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1 INTRODUCTION  
 
The analysis, design and construction of offshore 
structures is arguably one of the most demanding 
sets of tasks faced by the engineering profession. 
Over and above the usual conditions and situations 
met by land-based structures, offshore structures 
have the added complication of being placed in an 
ocean environment where hydrodynamic interaction 
effects and dynamic response become major consid-
erations in their design. In addition, the range of 
possible design solutions, such as: ship-like Floating 
Production Systems, (FPSs), and Tension Leg Plat-
form (TLP) deep water designs; the more traditional 
jacket and jack-up (space truss like) oil rigs; and the 
large member sized gravity-style offshore platforms 
themselves (see Fig. 1), pose their own peculiar de-

mands in terms of hydrodynamic loading effects, 
foundation support conditions and character of the 
dynamic response of not only the structure itself but 
also of the riser systems for oil extraction adopted 
by them. Invariably, non-linearities in the descrip-
tion of the hydrodynamic loading characteristics of 
the structure-fluid interaction and in the associated 
structural response can assume importance and need 
be addressed. Access to specialist modelling soft-
ware is often required to be able to do so. 

This paper provides a broad overview of some of 
the key factors in the analysis and design of offshore 
structures to be considered by an engineer uniniti-
ated in the field of offshore engineering. Reference 
is made to a number of publications in which further 
detail and extension of treatment can be explored by 
the interested reader, as needed.

 

 
Figure1: Sample offshore structure designs 
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ABSTRACT: This paper provides a broad overview of some of the key factors in the analysis and design of 
offshore structures to be considered by an engineer uninitiated in the field of offshore engineering. Topics 
covered range from water wave theories, structure-fluid interaction in waves to the prediction of extreme val-
ues of response from spectral modeling approaches. The interested reader can then explore these topics in 
greater detail through a number of key references listed in the text. 
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2 OFFSHORE ENGINEERING BASICS  
 
A basic understanding of a number of key subject 
areas is essential to an engineer likely to be involved 
in the design of offshore structures, (Sarpkaya & 
Isaacson, 1981; Chakrabarti, 1987; Graff, 1981; 
DNS-OS-101, 2004). 

These subject areas, though not mutually exclu-
sive, would include: 

• Hydrodynamics 
• Structural dynamics 
• Advanced structural analysis techniques 
• Statistics of extremes 

amongst others. 
In the following sections, we provide an overview 

of some of the key elements of these topic areas, by 
way of an introduction to the general field of off-
shore engineering and the design of offshore struc-
tures. 

2.1 Hydrodynamics  
Hydrodynamics is concerned with the study of water 
in motion. In the context of an offshore environ-
ment, the water of concern is the salty ocean. Its mo-
tion, (the kinematics of the water particles) stems 
from a number of sources including slowly varying 
currents from the effect of the tides and from local 
thermal influences and oscillatory motion from wave 
activity that is normally wind-generated.  

The characteristics of currents and waves, them-
selves would be very much site dependent, with ex-
treme values of principal interest to the LFRD ap-
proach used for offshore structure design, associated 
with the statistics of the climatic condition of the site 
of interest, (Nigam & Narayanan: Chap. 9, 1994). 

The topology of the ocean bottom also has an in-
fluence on the water particle kinematics as the water 
depth changes from deeper to shallower conditions, 
(Dean & Dalrymple, 1991). This influence is re-
ferred to as the “shoaling effect”, which assumes 
significant importance to the field of coastal engi-
neering. For so-called deep water conditions (where 
the depth of water exceeds half the wavelength of 
the longest waves of interest), the influence of the 
ocean bottom topology on the water particle kine-
matics is considered negligible, removing an other-
wise potential complication to the description of the 
hydrodynamics of offshore structures in such deep 
water environments. 

A number of regular wave theories have been de-
veloped to describe the water particle kinematics as-
sociated with ocean waves of varying degrees of 
complexity and levels of acceptance by the offshore 
engineering community, (Chakrabarti, 2005). These 
would include linear or Airy wave theory, Stokes 
second and other higher order theories, Stream-

Function and Cnoidal wave theories, amongst oth-
ers, (Dean & Dalrymple, 1991). 

The rather confused irregular sea state associated 
with storm conditions in an ocean environment is of-
ten modelled as a superposition of a number of Airy 
wavelets of varying amplitude, wavelength, phase 
and direction, consistent with the conditions at the 
site of interest, (Nigam & Narayanan, Chap. 9, 
1994). Consequently, it becomes instructive to de-
velop an understanding of the key features of Airy 
wave theory not only in its context as the simplest of 
all regular wave theories but also in terms of its role 
in modelling the character of irregular ocean sea 
states. 

2.1.1 Airy Wave Theory 
The surface elevation of an Airy wave of amplitude 
a, at any instance of time t and horizontal position x 
in the direction of travel of the wave, is denoted by 

),( txη  and is given by: 
 

( )txatx ωκη −= cos),(  (1) 
 

where wave number L/2πκ =  in which L repre-
sents the wavelength (see Fig. 2) and circular fre-
quency T/2πω =  in which T  represents the period 
of the wave. The celerity, or speed, of the wave C is 
given by L/T or ω/κ, and the crest to trough wave-
height, H, is given by 2a.  

Figure 2: Definition diagram for an Airy wave 
 
The alongwave ),( txu and vertical ),( txv  water 

particle velocities in an Airy wave at position z 
measured from the Mean Water level (MWL) in 
depth of water h are given by: 

 
( )( )

( ) ( )tx
h

hzatxu ωκ
κ

κω
−

+
= cos

sinh
cosh),(  (2) 

 
( )( )

( ) ( )tx
h

hzatxv ωκ
κ

κω
−

+
= sin

sinh
sinh),(  (3) 

 
The dispersion relationship relates wave number 

κ  to circular frequency ω (as these are not inde-
pendent), via: 

 
( )hg κκω tanh2 =  (4) 
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where g is the acceleration due to gravity (9.8 m/s2). 
 
The alongwave acceleration ),( txu  is given by 

the time derivative of Equation (2) as: 
( )( )

( ) ( )tx
h

hzatxu ωκ
κ
κω

−
+

= sin
sinh
cosh),(

2

 (5) 

 
It should be noted here that wave amplitude, a, is 

considered small (in fact negligible) in comparison 
to water depth h in the derivation of Airy wave the-
ory. 

For deep water conditions, κh >π , Equations (2) 
to (5) can be approximated to: 

 
( )txeatxu z ωκω κ −= cos),(  (6) 

 
( )txeatxv z ωκω κ −= sin),(  (7) 

 
κω g=2  (8) 

 
( )txeatxu z ωκω κ −= sin),( 2  (9) 

 
This would imply that the elliptical orbits of the 

water particles associated with the general Airy 
wave description in Equations (2) and (3), would re-
duce to circular orbits in deep water conditions as 
implied by Equations (6) and (7). 

2.2 Higher order and stretch wave theories 

A number of “finite amplitude” wave theories have 
been proposed that seek to improve on the restriction 
of the ‘negligible wave amplitude compared with 
water depth’ assumption in the definition of Airy 
waves. The most notable of these include second and 
higher order (eg fifth order) Stokes waves, (Chakra-
barti, 2005), waves based upon Fenton’s stream 
function theory (Rienecker & Fenton, 1981), and 
Cnoidal wave theory (Dean & Dalrymple, 1991).  

The introduction of the so-called “stretch” theory 
by Wheeler (1970), as implied in its name, uses the 
results of Airy wave theory under the negligible am-
plitude assumption as a basis, to map these results 
into the finite region of their extent from the sea bot-
tom to their current position of wave elevation. (This 
is essentially achieved by replacing “z” with 
“ )/1/( hz η+ ” in the Airy wave equations presented 
above).  

Chakrabarti (2005) refers to alternative concepts 
and some second order modifications for achieving 
“stretching” corrections to basic Airy wave theory 
results, though not commonly adopted, can nonethe-
less be used for this purpose. with Le Mahaute’s 

original description and that of a numbers of other 
authors in this field) 

Le Mahaute (1969) provided a chart detailing ap-
plicability of various wave theories using wave 
steepness versus depth parameter in his description, 
reproduced here in Figure 3. (The symbol for depth 
of water is taken as d instead of h to be consistent.) 

Figure 3: Applicability of Wave Theories 

2.3 Irregular Sea States 

Ocean waves are predominantly generated by wind 
and although they appear to be irregular in character, 
tend to exhibit frequency-dependent characteristics 
that conform to an identifiable spectral description.  

Pierson and Moskowitz (1964), proposed a spec-
tral description for a fully-developed sea state from 
data captured in the North Atlantic ocean, viz: 

4
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where ω  = 2πf, f is the wave frequency in Hertz, α  
= 8.1 × 10-3, β  = 0.74 , ω o = g/U19.5 and U19.5 is 
the wind speed at a height of 19.5 m above the sea 
surface, (corresponding to the height of the ane-
mometers on the weather ships used by Pierson and 
Moskowitz). 

Alternatively, equation (10) can be expressed as: 
4
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in which  fp = 1.37/ 5.19U , is the frequency in Hertz 
at peak wave energy in the spectrum and where 

2
19.50.021U4 == ησsH . (Note that the variance of 

a random process can be directly obtained from 
the area under its spectral density variation, 
hence the basis for the relationship for 

2
19.50.005U≈ησ , from the P-M spectral descrip-

tion quoted above). Figure 4 depicts sample plots 
of the Pierson-Moskowitz (P-M) spectrum for a 
selection of wind speed values, 5.19U . 
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Figure 4: Sample Pierson-Moskowitz Wave Spectra 

 
An irregular sea state can be considered to be 

composed of a Fourier Series of Airy wavelets con-
forming to a nominated spectral description, such as 
the P-M spectral variation.  

Then wave height )(tη  can be expressed as  
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where η(t) is represented by a series of points (η1, 
η2, η3, …, ηM) at a regular time step of dt for M 
points where T = M.dt here represents the time 
length of record, and φn is a random phase angle be-
tween 0 and 2π. (Equation (12) offers a convenient 
approach towards numerically simulating sea states 
conforming to a desired spectral variation via the 
Fast Fourier Transform. Such sea state descriptions 
can then be adopted in numerical studies that take 
into account non-linear characteristics and features 
that would otherwise not be considered for conven-
ience). 

3 ENVIRONMENTAL LOADS ON OFFSHORE 
STRUCTURES 

3.1 Wind Loads 
Wind loads on offshore structures can be evaluated 
using modelling approaches adopted for land-based 
structures but for conditions pertaining to ocean en-
vironments. The distinction here is that an open sea 
presents a lower category of roughness to the free-

stream wind, which leads to a more slowly varying 
mean wind profile with height and to lower levels of 
turbulence intensity than encountered on land. As a 
consequence, wind speed values at the same height 
above still water level (for offshore conditions) as 
those above ground level (for land-based structures) 
for nominal storm conditions, tend to be stronger 
and lead to higher wind loads. (Figure 5 provides a 
diagrammatic representation of this mean wind 
speed variation). 
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Figure 5: Variation of mean wind speed with height 

 
For free-stream wind speed, UG, at gradient 

height, zG (the height outside the influence of rough-
ness on the free-stream velocity), the mean wind 
speed at level z above the surface, )(zU , is given by 
the power law profile 
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where α is the power law exponent and “ref” refers 
to a reference point typically chosen to correspond 
to 10m. 

Table I compares values for key descriptive pa-
rameters, α and zG, for different terrain conditions, 
including those for rough seas. 

 
Table I Wind speed profile parameters 

Terrain  Rough Sea  Grassland Suburb  City centre
α 0.12 0.16 0.28 0.40 

zG (m) 250 300 400 500 
 

The drag force, )(tFW , exerted on a bluff body 
(eg such as the exposed frontal deck area of an off-
shore oil rig), by turbulent wind pressure effects can 
be evaluated from 

)(
2
1)( 2 tAVCtF DaW ρ=  (14) 

where aρ is the density of air (1.2 kg/m3), A is the 
exposed area of the bluff body, CD is the drag coef-
ficient associated with the bluff body 
shape/geometry, and V(t) is wind speed at the loca-
tion of the bluff body. 

3.2 Wave Loads 

The wave loads experienced by offshore struc-
tural elements depend upon their geometry, (the size 
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of these elements relative to the wavelength and 
their orientation to the wave propagation), the hy-
drodynamic conditions and whether the structural 
system is compliant or rigid. Structural elements that 
are large enough to deflect the impinging wave (di-
ameter to wavelength ratio, D/L > 0.2) undergo load-
ing in the diffraction regime, whereas smaller, more 
slender, structural elements are subject to loading in 
the Morison regime. 

3.2.1 Morison’s Equation 
The alongwave or in-line force per unit length 

acting on the submerged section of a rigid vertical 
surface-piercing cylinder, ),( tzf , from the interac-
tion of the wave kinematics at position z from the 
MWL, (see Fig. 6), is given by Morison’s equation, 
viz: 

 
),(),(),( tzftzftzf DI +=  (15) 

 
where ( ) ),(4/),( 2 tzuDCtzf MI ρπ=  and 

),(),(5.0),( tzutzuDCtzf DD ρ=  represent the iner-
tia and drag force contributions in which CM and CD 
represent the inertia and drag force coefficients, re-
spectively, ρ is the density of sea water and D is the 
cylinder diameter. 
 

Figure 6: Wave Loading on a Surface-Piercing Bottom-
Mounted Cylinder 

 
Force coefficients CM and CD are found to be de-

pendent upon Reynold’s number, Re, Keulegan-
Carpenter number, KC, and the β parameter, viz: 

 

KC
Re

D
Tu

KC m == β;   (16) 

 
where um = the maximum alongwave water particle 
velocity. It is found that for KC < 10, inertia forces 
progressively dominate; for 10 < KC < 20 both iner-
tia and drag force components are significant and for 
KC > 20, drag force progressively dominates. 

Sarpkaya’s (1976) original tests conducted on in-
strumented horizontal test cylinders in a U-tube with 
a controlled oscillating water column remain to be 
the most comprehensive exploration of Morison 
force coefficients in the published literature. 

Figures 7 and 8, derived from these results pro-
vide an indication of the variation of these force co-
efficients with respect to KC and Re. As a rule of 
thumb, it can be stated that CM decreases as CD in-
creases, and vice versa, and that both values gener-
ally lie in the range 0.8 to 2.0. The drag force coeffi-
cient is also influenced by roughness on the 
cylinder. (Marine growth is particularly troublesome 
in this regard as it not only increases the effective 
diameter of a cylinder, but the increase in roughness 
generally leads to an increase in drag coefficient, 
CD). 

 

Figure 7: Inertia force coefficient dependence on 
flow parameters 

 

 

Figure 8: Drag force coefficient dependence on 
flow parameters 
 

The Morison equation has formed the basis for de-
sign of a large proportion of the world’s offshore 
platforms - a significant infrastructure asset base, so 
its importance to offshore engineering cannot be un-
derstated. Appendix I provides a derivation of the 
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Morison wave loads for a surface-piercing cylinder 
for small amplitude Airy waves and illustrates key 
features of the properties of the inertia and drag 
force components. 

3.3 Transverse (Lift) wave loads 

Transverse or lift wave forces can occur on offshore 
structures as a result of alternating vortex formation 
in the flow field of the wave. This is usually associ-
ated with drag significant to drag dominant condi-
tions (KC > 15) and at a frequency associated with 
the vortex street which is a multiple of the wave fre-
quency for these conditions. The vortex shedding 
frequency, n, is determined by the Strouhal number, 
NS, whose value is dependent upon the structural 
member shape and Re, (typically ~0.2 for a circular 
cylinder in the range 2.5 x 102 < Re < 2.5 x 105), and 
which is defined by 

m
S U

nDN =  (17) 

where Um  is the maximum alongwave water particle 
velocity and D is the transverse dimension of the 
member under consideration (eg diameter of the cyl-
inder). 

The lift force per unit length, fL, can be defined via 
 

mmLL UUDCf ρ
2
1

=  (18) 

where CL  is the Lift force coefficient that is depend-
ent upon the flow conditions. Again, Sarpkaya’s 
(1976) original tests conducted on instrumented 
horizontal test cylinders in a U-tube with a con-
trolled oscillating water column, also provide a 
comprehensive exploration of the lift force coeffi-
cient, from which the results depicted in Figure 9 
have been obtained. (It should be noted here, that in 
the case of flexible structural members, when the 
vortex shedding frequency n coincides with the 
member natural frequency of oscillation, the resul-
tant vortex-induced vibrations give rise to the so-
called “lock-in” mechanism which is identified as a 
form of resonance). 

 
Figure 9: Lift force coefficient dependence on flow parameters 

3.4 Diffraction wave forces 

Diffraction wave forces on a vertical surface-
piercing cylinder (such as in Fig. 6) occur when the 
diameter to wavelength ratio of the incident wave, 
D/L,  exceeds  0.2 and can be evaluated by integrat-
ing the pressure distribution derived from the time 
derivative of the incident and diffracted wave poten-
tials, (MacCamy & Fuchs, 1954). Integrating the 
first moment of the pressure distribution allows 
evaluation of the overturning moment effect about 
the base. Results obtained for the diffraction force 
F(t) and overturning moment M(t) are given by: 
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in which a is the radius of the cylinder (D/2), (′) de-
notes differentiation with respect to radius r,  J1 and 
Y1  represent Bessel functions of the first and second 
kinds of  1st order, respectively. It should be noted 
that specialist software based upon panel methods, is 
normally necessary to investigate diffraction forces 
on structures of arbitrary shape, (eg WAMIT, 
SESAM). 

3.5 Effect of compliancy (relative motion) 

In the situation where a structure is compliant (ie 
not rigid) and its displacement in the alongwave di-
rection at position z from the free surface at time t is 
given by x(z,t), then the form of Morison’s equation 
modified under the “relative velocity” formulation, 
becomes: 

( )

( ) ),(),(),(),(...
2
1

),(.1.
4

),(..
4

),( 22

tzxtzutzxtzuDC

tzxDCtzuDCtzf

D

MM

−−+

−−=

ρ

ρπρπ

 (22) 

Consider the structure concerned to be of the 
form of the surface-piercing cylinder depicted in 
Figure 6. Consider the displacement at the MWL to 
be xo(t) and the primary mode shape of response of 
the cylinder to be ψ(z), with ψ(0) = 1, then the cyl-
inder motion can be considered to satisfy that ob-
tained from the equation of a single-degree-of-
freedom (SDOF) oscillator, given by: 
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∫−
Ψ≈++

0
),()()()()(

hooo dztzfztkxtxctxm    (23) 

where the integration has been taken to the MWL in 
lieu of η(t), and at x = 0, as an approximation. Coef-
ficients m, c, and k represent the equivalent mass, 
viscous damping and restraint stiffness of the cylin-
der at the MWL. (Note that allowing for forcing to 
be considered at x(z,t) via u(x,z,t) produces non-
linearities that normally have only a minor effect on 
the character of the response (Haritos, 1986)).  

When equation (22) for f(z,t) is substituted 
into equation (23) above, the so-called “added 
mass” term is identified for the cylinder viz:  

 

dzzDCm
h A∫−

Ψ=
0 22 )(

4
' ρπ    (24) 

 
in which CA (= CM – 1) is the “added mass” coeffi-
cient.  

This is an important result as it suggests that for 
all intensive purposes a body of fluid surrounding 
the cylinder appears to be “attached” to it in its iner-
tial response, and hence the coining of the label 
“added mass” effect. 

 Equation (23) can be re-cast in the form 
 

'
)()(2 2
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oooooo +
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where 
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in which 2

4
DCMρπα =  and DCDρβ

2
1

= , ωo 
is the natural circular frequency of the first mode 
and ζo is the critical damping ratio of the structure in 
otherwise still water conditions. 

In the case of )()( txz oΨ  small compared to u(z,t) 
an approximation that can be made for this interac-
tive term is of the form: 
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Ψ−Ψ−
 (28) 

Under these circumstances, equation (25) can be 
further simplified to: 
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β    (30) 

which is interpreted as the level of equivalent drag 
force at the MWL in the case of rigid support condi-
tions (negligible dynamic response).  

The term ζH in equation (29) is the contribution 
to damping due to hydrodynamic drag interaction 
viz  

( ) o

h
H mm
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)(),( 20

+

Ψ
≈ ∫−    (31) 

(In the case of large diameter compliant cylinder in 
the diffraction forcing regime, analogous expres-
sions can be derived for added mass effects and ra-
diation damping due to structure-fluid interaction ef-
fects). 

4 RESPONSE TO IRREGULAR SEA STATES 

4.1 Inertia Force 
Since the inertia force term FI(t) in equation (29) 

is linear it generally poses little difficulty in model-
ling under a variety of hydrodynamic conditions.  

Consider an irregular sea state composed of a 
Fourier Series of Airy wavelets conforming to a P-M 
spectral description. Then ),( tzu can be obtained 
from the expression 
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in which κn satisfies the dispersion relationship of 
equation (4). 

In the case of Ψ(z) being a power law profile, as 
in Figure 10, then 

 
N

h
zz ⎟

⎠
⎞

⎜
⎝
⎛ +=Ψ 1)(    (33) 

and FI(t) can be shown to be obtainable via the ex-
pression given by (Haritos, 1989), 
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Figure 10: Compliant vertical surface-piercing cylinder 

 
Figure 11 presents the variations in )( hI nN κ for a 

range of power exponents N in mode shape Ψ(z). 
The result for N = 0 is consistent with the derivation 
for the inertia force component acting on a rigid cyl-
inder due to an Airy wave made in Appendix I. 

 
 

Figure 11: Variation of IN(κh) for varying N 
 

It is observed that all variations for )( hI nN κ  are as-
ymptotic to 1 and that I0(π) is close to this value to 
the order of accuracy associated with the “deep wa-
ter” limit of Airy waves (ie κh = π) but for N>0, 
IN(κh) ≈ 1 for κh >> π.  In general, the effect of 
higher order mode shapes (N > 0) is to reduce the 
level of inertia forcing of each Airy wavelet in an ir-
regular sea state.  

Figure 12 depicts the results obtained for the re-
sponse of a vertical cylinder in deep water condi-
tions (IN(κh) = 1) for inertia only forcing in uni-
directional P-M waves.  

 

Figure 12: Influence of Dynamic Properties on Response  
(Inertia dominant forcing in deep water) 

 
The levels are quoted as the ratio of the standard de-
viation in the response of a cylinder exhibiting a 
natural frequency of fo to that of a near weightless 
cylinder with the same stiffness for which fo ap-
proaches infinity. It is clear from direct observation 
of Figure 12, that response levels are controlled by 
both damping and the amount of relative energy 
available near 'resonance' for a dynamically respond-
ing cylinder in an irregular sea state.  

4.2 Drag force 

Whilst it is possible to deal with the u|u| term for 
drag force numerically, the linearised approximation 
to ),( tzu  attributed to Borgman (1967), can be used 
in the case u(z,t) Gaussian in a random sea state, so 
that  

)(.8),( ztzu uσ
π

≈    (36) 

where σu(z) is the standard deviation in water 
particle velocity and where current is taken as 
zero-valued for all z.  

This approximation can be used to simplify the 
expressions for both ζH in equation (31) and FD(t) 
in equation (30) and to thereby obtain closed-
form solutions in the case of nominated Ψ(z) 
variations.  

This approximation would seem reasonable for de-
termination of ζH for “stiff” structures, but in situa-
tions when the drag force FD(t) is considered domi-
nant, this linearization can lead to significant errors 
in the modelling of both the non-linear drag force 
and the prediction of the resultant response, accord-
ing to Lipsett (1985).   

5 EXTREME VALUES 

In the case of random vibrations associated with lin-
ear systems, use can be made of upcrossing theory 
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in combination with spectral modelling of the proc-
esses involved to develop a basis for prediction of 
peak response values, (Nigam & Narayanan, 1994). 

A linear filter has the characteristics described by 
(Hy,η(f), φlag(f)) which apply to the  Fourier compo-
nents of a random time varying quantity (such as a 
waveheight trace, η(t), conforming to say a P-M 
spectrum) at frequency f, to produce a modified re-
sultant time varying quantity, y(t), that is linearly re-
lated to η(t), as follows  
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A 'zero-lag' filter would be one for which φlag(fn) 

= 0 for all frequencies fn. 
The spectrum for y, given by Sy(f), can be ob-

tained from the spectrum of waveheight, Sη(f), via 
 

)().()( 2
, fSfHfS yy ηη=    (38) 

5.1 Extreme Wave Forces 

Use can be made of the dispersion relationship of 
equation (4) in conjunction with the separate de-
scriptions above for Inertia and Drag force, to obtain 
the associated relationships for )(, fH

IF η  and 
)(, fH

DF η  respectively, and hence the total force 
spectrum for the surface-piercing cylinder of Figure 
6.  A diagrammatic illustration of the concept is pro-
vided in Figure 13. 

 
 
 

 
 
 
Figure 13: Diagrammatic description of spectral modelling of 
Morison wave loading 

 
The area under the total force spectrum equals the 
variance, 2

TFσ , knowledge of which may be used to 
estimate peak Morison loading of the vertical sur-
face-piercing cylinder, under consideration. This 
peak load value may reasonably be expected to be of 
the order 

TFσ3 , but a more precise estimation is of-
fered through the use of upcrossing theory. 

For a Normally distributed trace y(t) with zero 
mean and variance 2

yσ , the rate of upcrossings at 
level y, νy, equates to the count of upcrossings at 

level y, Ny,  divided by the time length of trace, T (ie  
νy = Ny/T). νo would correspond to the rate of up-
crossings of the zero mean. 

It can be shown (Newland, 1975) that upcrossings 
for such a trace would satisfy 
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The concept of a “peak value” in a time period of 

T would correspond to a y value with an upcrossing 
count of 1 so that ymax can be estimated from  
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so that  
 

yoTy σν .)ln(2max =    (41) 
 

Because the value of ymax itself shows a statistical 
variation, Davenport (1964) has suggested a small 
correction to equation (41) for the value of E(ymax) 
so that 
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Now the rate of “zero” upcrossings is given by: 
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which can be determined from the spectral descrip-
tion. If y(t) is a narrow-banded process (ie energy is 
concentrated at a peak frequency, fp), then νo ≈ fp. 

5.2 Extreme Response Values 

The concepts above can be applied to the dynami-
cally responding surface-piercing cylinder to esti-
mate the peak response at MWL, (xo)max.  

An additional stage is required for this purpose, 
namely the linear transformation from Morison forc-
ing to dynamic excitation via the description of 
equation (29), which in terms of a spectral modelling 
approach, is diagrammatically depicted in Figure14. 
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Figure 14: Diagrammatic description of spectral modelling of 
dynamic response 
 
The Transfer Function for response from Morison  
loading in irregular sea states for the dynamically re-
sponding surface-piercing cylinder of Figure 10 is 
given by Hx,F(f), via 
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in which fo is the natural frequency of the cylin-

der and ζtot is the total critical damping ratio (ζtot =ζo 
+ζH). 

The area under the response spectrum yields 2
xσ  

and after application of equation (43) to obtain νo, 
extreme value (xo)max can be obtained from equation 
(42), for the nominated duration of the irregular sea 
state under consideration, (eg T = 3600 secs for a 1-
hour storm). 

6 CONCLUDING REMARKS 

This paper has provided an overview of some of the 
key factors that need be considered in the analysis 
and design of offshore structures. Emphasis has been 
placed on modelling of the hydrodynamic response 
of a compliant vertical surface-piercing cylinder in 
the Morison loading regime under uni-directional 
waves. Reference has also been made to a number of 
publications in which further detail and extension of 
treatment can be explored by the interested reader. 
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Appendix I. – Base shear on a surface-piercing 
cylinder from Morison loading 
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Hence, as an alternative approximation  
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Figures I.a and I.b depict representative varia-

tions over one cycle of Airy wave of the Base Shear 
force acting on a cylinder normalised with respect to 
FD/FI = 2, respectively, by way of illustration.  

                         
 
 
 

 Figure I: Morison Base Shear Force components for (a): FD/FI = 0.8 and (b): FD/FI = 2 
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