental studies.  These approaches can also 
be time-consuming and prone to errors due to simplifications, such as 
neglecting the contribution of FRP, leading to conservative predictions.  

The performance of FRP in concrete structures is significantly affected 
by temperature variations. As is common with many materials, the 
strength of FRP tends to decrease as temperature increases (Fig. 1). When 
FRP-reinforced concrete elements are subjected to gradual heating, failure 
often occurs before the FRP reaches its melting or sublimation point. This 
failure is typically caused by the degradation of the mechanical properties 
of the reinforcement as the temperature rises. Moreover, the elastic 
moduli of carbon fiber-reinforced polymer (CFRP) materials exhibit 
temperature-dependent behavior. While the longitudinal modulus 
remains relatively constant, the transverse and shear moduli decrease as 
temperature rises (Gates, 1991). This is primarily due to the sensitivity of 
the matrix material to temperature changes, which affects the overall 
behavior of the composite.  

Several case studies have been conducted to investigate the effects of 
temperature on CFRP composites, such as AS4/PEEK (Uematsu et al., 
1995). These studies have revealed that the longitudinal modulus remains 
nearly constant, while the transverse and shear moduli decrease 
significantly near the glass transition temperature (𝑇𝑔) of the matrix 

material. The decrease in elastic constants becomes more pronounced as 
the temperature approaches 𝑇𝑔, with substantial reductions observed at 

higher temperatures. Additionally, analyses of stress-strain relationships 
for CFRP composites indicate a noticeable reduction in both tensile and 
compressive strength at elevated temperatures. Strength degradation 
occurs progressively, with significant reductions observed at 
temperatures exceeding 100°C (V. K. R. Kodur et al., 1996).  

The influence of creep on the behavior of FRP-reinforced concrete 
structures at elevated temperatures is substantial. Gate's findings (Gates, 
1991) illustrate this effect, showing the creep strain of an off-axis CFRP 
composite at a constant stress of 76 MPa. Notably, the increase in creep 
strain becomes significantly pronounced above 150°C. For instance, after 
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150 seconds, the creep strain at 200°C is approximately 18 times higher 
than that at 150°C. Thermal expansion, another crucial deformation 
property affecting the fire behavior of structural members, plays a vital 
role in understanding material behavior. The coefficient of thermal 
expansion (CTE) quantifies the change in the unit length of a material per 
unit temperature change, which is crucial for calculating dimensional 
changes and thermal stresses due to temperature variations (V. K. R. 
Kodur et al., 1996). Unlike steel, the CTEs of composite materials, varying 
with fiber type, orientation, and volume fraction, are generally higher at 
room temperature (Gudonis et al., 2014). This discrepancy in thermal 
expansion between FRP reinforcements and concrete poses challenges. 
Tensile stresses in concrete members reinforced with FRP may lead to 
cracking due to thermal expansion incompatibility, potentially causing 
concrete spalling and compromising structural integrity, especially in fire 
scenarios (Silverman, 1983). Several experimental studies have been 
conducted to assess the fire resistance of FRP-strengthened RC beams. 
Deuring evaluated the fire performance of CFRP- and steel-strengthened 
RC beams under ISO 834 fire (Deuring, 1994). Observing reduced FRP-
concrete interaction early in fire exposure, they recommended external 
thermal insulation to maintain bond effectiveness. Blontrock et al. tested 
FRP-strengthened RC beams with fire insulation, underlining the 
importance of keeping the FRP/concrete interface below the glass 
transition temperature (𝑇𝑔) in a critical range of 60–82 °C for epoxies 

where the adhesive weakens (Blontrock H, 2000). Williams et al tested 
FRP-strengthened T-beams with VG-EI-R insulation under standard fire 
(Williams B, 2008). Despite exceeding the glass transition temperature of 
the adhesive, a 38 mm thick insulation layer ensured a 4-hour fire 
resistance for the beams, highlighting the effectiveness of proper 
insulation. Ahmed and Kodur found that FRP-strengthened RC beams with 
a 25 mm fire protection system could resist failure for 3 hours under ASTM 
E119 fire conditions (Ahmed & Kodur, 2011). Failure occurred after the 
glass transition temperature of FRP, and it was influenced by rebar 
temperature, insulation, and cooler anchorages. Their study highlights the 
importance of fire-induced restraint, insulation for deflection control, and 
proper configuration to prevent debonding for strong fire resistance.  

Fig. 1 Variation of strength with temperature for different 
materials (V. K. R.; B. D. Kodur, 1996) 

Several numerical models have been explored to predict fire behavior 
in FRP-strengthened RC members. Kodur V. et al. proposed a numerical 
model to analyze the behavior of FRP-strengthened RC beams exposed to 
fire (V. K. R. Kodur & Ahmed, 2010). This model, presented in their study, 
demonstrates the capability to predict the response of FRP-strengthened 
RC beams under fire conditions. Kodur V. with Yu B. presented a rational 
approach for evaluating the fire resistance of FRP-strengthened concrete 
beams, but the equations are validated for specific types of FRP-
strengthened RC beams and under standard fire conditions only (V. K. R. 
Kodur & Yu, 2016). El-Mahdy et al. successfully developed a finite element 
model for simulating fire response in FRP-strengthened beams with 
thermal insulation, validated against experimental data (El-Mahdy et al., 
2018). However, a notable challenge associated with these numerical 
models is their high computational cost and time-consuming nature.  

The emergence of machine learning (ML) techniques, driven by 
advancements in soft computing, has fostered their application in various 
domains of structural engineering, including design optimization 
(Alabdullh et al., 2022), damage detection (Baduge et al., 2023), structural 
member resistance, fire resistance assessment and structural health 
monitoring (Baduge et al., 2022). ML algorithms enable the analysis of vast 
datasets, uncovering intricate patterns that improve the accuracy and 
efficiency of structural predictions and assessments. In a related study, 
Naser et al. proposed a methodology for developing and testing supervised 
ML algorithms against structural and fire engineering databases, including 
Decision Trees (DT), Extreme Gradient Boosted Trees (ExGBTs), Light 

Gradient Boosting (LGBoost), Random Forest (RF), TensorFlow Deep 
Learning (TFDL), and Keras Deep Residual Neural Network (KDPNN) (M. 
Z. Naser et al., 2021). Their investigation laid the groundwork for a 
comprehensive framework to accelerate the adoption of ML in structural 
and fire engineering fields, demonstrating the capability of these 
algorithms to capture the phenomena under investigation accurately. 
Zhongnan Ye et al. conducted research on real-time prediction of 
structural fire response using a finite element-based machine learning 
approach. Their study revealed that RF and Gradient Boosting (GRB) 
models outperformed DT and Support Vector Machine (SVM) models in 
predictive accuracy (Ye et al., 2022). 

Naser et al. utilized an artificial neural network (ANN) model to 
predict the temperature distribution of RC T-beams reinforced with CFRP 
plates under fire conditions (M. Naser et al., 2012). Additionally, Mashrei 
et al. introduced a back-propagation neural network (BNN) approach to 
estimate the bond strength between FRP and concrete joints (Mashrei et 
al., 2013). Chen et al. utilized Gradient Boosting Decision Tree (GBDT) and 
RF algorithms to predict the bond strength of CFRP-steel interfaces, 
achieving a remarkable R² of 0.98 with the GBDT model (Chen et al., 2021). 
This demonstrates the superior ability of ensemble models to capture 
intricate data relationships, enhancing the design and evaluation of CFRP-
strengthened steel structures. Similarly, Milad et al. employed XGBoost, 
Multivariate Adaptive Regression Spline (MARS), and RF for predicting 
FRP composite strain (Milad et al., 2022). These models outperformed 
traditional empirical models, underscoring their reliability and 
effectiveness in civil engineering applications. Further reinforcing the 
benefits of ensemble models, Kim et al. developed a CatBoost-based model 
for predicting FRP-concrete bond strength, achieving superior 
performance metrics compared to other ensemble methods and existing 
models (Kim et al., 2022). Amin et al. estimated the flexural capacity of 
FRP-reinforced concrete beams using decision tree (DT) and gradient 
boosting tree (GBT) models, with the GBT model showing greater accuracy 
and robustness (Amin et al., 2022). These studies collectively highlight the 
transformative potential of ensemble ML models in civil engineering, 
providing enhanced predictive capabilities and accuracy over traditional 
empirical approaches. Bhatt and Sharma developed a data-driven deep 
neural network (DNN) to evaluate the fire resistance time of RC beams 
strengthened with FRP (Bhatt & Sharma, 2021). They utilized both scaled 
and unscaled datasets, incorporating various geometry, insulation 
configurations, applied loads, and material properties. After extensive 
hyperparameter tuning and ten-fold cross-validation, the DNN model 
demonstrated a relatively accurate assessment of the fire resistance of 
FRP-strengthened concrete beams. Their analysis underscored the critical 
role of insulation thermal properties in influencing fire resistance, 
achieving an impressive R² value of almost 92%.  

Furthermore, building upon existing research in fire resistance 
prediction of FRP-strengthened RC beams, Kumarawadu et al. 
(Kumarawadu et al., 2024) explored the performance of six machine 
learning (ML) models. These models encompassed ensemble methods like 
LGBoost and RF alongside traditional ML algorithms such as K-Nearest 
Neighbor (KNN), DT, Polynomial Regression (PR) and Linear Regression 
(LR). Grid Search optimization was employed to optimize the 
hyperparameters of each model. Notably, the LGBoost model achieved the 
highest accuracy (R² value), reaching 92.3%. This finding suggests that 
ensemble methods hold promise for predicting fire resistance in FRP-
strengthened concrete beams. This study clearly demonstrates that 
exploring ensemble learning techniques presents a promising approach 
for predicting the fire resistance of FRP-strengthened concrete beams.  

Ensemble ML models have proven to be powerful tools in solving 
complex engineering problems, offering significant advantages over 
traditional empirical models. Existing research extensively employs 
experimental and numerical methods to assess the fire resistance of FRP-
strengthened concrete beams. While achieving acceptable accuracy, these 
approaches are often time-consuming, resource-intensive, and 
computationally expensive, hindering their practical application. ML 
offers a promising alternative for fire resistance prediction, but current 
research is limited, with only a few studies achieving a maximum accuracy 
of 92.3%. This highlights the need to explore further ML techniques to 
enhance predictive capabilities and achieve superior accuracy. This study 
endeavors to address this gap by developing an improved ML model for 
fire resistance prediction, ultimately contributing to more efficient and 
accurate fire safety assessments in FRP- RC structures. This study 
investigates the development of accurate predictive models for fire 
resistance in FRP-strengthened RC beams. The investigation employs 
twelve ML models both traditional and ensemble ML techniques. The 
performance of these models will be evaluated through comparison with 
established experimental and numerical results. The coefficient of 
determination (R² values) will serve as the primary metric for assessing 
model accuracy. Furthermore, the Shapley Additive explanation (SHAP) 
technique will be utilized to gain insights into the relative significance and 
influence of various input features on the predicted fire resistance. 
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2. Dataset

Table 1. Range of values considered for the parameters used for generating the database (Bhatt et al., 2024) 

Parameter Category Description Minimum  Maximum 
Geometrical 
parameters 

Length of beam - 𝐿 (m) 1 6 
Area of concrete beam – 𝐴𝑐  (mm2) 12,000 157,500 
Concrete cover – 𝐶𝐶 (mm) 10 38 
Total area of tensile steel reinforcement – 𝐴𝑆  (mm2) 157 1473 
Area of FRP – 𝐴𝑓 (mm2) 1.1 640 

Thickness of Insulation – 𝑡𝑖𝑛𝑠 (mm) 0 38 
Depth of insulation on sides – ℎ𝑖 (mm) 0 115 

Material property 
parameters 

Compressive strength of concrete – 𝑓𝑐 (MPa) 25 45 
Yield strength of steel – 𝑓𝑦 (MPa) 414 460 

Elastic modulus of steel reinforcement – 𝐸𝑠 (MPa) 200,000 210,000 
Tensile strength of FRP – 𝑓𝑢  (MPa) 900 4900 
Elastic modulus of FRP – 𝐸𝑓𝑟𝑝 (MPa) 66,000 255,530 

Glass transition temperature of polymer - 𝑇𝑔 (0C) 60 80 

Thermal conductivity of insulation - 𝑘𝑖𝑛𝑠 (W/mK) 0.037 0.228 
Specific heat capacity of insulation - 𝑟𝑖𝑛𝑠𝑐𝑖𝑛𝑠 (J/0Cm3) 240,000 1,031,000 

Loading parameters Total load applied on beams - 𝐿𝑑 (kN) 3 220 
Applied load ratio - 𝐿𝑅 (%) 15 75 

In this study, a comprehensive dataset developed by Bhatt et al. 
(2024), comprising over 21,384 experimental and numerical data points, 
was utilized. The dataset contains extensive information regarding the fire 
performance of FRP-strengthened reinforced concrete (RC) beams, 
including variations in geometric dimensions, levels of FRP-strengthening, 
steel reinforcement ratios, insulation thickness and configurations, 
material properties, and applied load levels. The parameters are classified 
into four main categories: geometrical, material properties, loading, and 
fire resistance parameters. The first three categories (geometrical, 
material properties, and loading) span a broad range of values, 
encompassing the practical applications commonly encountered in the 
field, as shown in Table 1. These value ranges were determined through 
consultations with industry experts and the practical experience of the 
authors of the study (Bhatt et al., 2024). 

Fire resistance evaluation of FRP-strengthened beams under ASTM 
E119 (American Society for Testing and Materials, n.d.)  considers both 
structural strength and serviceability. Failure under the strength criterion 
occurs when the bending moment from applied loads exceeds the capacity 
of the beam. Serviceability failure is defined by mid-span deflection 
exceeding 𝐿2/400𝑑 and a deflection rate surpassing 𝐿2/900𝑑 per minute 
over a minute (where 𝐿 is span length and 𝑑 is effective depth). The fire 
resistance duration is the time at which any of these criteria are first met, 
ensuring a comprehensive assessment of the performance of the beam 
under fire. 

3. Methodology

3.1 Parameter Correlations Map 

In this study, the geometrical, material, and loading parameters were 
selected as input parameters, while the failure time of the beam which 
represents the fire resistance of the beam, was considered as the output. 
To identify the relationships between these input parameters and the fire 
resistance (output), a heat map visualization was employed (Fig. 2). The 
heat map was generated using Google Collab and Python which is better at 
revealing correlations between variables using Pearson's correlation 
coefficient. The intensity and color coding of each cell in the heat map 
represent the strength and direction (positive or negative) of the 
correlation between two parameters. By analyzing Fig. 2, which depicts 
the heat map for input parameters of this study, valuable insights were 
gained regarding the interdependencies between these features. This 
visualization aided in focusing subsequent data analysis efforts on the 
most impactful parameters, leading to a more efficient and targeted 
investigation. 

3.2 Development of ML Models 

Ensemble learning methods in ML involve the integration of multiple 
learning algorithms to enhance predictive performance. It has been 
observed that combining multiple learning models often results in 
significantly improved performance compared to individual base learners, 
both in theory and through empirical experimentation. The application of 
ensemble ML techniques for predicting the behavior of FRP-strengthened 
RC beams represents a novel and significant advancement in the field of 
structural engineering. The integration of advanced ML in predicting fire 
resistance of FRP-strengthened RC beams is relatively unexplored and 
offers substantial improvements in prediction accuracy and reliability.  

This study pioneers the use of these ensemble methods to capture the 
complex interactions between material properties, loading conditions, and 

geometric configurations inherent in FRP-strengthened RC beams. By 
combining multiple base learners, these techniques overcome the 
limitations of single predictive models, ensuring more robust and 
generalizable outcomes (Fig. 3). This innovative approach not only 
addresses a critical gap in the existing literature but also enhances the 
precision of structural performance predictions, leading to safer and more 
efficient design practices. The findings of this research are poised to 
significantly impact the field, providing new insights and methodologies 
for the analysis and optimization of FRP-strengthened RC beams, thereby 
advancing both theoretical understanding and practical applications in 
structural engineering. 

Fig. 2 Correlation heat map of the variables 

In developing the ML framework, the accessible and user-friendly 
‘Google Colaboratory' platform was utilized. This web-based interactive 
computing platform is widely used globally for its convenience and 
versatility. To determine the most suitable ML techniques for the 
framework, a comprehensive literature review was conducted, and twelve 
techniques were carefully selected, encompassing both ensemble methods 
and traditional ML algorithms. The study employed various ensemble 
models, including adaptive boosting (AdaBoost), extreme gradient 
boosting (XGBoost), gradient boosting (GRB), categorical boosting 
(CatBoost), RF, histogram gradient boosting (HGBoost), bagging regressor 
(BR), and light gradient boosting (LGBoost). These models utilized 
different ensembling techniques to enhance performance and robustness. 
Specifically, AdaBoost, GRB, XGBoost, CatBoost, and LGBoost applied 
boosting techniques with decision trees as their base learners.  

AdaBoost incrementally focused on correcting the errors of previous 
models, while GRB and XGBoost sequentially combined weak learners' 
outputs. CatBoost optimized performance on categorical features, and 
LGBoost aimed for computational efficiency. RF and BR employed bagging, 
training multiple decision trees on bootstrapped subsets of the data to 
reduce variance and improve generalization. HGBoost used histogram-
based techniques with decision trees for efficient large dataset handling. 
Fig. 3 illustrates the fundamental concepts underlying bagging and 
boosting ensemble techniques. 
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Fig. 3 Conceptual representation of traditional and ensemble 
learning techniques 

Additionally, four empirical machine learning models were evaluated: 
artificial neural network (ANN), decision tree (DT), support vector 
machine (SVM), and polynomial regression (PR). This diverse selection 
explored a range of approaches to ensure robustness and effectiveness in 
the machine learning framework. The structured methodology leveraged 
the strengths of both ensemble and empirical methods, providing a robust 
framework for fire resistance prediction.  

In predicting the behavior of FRP-strengthened RC beams, the 
extensive number of input parameters necessitated an initial step to 
enhance computational efficiency and reduce sensitivity to outliers and 
noise. Hence, parameters with an absolute correlation value less than 0.1 
with the output parameter (see Fig.2 for details), including 𝑓𝑐, 𝑓𝑦, 𝐸𝑠, 𝑓𝑢, 

𝐸𝑓𝑟𝑝, 𝑇𝑔, 𝑘𝑖𝑛𝑠, and 𝑟𝑖𝑛𝑠𝑐𝑖𝑛𝑠, were excluded from the analysis. This 

preliminary exclusion aimed to streamline the computational process. 
However, contrary to initial expectations, retaining all input parameters 
yielded better model accuracies in subsequent testing. Consequently, it 
was decided to proceed with the full set of seventeen input parameters for 
the analysis. The development of the machine learning models adhered to 
a rigorous and systematic procedure. This process, as illustrated in Fig. 4 
ensured the models were both reliable and interpretable. First, the 
relevant dataset was imported, and the key variables were defined. These 
included the input features (𝑋), representing the various material and fire-
related properties, and the output variable (𝑌), which corresponded to the 
fire resistance of the FRP-strengthened concrete beams. Following data 
preparation, the dataset was strategically partitioned into training and 
testing sets. A common split of 70% for training and 30% for testing was 
employed. The training set played a crucial role in the learning process of 
the model. By analyzing the patterns within the training data, the model 

established relationships between the input features and the desired fire 
resistance outcome (𝑌). Once trained, the performance of the model was 
thoroughly evaluated using the unseen testing set. This evaluation process 
was vital in assessing the ability of the model to generalize to new data and 
make accurate predictions beyond the training examples. The details of 
the training and evaluation process are illustrated in Fig. 4. 

To gain deeper insights into the behavior of the model and understand 
the relative importance of each input feature, explainable Artificial 
Intelligence (XAI) methods such as SHapley Additive exPlanations (SHAP) 
analysis and Feature Importance were utilized. These XAI methods 
provided valuable explanations for the decision-making process of the 
model, highlighting the most influential features driving the fire resistance 
predictions. Through this systematic approach, incorporating both data 
partitioning, training, testing, and explainability techniques, the machine 
learning models were effectively developed and evaluated, ensuring their 
reliability and interpretability for predicting fire resistance in FRP-
strengthened concrete beams. 

3.3 Model Optimization 

To ensure optimal performance and reliability of the machine learning 
models, a comprehensive hyperparameter optimization (HPO) approach 
was adopted. GridSearch (GS) stands out as a widely adopted approach for 
exploring the configuration space of hyperparameters (Kumarawadu et 
al., 2024). Therefore, GS was initially employed to optimize all twelve 
machine learning models. GS systematically evaluates all possible 
combinations of user-defined hyperparameter values. This exhaustive 
search approach offers ease of implementation and parallelization. 
However, a key limitation of GS is its inefficiency for high-dimensional 
hyperparameter spaces. As the number of hyperparameters and the 
search spaces increase, the number of evaluations required by GS grows 
exponentially, a phenomenon known as the "curse of dimensionality" 
(Ilievski et al., 2016). For instance, with ′𝑘′ hyperparameters having ′𝑛′ 
distinct values each, GS computational complexity scales exponentially at 
𝑂(𝑛𝑘) (Yang & Shami, 2020).  Therefore, GS can be considered effective for 
HPO when the hyperparameter space remains relatively small. 

While GS was initially employed for HPO due to its prevalence in fire 
resistance prediction of FRP-strengthened RC beams as observed by 
Kumarawadu et al. (Kumarawadu et al., 2024), its computational 
limitations became apparent. GS systematically evaluates all possible 
combinations within a predefined hyperparameter space, and this 
exhaustive approach can lead to significant execution time and needs 
substantial memory usage which limits its applicability for large datasets. 

To address this challenge and potentially achieve better model 
performance, the HPO method was transitioned to Bayesian optimization 
(BO). Unlike GS, BO is an iterative HPO technique that leverages past 
evaluations to guide future exploration.  It utilizes two key components: a 
surrogate model that approximates the objective function based on 
observed data points, and an acquisition function that balances 
exploration which is searching for potentially better configurations and 
exploitation which is focusing on promising regions identified by the 
surrogate model (Hazan et al., 2017). This balanced approach allows BO to 
efficiently navigate the hyperparameter space and potentially identify 
configurations that outperform those found by GS. Notably, employing BO 
significantly reduced execution time while potentially achieving 
satisfactory model accuracies.  

Fig. 4 Development of Finite Element based ML model 
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To ensure the generalizability and robustness of the developed ML 
models, a rigorous 10-fold cross-validation strategy was implemented as 
illustrated in Fig. 5. This technique effectively mitigates the risk of 
overfitting and enhances the ability of the model to perform well on 
unseen data, crucial for real-world applications in structural engineering. 
In 10-fold cross-validation, the dataset is randomly partitioned into ten 
equal folds. The model is iteratively trained on nine folds and validated on 
the remaining fold. This process is repeated ten times, with each fold 
serving as the validation set once. Finally, the performance metrics are 
averaged across all ten iterations, providing a comprehensive and reliable 
evaluation of the generalizability of the model. This approach ensures the 
model is not overly reliant on specific data points, enhancing its 
adaptability to diverse datasets commonly encountered in structural 
engineering practice. 

Fig. 5 Working principal of K-fold cross validation 

4. Results and Discussion

4.1 Effect of Excluding Weakly Correlated 
Features on the Accuracy of the Model 

Contrary to expectations, retaining all input parameters over filtering 
out the input parameters which have a less correlation value with the 
output parameter generally resulted in superior model performance, 
highlighting the complex relationships between inputs and fire resistance. 
While individual features may show low correlation, their combined 
effects can significantly enhance predictive power. Thus, correlation 
analysis alone may be insufficient for high-dimensional datasets, and 
excluding features based solely on correlation thresholds may discard 
relevant information, reducing model accuracy. This finding underscores 
the necessity of a more holistic approach to feature selection in machine 
learning models. 

4.2 Results of Models under Bayesian 
Optimization 

In evaluating regression models, a single metric like accuracy can be 
misleading. Instead, two key metrics have been used in this study to 
comprehensively assess performance. The R² score, also known as the 
coefficient of determination, reflects the proportion of variance in the 
target variable that the model can explain. R² value of ‘1’ indicates a perfect 
fit, while ‘0’ suggests the model offers no explanatory power. Furthermore, 
the mean standard deviation of the Cross-Validation score (CV score) is 
crucial for assessing the ability of a model to generalize to unseen data. 
Here, the data is split into training and testing sets, with the performance 
of model evaluated on unseen data in multiple random splits. The average 
performance across these splits provides a more robust estimate of 
generalizability compared to a single training-testing split.  This CV score 
offers valuable insights into the ability of the model to perform well on 
real-world data beyond the training set, reflecting its overall robustness 
and reliability. 

The results from all twelve ML models under BO are presented below 
in Fig. 6. From the data presented in Fig. 6, it is evident that XGBoost and 
LGBoost exhibit an accuracy level, surpassing R² value 92.3%. The analysis 
revealed another key strength of the employed ML models which is 
remarkably low variability in performance across different data subsets. 
This was evidenced by the standard deviation of all ten cross-validation 
scores remaining consistently below 1% for all models.  A low standard 
deviation in cross-validation scores signifies minimal performance 
fluctuation across different training and testing set splits within the data. 
This observation suggests a high degree of robustness in the models, 
implying their ability to generalize well to unseen data beyond the training 
set. 

Another key observation that could make is that notable ensemble ML 
models like XGBoost, CatBoost, GRB, HGBoost and BR demonstrate 
superior performance compared to traditional machine learning 
techniques in predicting the fire resistance of FRP-strengthened RC 
beams. This underscores the enhanced predictive accuracy and efficiency 
of ensemble machine learning techniques over conventional models in this 
application.  

4.3 Enhanced Interpretability with SHAP 

As ML models become increasingly complex, interpreting their 
decision-making processes becomes crucial. This study employed SHAP to 
provide post-hoc explanations for model predictions. SHAP operates 
similarly to parametric analysis, isolating the individual contribution of 
each input variable to the output of the model. This allows us to 
understand the underlying reasoning behind predictions and discern the 
relative influence of each feature on the predicted fire resistance of FRP-
strengthened concrete beams.

Fig. 6 Results obtained from the ML models 
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Given its superior performance in this study, XGBoost was chosen for 
the SHAP analysis.  Fig. 7 depicts the mean SHAP values for all input 
features across the entire dataset, highlighting their relative importance in 
predicting fire resistance of FRP-strengthened concrete beams. The 
results reveal that Loading Ratio (𝐿𝑅), total area of tensile steel 
reinforcement (𝐴𝑠), and depth of insulation on beam sides (ℎ𝑖) are the 
most significant contributors to the predictions of the model. Conversely, 
other input features have a comparatively lower impact on the predicted 
fire resistance.  This information is valuable for gaining insights into the 
factors that most critically influence the fire performance of FRP-
strengthened beams. 

Fig. 7 SHAP Feature Importance Plot 

Fig. 8 presents a summary plot of the SHAP analysis, visually depicting 
the impact of each input attribute on the predicted fire resistance of FRP-
strengthened concrete beams. This plot facilitates the interpretation of 
feature importance by correlating input parameters with their respective 
influence on the predictions of the model. The y-axis ranks the variables in 
descending order of significance, with the most influential features 
positioned at the top. The x-axis displays SHAP values, representing the 
magnitude of influence of each variable. The color of the dots further 
emphasizes this influence, ranging from blue (low impact) to red (high 
impact). 

Each data point in the plot corresponds to a sample from the dataset. 
The horizontal extent of the dot on the x-axis signifies the range of 
predictions for that sample based on its individual SHAP values. This range 
visually demonstrates the varying impact of different input attributes 
from blue (low impact) to red (high impact) on the predicted fire 
resistance for each sample. 

Fig. 8 SHAP Summary Plot 

The SHAP summary plot shown above provides valuable insights into 
how each input parameter influences the predicted fire resistance of FRP-
strengthened concrete beams.  For parameters like Loading Ratio (𝐿𝑅), 

Area of FRP (𝐴𝑓), and Load (𝐿𝑑), a negative correlation with fire resistance 

is observed. This is reflected by a concentration of red dots which depict 
high SHAP values on the negative side of the x-axis and blue dots which 
depict low SHAP values on the positive side, indicating that increasing 
these parameters leads to a decrease in predicted fire resistance.  
Conversely, features like total area of tensile steel reinforcement (𝐴𝑠), 
depth of insulation on beam sides (ℎ𝑖), and cover to steel reinforcement 
(𝐶𝑐) exhibit a positive influence. Here, red dots on the positive side and 
blue dots on the negative side suggest that increasing these parameters is 
associated with higher predicted fire resistance. 

Interestingly, material properties such as elastic modulus of FRP (𝐸𝑠), 
ultimate tensile strength of FRP (𝑓𝑢), glass transition temperature of FRP 
(𝑇𝑔), yield strength of steel rebars (𝑓𝑦), compressive strength of concrete 

(𝑓𝑐), and elastic modulus of steel reinforcement (𝐸𝑓𝑟𝑝) appear to have a 

lesser impact on the predictions of the model. This is reflected by their 
positioning lower in the ranking in Fig. 8 with a narrower range of SHAP 
values manifested by the horizontal spread of data points.  

5. Conclusion

The application of finite element-based machine learning techniques 
for predicting the fire resistance of FRP-strengthened RC beams was 
investigated in this study. A comprehensive dataset exceeding 21,000 data 
points, combining numerical and experimental results, was utilized to 
train and validate the prediction models. Ensemble and traditional ML 
algorithms were employed to develop fire resistance prediction models 
using this dataset. The coefficient of determination (R² value) was used as 
the primary metric to assess model performance and accuracy. SHAP 
analysis was further implemented to interpret the models by analyzing the 
contribution and direction of each feature impacting the predicted fire 
resistance. 

It was found that fire resistance prediction can be achieved with a high 
level of accuracy exceeding 90% using ensemble learning techniques such 
as XGBoost, CatBoost, LGBoost, HGBoost, GRB, and RF. These methods 
were shown to outperform conventional machine learning techniques like 
ANN, DT, PR, and SVM, demonstrating the advantages of ensemble 
learning. However, it is worth noting that even conventional ML 
techniques like ANN exhibited an attractive accuracy level of 89.5%, 
showcasing their effectiveness in this predictive task. 

It was determined that relying solely on correlation coefficients for 
feature selection may not comprehensively capture the intricate 
relationships between variables, particularly in datasets with numerous 
dimensions. While correlation analysis offered valuable insights into 
variable relationships, it may not adequately account for complex 
interactions between features. Reducing the feature space based on 
correlation thresholds can simplify the model and enhance 
interpretability, but it runs the risk of sacrificing predictive accuracy, 
especially in datasets with intricate interdependencies among variables. 

The SHAP analysis highlighted key parameters affecting fire 
resistance prediction in FRP-strengthened RC beams. Loading ratio, area 
of FRP and total applied loading were found to negatively impact fire 
resistance, while parameters such as the total area of tensile steel 
reinforcement, depth of insulation on sides of beams, and cover to steel 
reinforcement positively influenced it. Material properties like the elastic 
modulus of FRP and ultimate tensile strength of FRP exhibited lesser 
influence. 

Furthermore, the effectiveness of ensemble ML techniques in 
significantly improving the accuracy of fire resistance prediction for FRP-
strengthened concrete beams was emphasized. This enhanced accuracy 
has significant implications for optimizing the structural fire design of 
concrete structures. By providing engineers with reliable data, these 
models can support informed decision-making. Accurate predictions 
enable the identification of structural weaknesses during fire scenarios, 
facilitating targeted reinforcement strategies to improve performance 
while optimizing material and resource usage. Additionally, precise 
predictions can aid in the development and validation of advanced 
computational models for simulating fire behavior and its impact on 
concrete structures. This comprehensive approach empowers engineers 
to explore various design scenarios and evaluate the effectiveness of fire 
protection measures, ultimately leading to the design and construction of 
safer and more resilient structures. 

Even though a comprehensive database exceeding 21,000 data points 
were used in the analysis of this study, the dataset was limited to five 
specific insulation materials and standard fire exposure scenarios. It is 
recommended that a more extensive database be developed, 
incorporating a broader range of insulation materials and fire conditions 
encountered in real-world applications. Expanding the dataset to include 
diverse fire scenarios will enhance the reliability and generalizability of 
the developed fire resistance prediction models. This enrichment will 
significantly improve the practical utility of these models for engineers by 
enabling the prediction of fire performance in a wider range of real-world 
situations. 
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