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1. INTRODUCTION 

 
An analytical model of combined plastic mechanism 
and elastic approaches has been developed to 
estimate the strength of a thin-walled channel steel 
section beam subjected to axial-compressive loads. 
It has been encountered from literature reviews that 
a failure process of a thin-walled steel section under 
applied loads is generally initiated by the formation 
of local buckling on its compressed elements, which 
subsequently can develop to be local plastic failure 
mechanisms at collapse. In the plastic mechanism 
analysis, a plastic failure mechanism of the beam 
affected by the axial-compressive loads is analysed 
according to a concept of energy equilibrium 
between work done by virtual displacement of 
applied loads and energy dissipating in plastic 
hinges of the mechanism during deformation. The 
dissipated energy is determined on the basis of 
moment resisting capacity of plastic hinges and their 
appropriate rotations. This energy equilibrium is  

 
 
 
 
then analysed in more detail in order to get an 
expression of load carrying capacity of the beam in 
term of its axial deflection. Using the expression of 
load carrying capacity, an unloading curve of 
theoretical load-deflection behaviour can be 
produced and it is called in this paper as a plastic 
mechanism curve. In some literatures (Murray 1981-1986), 
this curve will approximate post-collapse behaviour 
of the investigated beam. The plastic failure 
mechanisms of the beam can be recognized from 
very careful observation on a number of thin-walled 
channel steel sections tested to failure in our 
laboratory. Figure 8 shows a type of failure 
mechanism of the sections and it can be seen in the 
Figure that the plastic failure mechanism is 
composed of six plastic hinges, i.e. two plastic 
hinges in the form of flip-disc mechanism in the web 
element and another four ones in both sides of the 
flange element. In case of elastic analysis, the effect 
of local buckling is taken into account in the 
analysis. This consideration needs to be taken 
because the existence of local buckling on the 
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affected elements of the beam causes them to be less 
effective in carrying applied loads. Figure 1 
illustrates the effect of local buckling on the elastic 
stress distribution in a compressed web element of a 
thin-walled channel section subjected to bending 
moments (Rhodes 1991).. On the basis of the illustration, 
an effective width concept should be used to 
determine element widths of the investigated beam, 
which are still effective in carrying the applied-
compressive loads.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Effect of local buckling (Rhodes 1991). 
 
Utilization of the effective element widths in the 
elastic analysis results in another formulation of load 
carrying capacity in term of axial deflection. Using 
this formulation, a theoretically inclining load-
deflection behaviour of the beam, which is called an 
elastic curve in this paper, can be established and 
this will be able to predict actual elastic load-
deflection one. The axial-compressive strength of 
the investigated beam is predicted by adopting a 
method of cut-off strength (Bakker 1990, Setiyono 1994-2003). as 
shown in Figure 2, where the value of load at the 
intersection of the plastic mechanism and elastic 
curves is assumed to be theoretical-axial-
compressive strength of the beam. Beyond the 
analytical approaches, the axial-compressive 
strength of the beam is also experimentally assessed 
and results obtained are used to verify the analytical 
predictions.  In this paper, scattered deviation 
between analytical and experimental data is limited 
within tolerances of ± 20% and the degree of 
accuracy is assessed by using a statistical analysis of 
the scattered data populations. The accuracy of 
theoretical load-deflection behaviour in predicting 
the actual one is also demonstrated at the end of this 
paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Method of cut-off strength (Bakker 1990, Setiyono 1994-

2003). 

2. ANALYTICAL APPROACH 

The analytical approach was carried out in two 
stages where the first stage is a plastic analysis of a 
plastic mechanism model as shown in Figure 3 and 
the second one is an elastic analysis of the beam. 
Both analyses are mainly aimed at developing two 
different formulations of plastic and elastic load 
carrying capacity with respect to axial deflection or 
axial shortening. Using these formulations, 
approximated load-deflection behaviour of the 
beam, especially in elastic and post-collapse regions, 
can be established and its axial-compressive strength 
can also be directly estimated according to the 
method of cut-off strength in Figure 2. In order to be 
able to use the method of cut-off strength, a 
computer program was written to iterate the 
formulations in generating two different curves of 
plastic mechanism and elastic behaviour. The 
iteration was performed by firstly setting the value 
of axial shortening to zero and incrementally 
increasing it until both values of plastic and elastic 
load carrying capacity to converge in a point. The 
value of load carrying capacity at this point is then 
theoretically assumed to be the axial-compressive 
strength of the beam. 
 

2.1 Plastic Mechanism Analysis 
 
The plastic mechanism model indicated in Figure 3 
is an idealization of the plastic failure mechanism of 
the beam in Figure 8. In the Figure 3, the axial-
compressive loads (Fax) are assumed to be applied at 
point c so that the beam is fully subjected to purely 
axial-compressive loads without additional bending. 
The plastic analysis of the model is based on a 
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concept of energy equilibrium, which is formulated 
as follows: 
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Where : 
Eext         :  external energy and it is equal to work done 

by the virtual displacement of applied loads 
Fax 

M1
p       :  reduced-plastic moment capacity of each 

plastic hinge 
θ         :  rotation angle of each plastic hinge during 

deformation 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Idealized-plastic failure mechanisms of the 
investigated beam. 
 
The right hand side term of equation (1) expresses 
the sum of energy dissipation in plastic hinges and 
on the basis of N.W. Murray’s formulation (Murray 1981-

1986), the reduced-plastic moment capacity of the 
plastic hinge that is perpendicular to the direction of 
applied load Fax is calculated from: 
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σy is material yield strength while b and t are the 
length and thickness of the plastic hinge 
respectively. When the plastic hinge is oriented at an 
angle of α to the direction of the applied load Fax, 
the reduced-plastic moment capacity (Mp

111) 
becomes as follows: 
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The formulae of (2) and (3) are basically used in 
determining the reduced-plastic moment capacity of 
all plastic hinges throughout the plastic analysis of 
the mechanism model in Figure 3. If under the 
applied-axial-compressive loads Fax the beam 
shortens by Δl, the work done by the load Fax is 
therefore equal to the product of Fax and Δl. 
Meanwhile, the energy dissipating in plastic hinges 
is the sum of energy absorbed by the plastic hinges 
in the web and flange mechanisms so that the 
equation (1) may be rewritten as follows: 

fdiswdisax EElF )()( +=Δ  
(Edis)w and (Edis)f are the energy absorbed by the 
plastic hinges in the web and flange mechanisms 
where they are calculated according to the sum of 
the product of the reduced plastic moment capacity 
and the rotation angle at each plastic hinge of both 
mechanisms. The energy dissipated in the web and 
flange mechanisms can be obtained from the 
following expressions.  
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In the formulae of (5) and (6), parameters of φ1, φ2, 
θ1 and θ2 are the inverse tangent of factors as 
formulated in equations (7) and (8). Meanwhile, yc is 
the position of center c from the web element and it 
is expressed as in equation (9). 
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Substituting the formulae of (5) and (6) into the 
formula of (4) and further deriving it, will end up to 
an expression of plastic load carrying capacity (Fax)pl 
as written below: 
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The above equation is the expression of plastic load 
carrying capacity in term of axial shortening (Δl) 
and the values of c1 to c3 can be seen in the 
following formulations. 
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Iterating the value of axial shortening (Δl) in the 
above equation will generate the behaviour of 
unloading load-deflection relationship, which is 
called a plastic mechanism curve. In case of the 
value of Δl is equal to 0 (zero), the formula of (10) 
becomes: 
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Table 2 and Figure 14 show that the value of (Fax)pl 
at (Δl = 0) calculated using the above equation is 
quite close to a squash load (Fs) calculated using: 
 

)2( fwys WWtF += σ  

2.2 Elastic Analysis 

 
The previous section has discussed that in the elastic 
analysis of the beam, the effect of local buckling is 
necessarily considered by adopting an effective 
width concept. This concept is applied to analyse a 
compressed element, which is still effective in 
carrying applied loads. In the investigated beam 
subjected to axial compressions, both its elements of 
web and flanges are of compressed ones. These 
elements have to be determined their effective width 
dimensions because in the elastic analysis, the 
section properties of the beam will be determined 
according to its effective cross section instead of its 
full cross section. An effective cross section of the 
beam (Aef) as shown in Figure 4 is the fundamentals 
of elastically developing a formula of the load 
carrying capacity of the beam in term of its axial 
shortening. Procedures of determining the effective 
width of web (Wew) and flange (Wef) in the Figure 4 
refer to the rules as specified in the reference of 
British Standard (BS 5950 1987) . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Full and effective cross sections of the investigated 
beam. 
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The web is a stiffened element and its effective 
width (Wew) is determined as follows: 
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fc is a compressive stress in the effective element 
and it can be equated to design strength (py) or yield 
strength (σy). Meanwhile, pcr is a local buckling 
stress and calculated from: 
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K is a buckling constant and the constant for the 
stiffened element of web (Kst) is computed using: 
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The effective width of flange element (Wef) is also 
calculated according to the same procedure as 
described in equation (13) and (14) except the values 
of Wew and Ww in both formulae are substituted by 
those of Weff and Wf. A buckling constant of the 
unstiffened flange element (Kunst) is determined 
from the following equation and Weff obtained is 
then used to calculate the Wef. 
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Ramberg and Osgood have developed a formula (17) 
to plot a non-linear material stress-strain curve (Lau & 

Hancock 1989). The elastic analysis basically uses the 
formula (17) to estimate elastic load-deflection 
behaviour of the investigated beam in this paper. 
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σ0.7 and σ0.85 are stresses corresponding to Es = 0.7 E 
and Es = 0.85 E where E is an elastic modulus of the 
basic material. These stresses are determined using 
stress-strain behaviour of the basic material obtained 
from tensile tests. The elastic analysis of the 
investigated beam using the above equation was 
carried out in two stages, which consist of linear-
elastic analysis and non-linear elastic (Inelastic) one. 
Both stages are aimed at developing a formula of 
elastic load carrying capacity (Fax)e in term of axial 
shortening (Δl) relationship. In the first stage, the 
first term in the right hand side of equation (17), 
which relates to Hooke’s law, is further analysed to 
get the following linear-elastic load-deflection 
relationship. 
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In the meantime, the non-linear elastic load-
deflection one is obtained from analysing the second 
term of the right hand side of equation (17) to get its 
formulation as follows: 
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Δl0.7 is axial shortening that corresponds to F0.7 and 
equations (10), (18), (19) and (20) are iterated using 
the written computer program to implement the 
method of cut-off strength in estimating the axial-
compressive strength of the investigated beam. 

3. EXPERIMENTAL INVESTIGATION 

In the experimental investigation, tensile tests were 
initially performed to assess mechanical properties 
of the basic material used to manufacture the thin-
walled channel steel section beam. The basic 
material is of a carbon steel sheet of Standard JIS G 
3141 – SPCC and tensile test specimens are 
designed according to Standard JIS Z 2201 No. 13A 
(See Figure 5). The tensile tests were conducted on a 
testing machine RME 100 Schenck Trebel whose 
maximum capacity is 100 kN. The tensile specimens 
were tested in a room temperature to fracture and 
during the tests, a relationship of static-tensile load 
to specimen deformation was always monitored by 
means of extensometer that was mounted at a gauge 
length of 100 mm.  

 
 
 
 
 
 
 
 
 
 
 
Figure 5. Design of tensile test specimen (JIS 1995). 
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Figure 6. Design of axially compressed-tested specimen 
(Setiyono 2001) .  
 
The mechanical properties of the basic material can 
be identified by evaluating the tensile test load-
deformation behaviour obtained and their values, on 
average, are as follows (Setiyono 2001) : 
• Ultimate tensile strength (σUTS) = 322.25 MPa 
• Yield strength (σy) = 191.50 MPa 
• Modulus of elasticity (E) = 196.45 x 103 MPa 
• Stress corresponding to Es = 0.7 E , (σ0.7) = 

134.33 MPa 
• Stress corresponding to Es = 0.85 E , (σ0.85) = 

115.67 MPa  
A subsequent step of the experimental investigation 
is axial-compressive tests on 38 specimens of thin-
walled channel steel section beam. The specimen is 
cold-formed from the carbon steel sheet JIS G 3141 
– SPCC as above mentioned and its detail design can 
be seen in the above Figure 6. The axial-
compressive tests were also performed in an ambient 
temperature using the testing machine RME 100 
Schenck Trebel of a 100 kN maximum capacity until 
the beam specimens completely failed. In order to 
ascertain that the beam specimens are really 
subjected to axial-compressive test loads, they are 
located in-between the upper and lower clamping 
devices in such away that the center line of the 
devices exactly coincides to the longitudinal center 
line of the specimens.This test arrangement is shown 
in Figure 7 and it is clearly seen that the LVDTs are 
used to measure axial shortening as well as lateral 
deflection of the web element. Actual behaviour of 
load-deflection relationship was always monitored 
during the tests and plotted in X-Y recorders. The 
axial-compressive strength of the tested specimens 
was measured from a load-indicating device of the 
testing machine and also from a maximum test load 
of the experimental load-deflection behaviour 
obtained. A mode of failure at each specimen is 
carefully observed and this repeatedly occurs in the 
form of local plastic failure mechanisms as indicated 
in Figure 8.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Configuration of axial-compressive tests (Setiyono 

2001) . 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 8. Local-plastic failure mechanisms of the tested 
beam (Setiyono 2001) . 
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RESULTS 
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this research program is verified by comparing it to 
actual data measured in the tests. Table 1 indicates 
the comparison of individual data of estimated and 
actual strength of 38 thin-walled channel steel 
section beams axial-compressively loaded. The ratio 
of the individual-experimental-axial-compressive 
strength (Fex) and theoretical one (Fth) is also plotted 
in terms of web ratio (Ww/t) and flange ratio (Wf/t) 
as shown in Figure 9 and 10. It is clearly seen in the 
Figures that this ratio data, which also expresses the 
percentage of deviation between estimated and 
actual strength, still lies within an acceptable limits 
of ± 20% and mostly scatters in the conservative 
region (1.00 ≤ [Fex/Fth] ≤ 1.20). According to a 
statistical analysis of the scattered deviation data, its 
mean value is 1.03 with the standard deviation of 
0.058. These statistical measures mean that the 
average estimated strength tends to underestimate 
the actual one by 3% and this is of course a 
considerably safe prediction. Figures 11-13 show 
theoretical load-deflection behaviour of the 
investigated beam and this is represented by the 
plastic mechanism and elastic curves. The plastic 
mechanism curve is established by iterating equation 
(10), whereas the equations (18), (19) and (20) are 
iterated to establish the elastic one.  

 
Table 1. Comparison of theoretical and actual strength  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 9. Scattered deviation of theoretical and actual 
strength comparison in term of the web ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 10. Scattered deviation of theoretical and actual 
strength comparison in term of the flange ratio. 
 
On the comparison of the theoretical load-deflection 
curve to the experimental one, it can be seen that the 
actual elastic behaviour is well predicted by the one 
obtained from the elastic-analytical approach. 
Meanwhile, the post-collapse behaviour of the beam 
can be predicted by the plastic mechanism 
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Fex  : experimentally axial-compressive strength 
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t      : wall thickness 
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Designation t
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L  
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mm 

Fth  Fex  
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F
F

 

U1-1(100x40x1) 40.82 101.82 400 16.06 16.00 ≈1.00 
U1-6(100x40x1) 42.93 106.11 500 14.62 15.00 1.03 
U1-7(100x40x1) 40.87 101.96 600 15.63 16.40 1.05 
U1-3(100x50x1) 51.16 101.98 400 15.43 17.15 1.11 
U1-4(100x50x1) 50.20 99.90 500 15.81 17.20 1.09 
U1-9(100x50x1) 48.82 98.12 599 16.17 17.80 1.10 
U1-3(150x50x1) 51.57 154.64 400 18.02 17.20 0.95 
U1-4(150x50x1) 50.06 149.70 500 18.79 18.40 0.98 
U1-7(150x50x1) 51.04 152.86 600 17.86 18.70 1.05 
U1-3(100x40x1) 40.06 99.94 400 16.61 16.80 1.01 
U1-5(100x40x1) 40.76 101.22 500 15.83 16.30 1.03 
U1-4(100x40x1) 41.56 104.06 600 15.10 17.20 1.14 
U1-5(100x50x1) 50.00 99.90 500 15.79 15.50 0.98 
U1-7(100x50x1) 50.01 99.68 600 15.62 17.30 1.11 
U1-1(150x50x1) 50.14 150.15 400 19.00 18.30 0.96 
U1-1(100x50x1) 53.00 106.21 400 14.35 16.50 1.15 
U1-8(150x50x1) 49.80 150.00 600 18.49 17.00 0.92 

U1.6-5(100x40x1.6) 24.88 62.50 500 38.33 37.50 0.98 
U1.6-7(100x40x1.6) 25.33 63.27 600 37.53 37.20 ≈1.00 
U1.6-4(100x40x1.6) 25.13 62.50 500 38.21 37.50 0.98 
U1.6-2(100x40x1.6) 25.35 63.38 400 38.10 38.50 1.01 
U1.6-7(100x50x1.6) 31.65 63.35 600 35.29 36.00 1.02 
U1.6-4(100x50x1.6) 31.13 62.73 500 36.68 37.00 1.01 
U1.6-1(100x50x1.6) 32.53 64.96 400 34.53 38.00 1.10 
U1.6-8(150x50x1.6) 32.93 98.62 600 39.11 37.50 0.96 
U1.6-4(150x50x1.6) 33.36 100.00 500 38.87 39.25 1.01 
U2.3-6(100x40x2.3) 17.52 43.82 500 63.71 71.00 1.11 
U2.3-5(100x40x2.3) 17.53 43.30 500 64.44 66.75 1.04 
U2.3-4(150x50x2.3) 22.66 68.14 500 77.26 83.50 1.08 
U2.3-5(150x50x2.3) 22.65 68.14 500 77.25 83.00 1.07 
U2.3-2(100x50x2.3) 21.57 43.43 400 67.26 71.75 1.07 
U2.3-3(100x40x2.3) 17.30 43.50 400 66.39 71.25 1.07 
U2.3-2(150x50x2.3) 21.70 64.96 400 84.51 84.50 1.00 
U2.3-3(150x50x2.3) 21.24 64.04 400 84.64 80.00 0.95 
U2.3-1(150x50x2.3) 22.03 65.90 401 82.55 83.75 1.01 
U2.3-8(100x40x2.3) 17.46 43.80 400 65.70 72.50 1.10 
U2.3-8(150x50x2.3) 21.90 65.79 600 81.19 84.30 1.04 
U2.3-9(150x50x2.3) 21.88 65.75 600 81.50 80.00 0.98 
Fth : theoretically axial-compressive strength 
Fex : experimentally axial-compressive strength 
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(Unloading) curve with fairly accurate and the 
prediction tends to underestimate it. The reasons of 
this underestimated prediction can be explained as 
follows:  
• The test results show that the local-plastic failure 

mechanism of the beam is not always formed 
exactly at its mid-span  as assumed in the 
analytical approach 

• The effect of strain hardening is not taken into 
account in the analysis at the plastic hinge zones 
and the material is assumed to follow the elastic-
perfectly-plastic stress-strain behaviour. 

As stated in the method of cut-off strength, Figures 
11-13 also indicate that the analytical axial-
compressive strength to be determined as the elastic 
behaviour curve has been intercepted by the plastic 
mechanism one. The maximum plastic load carrying 
capacity indicated by the value at the intersection 
between the plastic mechanism curve and the 
vertical axis is equal to a squash load. A calculation 
of this load using either equation (11) or (12) 
produces similar values as can clearly be seen in 
Table 2 and plotted in Figure 14. In this Figure, the 
different data calculated using both equations are 
scattered quite closely to the solid diagonal line. 
Table 2 also indicates that the ratio of data obtained 
from equations (11) and (12) is nearly unity because 
the data differs only by 2% and this can be 
considered as insignificant differences. Thus, it can 
be certainly found out that both equations (11) and 
(12) can actually be used to determine the value of 
squash load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Theoretical and actual load-deflection behaviour 
(Nominal t = 1.00 mm).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Theoretical and actual load-deflection behaviour 
(Nominal t = 1.60 mm).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Theoretical and actual load-deflection behaviour 
(Nominal t = 2.30 mm).   
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Table 2. Comparison of equation (11) and (12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Comparison of equation (11) and (12).   

 

5. CONCLUSIONS 

A combined method of plastic mechanism and 
elastic approaches has been developed to analyse the 
strength of a thin-walled channel steel section beam 
subjected to axial compressive loads. The plastic 
mechanism approach is performed on the basis of an 
energy equilibrium concept applied to the analysis of 
an idealized plastic failure mechanism model of the 
beam. In the elastic approach, the effect of local 
buckling on the compressed elements is taken into 
account by adopting an effective width concept in 
determining the cross section of the beam, which is 
still effective to carry applied-compressive loads. 
The strength of the investigated beam is estimated 
by implementing the method of cut-off strength on 
the two different curves of plastic and elastic load 
carrying capacity. The accuracy of using the method 
developed is also assessed by comparing its 
predicted results to actual ones measured in axial 
compression tests of thin-walled channel steel 
section beam specimens. The assessment has 
indicated that the analytical model presented in this 
paper can predict the axial-compressive strength 
quite well and tends to underestimate the actual 
strength by 3%. The analytical model also shows to 
be able to estimate load-deflection behaviour of the 
beam, which is very close to the actual behaviour 
displayed from the test results.  
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