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Abstract 

The theory of elasticity allows describing the law of variation of shear stresses 𝜏𝑧𝑦 and 𝜏𝑧𝑥 for a beam of 

rectangular cross-section, however, the expressions are extensive and complex. For beams with a width/depth 
ratio equal to 0.25, it is allowed to calculate approximately the maximum shear stress 𝜏𝑧𝑦, with the Collignon-

Zhuravski equation. Depending on the width/depth ratio of the beam, it will depend on the percentage of error 
made. Unfortunately, for the shear stress 𝜏𝑧𝑥 there is no approximate formula available to determine the value of 
the shear stress. Using a simplified procedure, a differential beam element was analyzed in the elastic field for 
different width/depth ratios and a very simple expression was obtained. The results of the approximate formula 
were compared with the values obtained from the application of the exact formula and the results of a linear 
numerical analysis using the finite element method. For cross-sections of homogeneous beams and composite 
beams of considerable width, it is essential to determine the horizontal shear stresses 𝜏𝑧𝑥 in particular in the case 
of vertical planks, arranged side by side, connected solidly by horizontally arranged mechanical connectors, since 
the shear stresses 𝜏𝑧𝑥 developed across the width of the cross-section may considerably exceed the vertical shear 
stresses 𝜏𝑧𝑦 and furthermore govern the pattern, spacing and cross-section of the mechanical connectors.  The 

validity of the approximate expression for calculating the maximum value of the shear stress 𝜏𝑧𝑥 was limited to 
beams with a width/depth ratio between 0.25 and 10.0. 
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1. Introduction 

In beams of rectangular cross-section, subjected to loads on one of 
their inertia axes, as shown in Fig.1, a stress state occurs involving two 
shear stress components 𝜏𝑧𝑦 and 𝜏𝑧𝑥 and a normal stress component 𝜎𝑧𝑧 , 

according to the direction of the “y-y”, “x-x” and “z-z” axes respectively. For 
a beam with boundary conditions and loads according to Fig.2, the 
variation of stresses and the coordinates where their maximum values 
occur can be observed according to Fig. 3. For the exact determination of 
the values of the shear stresses 𝜏𝑧𝑦 and 𝜏𝑧𝑥,  Eq. (1) and Eq. (2) respectively, 

which have been deduced by [Reissner, 1946] through the theory of 
elasticity, are used. 

The value of the stress 𝜏𝑧𝑥 is usually neglected because, for the usual 
width/depth ratios used, its value is significantly lower than the dominant 
stress 𝜏𝑧𝑦, in addition to the fact that it constitutes a system in self-

equilibrium according to [Fliess, 1974]. As for the stresses 𝜏𝑧𝑦, the 

application of the Collignon-Zhuravski equation given by Eq. (3) according 
to [Beer et al.,2006], is considered acceptable under the condition where 
the width/depth ratio is less than or equal to 0.25 before considerable 
differences with the exact elasticity formulae start to emerge. 
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Fig. 1 The stress state of a generic cross-section, subjected to a 
load in the direction of one of its principal axes of inertia. 

 

Fig. 2 Shear stress, for a cantilever beam, with a point load at its 
free end, without considering self-weight. 

 

Fig. 3 Shear stress laws 𝝉𝒛𝒙 and 𝝉𝒛𝒚 respectively, for a generic 

cross-section. 
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The location of the maximum stress 𝜏𝑧𝑥, according to [Reissner,1946] 
is located at a distance “η” from the axis of symmetry of the cantilever 
cross-section, according to Eq. (4): 

𝑏−𝜂

2𝑎
=

1

𝜋
𝑙𝑛 (

4𝑏

𝜋𝑎
)    (4) 

However, in the case of composite beams with connectors, there are 
two cases of interest to demonstrate the applications of Eq. (1) and Eq. (2). 
The most frequent case is that of beams with planks arranged horizontally 
one above the other and joined together by vertically arranged mechanical 
connectors, as shown in Fig. 4. In this case, to determine the cross-section, 
quantity, and spacing of the mechanical connectors, Eq. (1) could be used 
or the Collignon-Zhuravski formula given by Eq. (3) could be applied if the 
width/depth ratio condition of 0.25 is satisfied. 

On the other hand, if the composite beam has its planks arranged side 
by side, linked solidly to horizontally arranged mechanical connectors, as 
shown in Fig. 5, it is no longer possible to use the Eq. (1) or Eq. (3) and it 
is essential to know the value of the shear stress 𝜏𝑧𝑥 to calculate the cross-
section, quantity, and spacing of the mechanical connectors. For this, as in 
the previous case, one option would be to use the exact equation given by 
Eq. (2). The other option would be to use an approximate formula, with a 
certain range of validity. 

 

Fig. 4 Shear stresses 𝝉𝒛𝒚  acting on the connectors of a beam 

composed of planks, arranged one on top of the other. 

 

Fig. 5 Shear stresses 𝝉𝒛𝒙 acting on the connectors of a beam 
composed of planks, arranged side by side. 

Although there are calculation examples provided by [Aghayere, et al., 
2007], [Desai, 2002] and even the recommendations of [NAHB, 1981], 
according to [DeStefano, et al., 1997], all the calculation cases are based on 
one of the two methods, the empirical or the rational method. Therefore, 
all of them dispense with the use of the horizontal shear stress 𝜏𝑧𝑥 for the 
solution of the problem, which leads to conservative results. According to 
[Riola Parada, 2016], research on combining timber and steel in beams is 
relatively recent. Very few authors have attempted to systematize and 
organize all the existing information, some of which are based on 
geometry and reinforcement arrangement. In residential construction, 
composite beams, which are the subject of this research, according to 
[Coulbourne, 2017], are referred to as site fabricated beams, including the 
flitch and built-up beams. In the case of flitch-beams, according to 
[Wiesenfeld, 1989] there are different design practices, linked to practical 
experience and observation of structural behavior, which vary greatly 
from designer to designer in determining the section, pattern, and spacing 
of mechanical connectors. This situation is possibly attributable to the lack 
of a solid theoretical basis. 

It is interesting to mention that there are no current references or 
discussions on theoretical attempts for the calculation of horizontal shear 
stresses 𝜏𝑧𝑥 developed in cross-section beams of considerable width, 
whether homogeneous beams or composite beams, within the elastic field. 
Only a complex, extensive, and poorly disseminated exact solution 
developed (see Eq. (2)) and published by [Reissner, 1946], applicable in 
the elastic field, with a great theoretical value but of tortuous practical 
application, is available. However, after extensive literature review and 
publications, it is concluded that a simplified equation, equivalent in terms 

of the same degree of simplicity and practical applicability to the famous 
Collignon-Zhuravski equation, has never been developed.  

For this reason, this work aims to obtain an alternative equation to 
that given by Eq. (2), of greater and notable simplicity than that developed 
by [Reissner,1946] through the theory of elasticity, to calculate the values 
of the horizontal shear stresses 𝜏𝑧𝑥. This new equation would allow the 
case of the composite beams in Fig. 5 to be solved in a relatively simple 
way. Subsequently, to validate the results, they will be contrasted with 
those obtained with the theory of Eq. (2) developed by [Reissner, 1946] 
and numerical simulation, through the implementation of the Finite 
Element Method. 

2. Methodology 

2.1 Analytical Modelling 

To obtain the alternative equation of the stress shear 𝜏𝑧𝑥, the beam in 
Fig. 6 is considered, where a differential element is extracted for the 
analysis of its equilibrium. According to Fig.7, Eq. (5) is applied, and Eq. 
(7) is obtained, as a function of the shear stresses 𝜏𝑧𝑦, 𝜏𝑧𝑥 and the bending 

stress 𝜎𝑧𝑧 . It is essential to note that, to obtain a general expression that is 
valid for all boundary and load conditions, the variation of 𝜏𝑧𝑥, with respect 
to the variable z is initially considered to be non-zero. Subsequently, 
depending on the boundary and load case, the variation of 𝜏𝑧𝑥 with respect 
to the variable z could be zero, which would simply indicate that the shear 
stress is constant along the length of the beam.  

 

Fig. 6 Analysis of a differential element in a cantilever beam 
subjected to a point load at its free edge. 

∑ 𝑀𝑦−𝑦 = 0                                                                               (5) 
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Fig. 7 Analysis of the equilibrium of moment around the y-axis of 
the differential beam element. 

From Eq. (7) the value of the shear stress 𝜏𝑧𝑥 can be made explicit. For 
this purpose, an energy equation was used, obtained from a differential 
element coming from the same beam subjected to bending. The hypothesis 
indicates that the internal work produced by the bending stress 𝜎𝑧𝑧  and 
shear stress 𝜏𝑦𝑧, on the displacements 𝛥𝜎 and 𝛥𝜏 respectively, will be equal 

to the work produced by the bending moment, along the rotation of the 
section, along the width “b”. In the first member of the equality given by 
Eq. (8), the contribution of the shear stress 𝜏𝑧𝑥 has not been considered, 
because it is assumed that its value and distortion will be small relative to 
the shear stress 𝜏𝑧𝑦  generated in the plane of loading. 
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Fig. 8 Rotation of the section under the action of the bending 
moment and determination of the horizontal displacements.  

In Eq. (9), the displacements 𝛥𝜎  and 𝛥𝜏, are expressed by Eq. (10) and Eq. 
(11) respectively, deduced from the Fig. 8: 
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Replacing Eq. (10) and Eq. (11) in Eq. (9), we obtain Eq. (12): 
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By operating algebraically on Eq. (12), we obtain Eq. (13). From Fig. 9, it is 
shown that it is possible to replace Eq. (13) in Eq. (7) to obtain Eq. (14). 
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Fig. 9 At the boundary shared by both differential elements, the 
shear stress 𝝉𝒚𝒛 is equalized. 

Integrating the differentials in Eq. (14), we obtain Eq. (15): 
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In Eq. (15), for y=0, we obtain Eq. (16): 

[
1

4
(

1

2

3𝑄

2𝐴
) +

1

8
(

1

2

3𝑄

2𝐴
) −

𝑄

4𝐴
+ 𝐶] (

𝑏

𝑎
) = 𝜏𝑧𝑥   (16) 

To meet the boundary condition, where the value of the shear stress 𝜏𝑧𝑥 is 
zero, the value of the constant “C” from Eq. (17) was determined. This 
value is given by Eq. (18). 
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In Eq. (15), for y=a, we obtain Eq. (19): 
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Having determined the extreme values of the equation given by Eq. (15), 
it is necessary to verify whether for the remaining “y” coordinates, given 
by Eq. (20), all the values of the corresponding shear stresses have the 
same sign or whether there is a change of sign. 

0 <
𝑦

𝑎
< 1.0    (20) 

Using Eq. (15) and assigning different values to the “y” coordinate 
according to Eq. (20) and for different values of width/ depth, we obtain 
the curves in Fig. 10, where we can see the crossing point where the shear 
stress is zero. 

 

Fig. 10 Analysis of the shear stress 𝝉𝒛𝒙 values along the depth “a” 
of the section, considering different width/depth ratios. 

The value at which the condition of Eq. (21) is satisfied is always given for 
the “y” coordinate given by Eq. (22). This gives Eq. (23): 
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Since the shear stress 𝜏𝑧𝑥 is a self-balancing system according to 
[Fliess,1974] (See Fig.3), a parabolic stress law is proposed by Eq.  (24), 
where the maximum peak of shear stress is reached in the middle of the 
segment “b”, according to Fig. 11. To determine the value of the peak of 
shear stress 𝜏𝑧𝑥 in a parabolic distribution, the value previously found, 
having assumed a uniform distribution, is equated with the result of the 
integral of the parabolic curve, according to Eq. (25). 

 

Fig. 11 Substitution of the shear stress distribution law 𝝉𝒛𝒙, by a 
parabolic distribution law. 

∫ 4𝜏𝑜 [
𝑥

𝑏
− (

𝑥

𝑏
)

2
] 𝑑𝑥

𝑏

0
= 𝜏𝑧𝑥𝑏    (24) 

4𝜏𝑜 [
𝑥2

2𝑏
−

𝑥3

3𝑏2]
0

𝑏

= 𝜏𝑧𝑥𝑏    (25) 

At the values of x=0 and x=b, the zero values of shear stress 𝜏𝑧𝑥 occur. 
While at x=b/2, the maximum peak of shear stresses 𝜏𝑧𝑥, the value of which 
is given by Eq. (26): 
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3

2
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To obtain the general expression of the peak shear stress 𝜏𝑧𝑥 for different 
values of the y-coordinate, the expression given by Eq. (15) was 
substituted into Eq. (26) to obtain Eq. (27): 
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When the value of the “y” coordinate is equal to the segment “a”, Eq. (27) 
is greatly simplified, and Eq. (28) is obtained: 

𝜏𝑜 =
9

32
(

𝑏

𝑎
) 𝜏 𝐶𝑜𝑙𝑙𝑖𝑔𝑛𝑜𝑛

𝑍ℎ𝑢𝑟𝑎𝑣𝑠𝑘𝑖

    (28) 

Having obtained the simplified equation for the calculation of stresses 𝜏𝑧𝑥, 
it is necessary to proceed to the validation of the results. As a first option, 
the exact solution obtained from the theory of elasticity is proposed, as can 
be seen from the extensive and complex equation provided by Eq. (2). 
Finally, a second totally independent validation method is proposed, based 
on numerical simulation using the Finite Element Method. 

2.2 Finite Element Modelling 

According to the benefits of numerical simulations, highlighted by 
[Vaidotas, et al.,2012], the use of the finite element method has been 
considered as an alternative solution to compare and validate the results. 
For the comparison of the results, in the elastic field domain, the finite 
element software called "MEFI", version 1.2.3, has been used. For the 
discretization of a cantilever loaded at its free edge, as shown in Fig.12, 32-
node hexahedral cubic serendipitous elements have been used. The 
number of elements has been varied in intervals differing by 2500 
elements, starting from a less dense to a higher density discretization. For 
the selection of the analysis point, a point with the coordinates set by Eq. 
(29) has been considered. This situation is shown in Fig.3 and Fig.14, 
according to [Reissner,1946]: 

𝜏𝑧𝑥(𝑥 = 𝜂; 𝑦 = 𝑎)    (29) 

 

Fig. 12 Discretization of a cantilever beam, using the finite 
element method, subjected to a uniform load at its free end. 

For the numerical simulation, a timber defined by [Porteous et 
al.,2007], as class C-14, is considered. The rest of the parameters are 
included in Table 1. 

Table 1.  Parameters considered for the numerical simulation of 
the model proposed by [Reissner, 1946]. 

3. Results 

For a practical application case, the case of a cantilever beam 
subjected to a point load at its free end for a rectangular cross-section with 
a ratio (b/a=4.0) is analyzed. As mentioned above, the results obtained 
through the simplified equation given by Eq. (28) will be verified by 
comparison with the results obtained by Eq. (2), obtained by [Reissner, 
1946], and finally through the numerical simulation implemented by the 
Finite Element Method. 

3.1 Application of Simplified Equation 

First, the simplified equation proposed by Eq. (28) is applied. The 
maximum value of stress 𝜏𝑧𝑥 is obtained at the coordinate point (x=b/2; 
y=a), as indicated in Eq. (30): 

𝜏
𝑧𝑥 (𝑥=

𝑏

2
;𝑦=𝑎)

≈ 4.22𝑥105 𝑁

𝑚2   (30) 

 

3.2 Application of the Exact Solution of Elasticity 
Theory 

Next, the exact solution obtained from the theory of elasticity by 
[Reissner, 1946] given by Eq. (2) is applied to determine the stresses 𝜏𝑧𝑥. 
To apply Eq. (2), the value of Poisson's modulus ν=0.30, according to 
[Porteous et al.,2007], for a wood classified as C-14, is assumed. Replacing 
values in Eq. (2) gives Eq. (31). As for the location of the coordinate of the 
point where the maximum value of shear stresses 𝜏𝑧𝑥 is reached, it is 
necessary to apply the expression provided by Eq. (4) and making η 
explicit gives Eq. (32). 

𝜏𝑧𝑥(𝑥=𝜂;𝑦=𝑎) = 3.9285𝑥105 𝑁

𝑚2
   (31) 

𝜂 ≈ 0.14818 𝑚    (32) 

3.3 Application of the Finite Element Method 

Finally, the numerical simulation is carried out using the Finite 
Element Method. According to [Beer, et al. 2006], considering a point 
sufficiently far from the load application zone or from the support 
conditions of the cantilever beam, the results of the shear stress 𝜏𝑧𝑥 can be 
considered reasonably acceptable, as can be seen in Fig. 13 and Fig. 14.  

After analyzing different mesh densities, finally for a mesh composed 
of 10.000 elements, the value of the stress 𝜏𝑧𝑥 given by Eq. (33) was 
obtained for the point located at the distance “η” by Eq. (34). 

𝜏𝑧𝑥(𝑥=𝜂;𝑦=𝑎) ≈ 4.1622𝑥105 𝑁

𝑚2   (33) 

𝜂 ≈ 0.14818 𝑚    (34) 

 

Fig. 13 Result of the shear stresses 𝝉𝒛𝒙, for a mesh with a density 
of 10.000 elements of the 32-node hexahedral cubic serendipity 
type. 

 

Fig. 14 Analysis of the maximum value of the shear stress 𝝉𝒛𝒙 at a 
distance η, from the vertical axis of symmetry, at a certain 
distance from the embedment. 

4. Comparison of results  

By plotting the curves for different width/depth ratios of the beam on 
the abscissa axis and the ordinate axis, the ratio of the peak shear stress 
𝜏𝑧𝑥 at the y=a coordinate, and the Collignon-Zhuravski shear stress, one 
can compare the values of the elasticity theory tabulated by [Timoshenko, 
et al.,1951], with the values of the simplified equation given by Eq. (28). In 
Fig. 15 we see the graph of equation given by Eq. (35), for the values 
calculated by both theories. It is mentioned that the Poisson coefficient of 
0.25 was used to plot the curve proposed by [Reissner, 1946]. 

𝜏𝑧𝑥=𝜏𝑜
3

2

𝑄

𝐴

= 𝛼    (35) 

Finally, the curves obtained through the application of the three 
theories are plotted for the case study, as shown in Fig.16. Furthermore, 
the internal shear stress law 𝜏𝑧𝑥  in the rectangular cross section, along 
depth “a”, was plotted applying the approximate theory proposed in this 
work, given by Eq. (27) and the theory of elasticity according to the general 
expression given by Eq. (2) deduced by [Reissner,1946]. (See Fig. 17). In 

[Parameters] [Characteristic Values] 
Geometric Cantilever width (2b)  0.40m 

Cantilever depth (2a)  0.10m 
Cantilever length (L)  0.40m 
Ratio (b/a) 4.0 
Element type (SCH) Serendipitous Cubic  

Hexahedral (32 nodes) 
Loads Uniform edge load (q) 25000 N/m 
Material Wood  C-14 

Density (ρ)  290.0  N/m3   
Modulus of elasticity (E)   7.0x109  N/m2 
Poisson's Coefficient (ν) 0.30  
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the approximate stress law 𝜏𝑧𝑥  there is a reduced segment of “a”, 
expressed by the Eq. (22). In this interval, shear stress values 𝜏𝑧𝑥  of 
opposite sign and negligible magnitude occur. Interestingly, there is a 
remarkable improvement in the approximation of the point-to-point 
stress values when a linear stress law is considered, whose maximum 
value is given by Eq. (28). Additionally, a linear approximation, for a y-
coordinate, is proposed, established by Eq. (36): 

𝜏
𝑧𝑥 (𝑥=

𝑏

2
;𝑦)

[
9

32
(

𝑏

𝑎
) 𝜏 𝐶𝑜𝑙𝑙𝑖𝑔𝑛𝑜𝑛

𝑍ℎ𝑢𝑟𝑎𝑣𝑠𝑘𝑖

] (
𝑦

𝑎
)   (36) 

 

Fig. 15 Comparison of the maximum shear stresses 𝝉𝒛𝒙, obtained 
from the theory by [Reissner, 1946] and the proposed 
approximate method. 

 

Fig. 16 Verification of the maximum shear stress 𝝉𝒛𝒙 applying the 
proposed approximate equation given by Eq. (28), the equation 
given by Eq. (2) obtained by [Reissner,1946], and the Finite 
Element Method. 

 

Fig. 17 Comparison of the variation of the stress law 
𝝉𝒛𝒙  proposed by [Reissner, 1946], along the depth "a" and the 
proposed approximations. 

Table 2.  Relative error rate of the linear and parabolic 
approximations, with theory proposed by [Reissner, 1946]. 

Theory                            Arithmetic 
Mean/(3Q/2A)   

Δ (%) 

E. Reissner 0.4983                              0.00 
Berni’s Parabolic Approx.            0.4513                             -9.43 
Berni’s Linear Approx.                 0.5625                         +12.88 

 

5. Discussion 

• Comparing both curves, in Fig. 15, we see that the exact theory of 
elasticity yields higher values than the approximate theory at b/a 
above 7.00. In any case, its application can be considered acceptable 
up to b/a=10.0, where the error made is -10%. Therefore, we could 
establish a validity interval for the theory given by Eq. (37): 

0.25 ≤
𝑏

𝑎
≤ 10.0     (37) 

• According to Fig. 10 and Eq. (27), there is an interval given by Eq. 
(38) where the shear stresses result with a negative sign and 
negligible value. Within this interval, the peak value of the shear 
stress 𝜏𝑧𝑥, is given by Eq. (39). 

0 <
𝑦

𝑎
≤ 0.30    (38) 

𝜏𝑧𝑥 𝑚𝑎𝑥 = 𝜏
𝑧𝑥 (𝑥=

𝑏

2
 ; 𝑦=0.15𝑎)

   (39) 

• The “y” coordinate where the peak shear stress occurs is defined by 
Eq. (40): 

𝑦

𝑎
= 0.15     (40) 

• Regardless of the width of the beam and within the indicated validity 
interval, the coordinate at which the shear stresses 𝜏𝑧𝑥, for the 
parabolic distribution, satisfies the condition of Eq. (21) always 
occurs at the coordinate defined by Eq. (22), as can be seen in Fig.10, 
for the parabolic distribution. 

• From Fig. 17, it is observed that according to Eq. (2) a straight line is 
obtained as a linear variation law for the shear stress 𝜏𝑧𝑥, while with 
the approximate theory, according to Eq. (27), a parabolic variation 
is obtained, so they differ notably except in the extreme values. In 
addition, it was decided to incorporate a second option, where the 
value of the maximum peak shear stress 𝜏𝑧𝑥  and a linear 
approximation are used. The expression given by Eq. (36) turned out 
to be much simpler than even Eq. (27), not to mention that it also fits 
more closely point to point with theory given by [Reissner,1946]. 
Table 2 shows that when considering the arithmetic mean, a good 
approximation has been determined with the parabolic 
approximation, considering only the values of positive sign and 
disregarding those of negative sign. Nevertheless, by using the linear 
approximation, the result improves considerably. Moreover, the 
point-to-point variation of the stresses 𝜏𝑧𝑥, given by Eq. (36) proved 
to be a better approximation than the parabolic distribution given by 
Eq. (27). 

• From Fig. 15, from b/a=4.25, the shear stress is equal to the 
Collignon-Zhuravsky shear stress. Continuing with the same analysis 
up to b/a=10, we see that it is now equal to about 2.81 times. This 
revealed the great relevance of the shear stress 𝜏𝑧𝑥 in beams of 
considerable width, relative to their depth. In composite beams, 
particularly those using metal plates as structural reinforcement, 
combined with timber planks, it is possible to obtain structural 
elements of considerable width, (when the homogenization of the 
composite cross-section is performed) subjected to this shear stress 
phenomenon 𝜏𝑧𝑥. 

6. Conclusions 

• In the energy equation given by Eq. (8), the energy contribution of 
the shear stress 𝜏𝑧𝑥  was neglected because its magnitude was 
considered negligible compared to the value of the energy 
contributed by 𝑇𝜎 and 𝑇𝜏. 

• Note that the influence of Poisson's coefficient has not been 
considered in the approximated equation given by Eq. (15), to 
simplify the analysis. 

• In Eq. (2), the maximum value of the peak stress occurs at the 
coordinates (𝑥 = η; 𝑦 = 𝑎). Unlike the proposed theory, where the 
maximum value occurs at (x = b/2 ; y = a) due to the parabolic law of 
symmetrical distribution.  

• The direct application of Eq. (36) allows solving the cases of 
composite beams with vertical planks, arranged side by side and 
joined together by means of transversally arranged connectors (see 
Fig. 5), within the range of validity established by Eq. (37). 

• Additionally, it is possible to apply Eq. (36), to solve the case of 
composite beams with vertical planks, arranged side by side and 
joined by means of adhesives or a combination of adhesives and 
mechanical connectors. 

• The solution proposed by Eq. (36), can be perfectly extended to solve 
the cases of homogeneous beams of considerable width, within the 
range of validity established by Eq. (37). 
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• Currently, there are only two widespread methods to estimate the 
cross-section, quantity and spacing between connectors, as detailed 
in [DeStefano, et al., 1997], obviously without considering the finite 
element method. One empirical and one rational, however, 
interestingly, both methods dispense with the use of the shear stress 
𝜏𝑧𝑥 during the analysis of the horizontal connectors, to estimate their 
cross-section, quantity and spacing.  

• After an exhaustive review of the specialized literature, it has been 
concluded that this is possibly attributable to the complexity 
involved in the use of expression given by Eq. (2), the application of 
which is a greater complexity than the set of any of the methods 
mentioned above. It is also interesting to note the lack of diffusion 
from which Eq. (2) suffers. Possibly attributable to the lack of 
practicality at the time of application. In addition, the search for a 
quick and practical solution has possibly contributed to the repeated 
and systematic application of empirical methods, which ignore the 
nature of the shear stresses 𝜏𝑧𝑥 that develop in composite beams of 
considerable width. Although they have yielded satisfactory results 
over the years, it is also fair to mention that according to 
[Reissner,1946], the results are conservative. 

• It is also important to highlight the simplicity and reasonable 
approximation of the expression given by Eq. (36), for the calculation 
of the shear stress 𝜏𝑧𝑥, for a depth "y", within the range of validity 
established by Eq. (37). 

Nomenclature 

(𝜏𝑧𝑦) shear stress in the y-direction in the xy-plane; 

(𝜏𝑦𝑧) shear stress in the z-direction in the xz-plane; 

(𝜏𝑧𝑥) shear stress in the x-direction in the xy-plane; 

(𝜎𝑧𝑧) normal stress in the z-direction to the xy-plane; 

(𝛥) maximum displacement of the section at the y=a 
coordinate, after rotation; 

(𝛥𝜎) displacement in the z-direction, at the same coordinate 
as the normal stress in the z-direction; 

(𝛥𝜏) displacement in the z-direction, at the same coordinate 
as the shear stress in the xz-plane; 

(𝑑𝑇𝜎) work differential due to normal stresses in the z-
direction; 

(𝑑𝑇𝜏) work differential due to shear stresses on the xz-plane 
in the z direction; 

(𝑑𝑇𝑀) work differential due to the bending moment which 
rotates the cross-section by a certain angle; 

(𝜓1) coefficient of proportionality of the width of the cross 
section being studied; 

(𝜓2) coefficient of proportionality for the calculation of the 
rotational work of the cross-section; 

(𝑑𝑀) bending moment differential; 

(𝑑𝜑) differential angle of rotation; 

(𝑆𝑛) static moment of the cross-section; 

(𝑃) external load applied to the beam; 

(𝑄) shear stress in cross section; 

(𝑄𝑧) shear stress in cross-section in the z-coordinate 

(𝑎) half the depth of the cross-section; 

(𝑏) half the width of the cross-section; 

(𝐴) cross-sectional area; 

(𝐼) moment of inertia of the cross section; 

(𝑑𝑁) differential normal force on the yx-plane; 

(𝑑𝑇𝑦𝑧) shear force differential in the z-direction, acting on the 
xz-plane; 

(𝑑𝑇𝑧𝑥) shear force differential in the x-direction, acting on the 
xy-plane; 

(𝜏𝑜) maximum peak shear stress in the x-direction, on the 
xy-plane. 

(𝜏 𝐶𝑜𝑙𝑙𝑖𝑔𝑛𝑜𝑛
𝑍ℎ𝑢𝑟𝑎𝑣𝑠𝑘𝑖

) uniform shear stress in the y-direction in the xy-plane, 
at the y=0 ordinate, according to [Beer et al.,2006]; 

(𝜂) 

value of the x-coordinate, according to [Reissner,1946] 
with respect to the vertical y-y axis, where the 
maximum horizontal shear stress value, for a y-
coordinate, occurs; 

𝜏𝑧𝑥(𝑥 = 𝜂; 𝑦
= 𝑎) 

shear stress in the x-direction in the xy-plane, at 
coordinates (x= 𝜂; y=a), according to [Reissner,1946]. 
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