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1 INTRODUCTION 
 
Most engineers have been exposed to the idea 
at some point in their education that theories 
exist for making rational decisions in business 
and economics. This exposure invariably oc-
curs during a course in undergraduate engi-
neering economics, which is now likely asso-
ciated with vague memories of urns filled with 
coloured balls and spinning roulette wheels. 
Games of chance and contrived laboratory ex-
periments are often used to explain statistical 
decision theory, the science of making deci-
sions under uncertainty. For most structural 
engineers, decision making theories remain 
largely forgotten and of little practical impor-
tance. This paper describes currently available 
techniques and software that may be used to 
effectively work with decision theory in order 
to improve the quality of decisions made in 
engineering practice. Specific examples are 
given to show how these tools can be used in 
the field of structural steel engineering.  
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Decision making under uncertainty per-
vades all engineering phases, from conceptual 
design development through fabrication and 
installation to operation and maintenance.  Al-
though many design and analysis procedures 
are well defined and deterministic, the reality 
in engineering practice is that most key engi-
neering decisions must be made before such 
procedures have been completed. For exam-
ple, decisions on whether to bid on a design-
build job and how to select a bid design con-
cept are generally made with very limited 
available time. Economic realities usually do 
not allow a number of competing design op-
tions to be fully developed before making a 
decision on which option to pursue for the fi-
nal design. It is generally well understood that 
the earlier decisions are made in the engineer-
ing design process the greater the economic 
implications to a project. As a project ad-
vances through its various design stages from 
concept to completion, significant changes be-
come more difficult and expensive to make. 
Tools that may be used to help make better 
decisions, particularly at the uncertain early 
stages of a project, have the potential to sig-
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nificantly impact the technical and financial 
outcome of a project. 

It should be stated that the application of 
decision making theories to practical situa-
tions in business and economics has been the 
subject of much debate. Decision science is a 
relatively modern science, and has evolved 
considerably over the past century. Both game 
theory, developed in the 1940s by von Neu-
mann and Morgenstern, and statistical deci-
sion theory, developed in the 1960s by Raiffa, 
are examples of the normative, or prescriptive 
branch of decision theory. Normative theories 
such as these are often formal mathematical 
treatments describing the idealized behaviour 
of rational decision makers with access to per-
fect information. In contrast, the descriptive 
branch of decision theory has its roots in hu-
man behavioural research and attempts to ex-
plain the behaviour of people in realistic deci-
sion scenarios. Extensive laboratory testing 
was conducted in the 1970s to develop and 
test hypotheses for descriptive decision the-
ory. Some of this research has been criticized 
on the basis that the often complicated and 
contrived scenarios presented to students bear 
little resemblance to real world situations, 
where the decision maker has considerable in-
sight and stake in the decision process. Some 
also argue that there is no reason to assume 
that human decision makers are essentially ra-
tional, that they are more strongly influenced 
by emotion, instinct, imitation, habit, sugges-
tion, and other illogical forms of thinking. The 
predominating view is that prescriptive deci-
sion theories have greater value as method of 
structuring and analyzing a decision than as a 
way of finding an irrefutable prescription for 
action. Significant differences between a pre-
scribed solution and the views of the decision 
makers often give important clues about how 
the decision model is structured, and force de-
cision makers to better understand their biases 
and inconsistencies. 

2 PROBABILITY 

Probabilities are classified as objective or sub-
jective depending on how they were derived. 
In the classical probability theory, the prob-
ability of an event occurring is defined as the 
number of outcomes which lead to the event 
divided by the total number of possible out-
comes. Thus the probability of drawing a jack 

out of a standard deck of 52 cards is 4/52 = 
0.0769 according to the classical approach. In 
the relative frequency approach the probability 
of an event occurring is estimated by repeating 
an experiment a large number of times or by 
gathering data and determining the frequency 
with which an event has occurred in the past. 
For example, if a weld inspector tests 100 
identical components and finds 4 require weld 
repair then this information suggests that the 
probability is 4/100 or 0.04 that a component 
has a faulty weld. Of course, this estimate is 
only valid if all welding conditions remain un-
changed. Both the classical approach and the 
relative frequency approach describe objective 
probabilities. 

Clearly, objective probabilities are of lim-
ited application in structural engineering deci-
sion problems. In structural engineering, most 
decision problems concern unique events or 
one-off decisions. Generally there is not 
enough statistical data on past problems, or 
else conditions for those problems were not 
similar enough to the present situation to be 
able to determine a probability using the rela-
tive frequency approach. For these reasons, 
subjective probabilities are normally used in 
structural engineering decision problems. A 
subjective probability is an expression of an 
individual’s degree of belief that a particular 
event will occur. Subjective probabilities vary 
from individual to individual, even when they 
have access to the same information. 

Some people are skeptical about subjective 
probabilities. Research has shown that subjec-
tive assessment of probabilities may be of 
poor quality and strongly influenced by the 
method in which they are obtained (Goodwin 
& Wright, 1991). Subjective probabilities are 
used extensively in decision analysis for sev-
eral reasons. In many cases, they represent the 
best information available to the decision 
maker. Experts in a given field have accumu-
lated a body of knowledge and experience so 
that their judgments about subjective prob-
abilities are usually based on sound facts and 
principles. Representing a judgment numeri-
cally in the form of a probability rather than 
verbally, for example, allows a much less 
vague assessment to be made. Furthermore, 
the resulting statement can be precisely com-
municated to others, and allows a decision 
maker’s views to be challenged and explored. 
When using subjective probabilities it is es-
sential to perform a sensitivity study to under-
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stand how the outcome of a decision model 
changes in response to the chosen probability 
value. Often, sensitivity analysis indicates that 
major changes can be made to probabilities in 
decision models before affecting the recom-
mended course of action. Finally, a systematic 
method is available in Bayes’ Theorem to test 
and refine the hypothesis suggested by a sub-
jective probability as more information be-
comes available. 

Although in most practical problems the 
probabilities will be subjective, these prob-
abilities must still conform to the underlying 
axioms of probability theory, including the 
Kolmogorov axioms (Kolmogorov, 1956), re-
stated here as follows: 

 
1 The probability of an event occurring must 

be non-negative; 
2 The probability of an event which is certain 

to occur is 1; 
3 The probabilities of two or more mutually 

exclusive independent events (p(A∩B)=0) 
can be added, i.e. p(A∪B) = p(A) + p(B); 

4 The probability that 2 or more independent 
events will occur together in succession is 
the product of all the individual probabili-
ties i.e. p(A∩B) = p(A)⋅p(B) (joint prob-
ability);  

5 The conditional probability of event A, 
given event B, is defined by p(A|B) = 
p(A∩B)/p(B) on condition p(B)≠0; if A 
and B are independent, p(A|B) = p(A). 
 
The first 2 axioms imply that the probabil-

ity of an event occurring must be at least zero 
and no greater than 1. 

3 GRAPHICAL TOOLS 

Decision analysis models are often graphically 
represented using decision trees and influence 
diagrams. Although similar, decision trees and 
influence diagrams show different types of in-
formation and are used for different purposes. 
Decision trees (Magee, 1964) provide a de-
tailed structure in which different possible 
scenarios or decision paths are shown as se-
quential branches linked from left to right in 
the order they would occur. Influence dia-
grams (Howard & Matheson, 1981) define the 
general structure of the model, showing the 
decision variables and the dependencies be-
tween those variables. Figure 1 shows a deci-

sion tree and influence diagram used to model 
a simplified problem of how a company might 
choose to bid on a new project. 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: Graphical representation of a bid decision 
(a) decision tree, and (b) influence diagram 
 

Decision trees provide a detailed picture of 
the decision problem, clearly showing the dif-
ferent possible scenarios and the sequence in 
which decisions and chance events occur. De-
cision trees contain three types of nodes (deci-
sion , chance, and utility), and paths directed 
from left to right between nodes. Nodes in a 
decision tree represent different types of vari-
ables. Decision nodes, usually drawn as rec-
tangles, represent variables controlled by the 
decision maker. Chance nodes, usually drawn 
as circles or ellipses, are random variables that 
represent uncertain quantities in the decision 
model. Utility nodes, also known as terminal 
or value nodes, are usually drawn as dia-
monds. Utility nodes correspond to the leaves 
of the decision tree, and represent the value or 
utility of an outcome in the decision process. 
The use of decision trees contributes to com-
prehensive analysis and clear communications 
between decision makers. Decision trees 
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clearly outline the risk and uncertainty associ-
ated with different decision paths and promote 
a comprehensive organization of alternative 
strategies. 

Similar to decision trees, influence dia-
grams contain three types of nodes (decision, 
chance, and utility). Influence diagrams con-
tain two types of arcs (influences and informa-
tional arcs). A directed arc in an influence 
diagram normally indicates an influence, 
where the node at the tail of the arc influences 
the state of the node at the head of the arc. 
Arcs from a decision node to a chance node 
imply that the decision will impact the prob-
ability distribution of the random variable. 
Arcs coming into decision nodes are informa-
tional arcs that do not denote influences but 
temporal precedence. Informational arcs re-
flect the sequence in which decisions are made 
and the information that will be available 
when a decision is made. 

Although clear, intuitive and detailed, deci-
sion trees have several disadvantages in com-
parison to influence diagrams. First, the num-
ber of nodes in a decision tree increases 
exponentially with the number of decision and 
chance variables, and even very small decision 
scenarios require a large tree. Often decision 
trees contain many identical subtrees. Al-
though strategies exist for collapsing subtrees 
and for pruning complex trees, these opera-
tions result in some loss of clarity. A further 
limitation of decision trees is that all variables 
must be treated as discrete (with a finite num-
ber of alternatives), even if they are continu-
ous. The influence diagram is a more compact 
representation of a decision problem than a  
decision tree. Influence diagrams were origi-
nally developed as a method of compactly rep-
resenting decision trees for symmetric deci-
sion scenarios (decision trees with similar 
branches); however, they are now seen more 
as a decision tool for use with Bayesian net-
works. 

4 EXPECTED VALUE 

The expected value is a standard measure for 
selecting a preferred alternative in decisions 
involving uncertainty. The expected value is a 
weighted average of outcomes, calculated as 
the sum of the products of all outcomes from 
independent states multiplied by their associ-

ated probabilities of occurrence. The expected 
value EV for an alternative i is given by 

 
EV(i) = ∑

j
jiOjP ),()( , and ∑ =

j
jP 1)( ,  (1) 

 
where P(j) is the independent probability of 
state j, and O(i,j) is the outcome of state j for 
alternative i. The expected value can be inter-
preted as an average value which will result if 
a process is repeated a large number of times. 
Despite this assertion, expected values are of-
ten used in unique situations. When it is pos-
sible to assign probabilities to future states the 
expected value criterion may be used to select 
a preferred alternative. When there is insuffi-
cient reason to believe one state is more prob-
able than another, then each should be as-
signed an equal probability of occurrence, 
following the “equal-likelihood” criterion. 

A decision tree showing expected value 
calculations for the bid decision is shown in 
Figure 2. In this example, Bid A leads to a 
project that produces an expected profit of 
$740 000. The cost of preparing  Bid A is $10 
000. For Bid A, the expected value is 
0.20($740 000) + 0.80($-10 000) = $140 000. 
Similarly, the expected value for Bid B is 
$120 000. If the goal is to maximize expected 
value, the firm should choose to submit Bid A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Decision tree with expected value 
 

One important feature of the expected 
value criterion is that it fails to take into ac-
count the decision maker’s attitude to risk. 
This feature is illustrated by the St. Petersburg 
Paradox (Martin, 2004). The St. Petersburg 
game is played by flipping a fair coin until it 
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comes up tails. The total number of flips de-
termines the payoff, which is $2n. For exam-
ple, if the coin is flipped three times before a 
tail appears on the fourth, then n=4 and the 
payoff is $24=$16. The expected payoff for 
n=4 is (1/2)4($16) = $1, as it is for every pos-
sible consequence. The expected value of the 
game is infinite since there is an infinite num-
ber of possible consequences n = 1,2,3, and so 
on. Most people would not pay even $20 to 
enter such a game, which indicates that there 
may be significant discrepancies between the 
expected value criterion and human behav-
iour. This problem, known as the St. Peters-
burg Paradox, was discovered by the Swiss 
mathematician Daniel Bernoulli in the eight-
eenth century. Bernoulli observed that the ex-
pected value calculations are in error because 
they use dollar value outcomes instead of the 
expected utilities of each consequence. He in-
troduced the now widely accepted principle 
that money has a decreasing marginal utility, 
and suggested that a realistic measure of the 
utility of money might be given by the loga-
rithm of the money amount. The function pro-
posed by Bernoulli indicates an unwillingness 
to gamble for a very small chance at a very 
large prize. 

5 UTILITY THEORY 

In decision theory, utility is a measure of the 
“desirability of consequences of courses of ac-
tion in a decision made under uncertain condi-
tions” (Krippendorff, 1986). The underlying 
assumption in Utility Theory is that the deci-
sion maker always chooses the alternative for 
which the expected utility is maximized. To 
determine the expected utility, a utility has to 
be assigned to each of the possible conse-
quences of each alternative. A utility function 
maps utility to the range of outcomes of a de-
cision, depending on the decision maker’s 
preferences and attitude toward risk. Utility 
Theory is therefore intrinsically related to the 
concepts of risk and uncertainty in decision 
making. 

Utility Theory was formalized mathemati-
cally by the classic work of von Neumann and 
Morgenstern (1944), Theory of Games and 
Economic Behavior. Von Neumann and 
Morgenstern introduced a set of necessary and 
sufficient axioms, and promoted the develop-
ment of methods to measure utilities on nu-

merical scales. In their theory of expected util-
ity, they defined an expected utility function 
over lotteries or gambles, in contrast to Ber-
noulli’s utility function, which was defined 
over money. There are several methods for 
eliciting utility functions from individuals. In 
the method of certainty equivalence, a utility 
rating is assigned to a certain-to-be-received 
amount that is considered equivalent to a 
gamble at given probabilities of a certain gain 
or loss. In this method, an individual is as-
sumed to have a utility function with the fol-
lowing key properties: 1) if outcome A is pre-
ferred to outcome B, the utility of A is greater 
than the utility of B and the converse is true; 
and 2) if an individual has a contract that car-
ries a payoff of A with a probability of p and a 
payoff of B with a probability of (1-p), the 
utility of the contract is the expected value of 
the utilities of the payoffs. Using the second 
property, the utility of a contract, U(C), can be 
calculated from the utilities of the payoffs, 
U(A) and U(B), and their probabilities as: 

  
U(C) = U(A)⋅p + U(B)⋅(1-p)      (2) 

 
For example, say that an analyst elicits a 

decision maker’s utility function for monetary 
values in the range $0 to $40 000, so that 
U($0)=0 and U($40 000)=1. If the decision 
maker would pay $10 000 for a hypothetical 
lottery ticket which gave a 50% chance of $0 
and a 50% chance of $40 000, this implies that 
U($10 000) = 0.5⋅U($0) + 0.5⋅U($40 000) = 
0.5(0) + 0.5(1) = 0.5. This type of analysis is 
repeated to generate the complete utility func-
tion. 

Utility functions can be used to establish 
risk tolerance, a mathematical quantity which 
describes a decision maker’s attitude toward 
risk. A concave utility function (where the in-
side of the curve faces down on the utility 
function graph), such as the logarithmic func-
tion proposed by Bernoulli, implies that an in-
dividual is risk-averse. Such a person will ac-
cept a certain outcome, say $10, that is lower 
in value than the expected value of a risky 
gamble that may result in winning less or 
more, for example, a 0.5 chance of winning 
$30 and a 0.5 chance of receiving nothing. On 
the other hand a convex utility function indi-
cates a person is risk seeking and will prefer to 
gamble rather than settle for a sure thing. Al-
though a risk averse attitude is shared by 
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many people, it cannot be used as the basis for 
decision making behaviour, since there are 
also many people who exhibit risk-seeking 
behaviour. For example, many people buy lot-
tery tickets even though the cost of a ticket is 
more than the expected utility. Attitude toward 
risk varies between people and business or-
ganizations, and depends on the circumstances 
under which the risk occurs. 

Utility Theory was proposed as a norma-
tive, rational model as opposed to a descrip-
tive model of human behaviour. The fact that 
people make inconsistent judgments and are 
sometimes not rational should not invalidate 
the theory. As mentioned, there are several 
different methods for eliciting utility functions 
from individuals. Goodwin & Wright (1991) 
state that “utilities appear to be extremely sen-
sitive to the elicitation method which is 
adopted.” Risks involving losses tend to pro-
duce different utility functions than risks in-
volving gains. Different utility functions are 
produced when one is asked to buy or sell the 
hypothetical lottery ticket  used in the elicita-
tion process. Research by Tversky and Kah-
neman (1981) indicated that the way in which 
choice is framed affects the decision maker’s 
response, the so-called framing problem. They 
discovered that choices involving statements 
about gains tends to produce risk-averse re-
sponses, while those involving losses are often 
risk-seeking. Goodwin & Wright (1991) pro-
pose several methods for overcoming prob-
lems in the elicitation of utility functions. He 
suggests several methods should be used, and 
that inconsistencies should be investigated. 
Also, in order to avoid the framing problem, 
questions should be phrased in a way that val-
ues are closely related to the values in the ac-
tual decision problem. Kahneman and Tversky 
(1996) proposed Prospect Theory as an alter-
native to Utility Theory. According to Pros-
pect Theory, people value a certain gain more 
than a probable gain with an equal or greater 
expected value. The function relating the sub-
jective value and the corresponding losses is 
steeper than that for gains. 

Utility Theory has important implications 
for engineering decision making. Utility The-
ory forms the basis for developing utility 
scales and methods that assign numbers to in-
tangibles. Engineering decision making often 
involves complex tradeoffs between perform-
ance, cost, and intangible items. Values such 
as time, prestige, knowledge, experience and 

other indirect costs and benefits are examples 
of intangibles that are often overlooked in en-
gineering decision making. Utility Theory 
provides a mathematical basis for making 
these complex tradeoffs between different at-
tributes. Also, the theory may be used to force 
the decision maker to look at whether an addi-
tional unit of money, time, performance or 
other attribute produces a linear increase in 
utility.  

Multi-attribute Utility Theory (MAUT) ex-
tends the application of Utility Theory to 
problems involving more than one attribute. 
Although several methods have been proposed 
for this analysis, the methods of Keeney and 
Raiffa (1976) are widely known and accepted. 
An early application of the theory was to 
study alternative locations for a new airport in 
Mexico City in the early 1970s. The study 
considered cost, capacity, access time, safety, 
social disruption and noise pollution. The U.S. 
military has used MAUT in the design of ma-
jor weapons systems to make tradeoffs of cost, 
weight, durability, lethability and survivability 
(Chelst & Edwards, 1987). To perform the 
analysis of decisions involving multiple at-
tributes, the utility function for each attribute 
must be derived individually. A multiattribute 
utility function is then defined. An important 
simplifying assumption in the definition of the 
multiattribute utility function is that of mutual 
utility independence. Multiattribute problems 
can become complex if the attributes are not 
mutually utility independent. 

Multi-attribute Utility Theory belongs to 
the field of Multi-Criteria Decision Making 
(MCDM). Other alternative methods for rank 
ordering alternatives are Analytic Hierarchy 
Process (AHP), due to Saaty (1982) and the 
Simple Multi-attribute Rating Technique 
(SMART), developed by Edwards (1971). 
Both methods have the advantage of being 
less complicated and more transparent than 
the MAUT approach. AHP and SMART are 
widely used to facilitate public policy deci-
sions. 

6 VARIANCES 

Statistical analysis provides other tools in ad-
dition to the expected value criterion for 
evaluating uncertain options. Measures of the 
variation of outcomes from the mean give an 
indication of the risk inherent in a decision al-
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ternative. For two options with the same ex-
pected value, the one with outcomes having 
less variation from the mean is considered to 
have less risk.  

For a random variable X with expected 
value E[X], the variance of X, denoted by 
Var(X) or �2, is given by 

 
Var(X) = E[x2]-(E[x])2         (3) 

 
The standard deviation is simply σ = 

(Var(X))1/2. The variance of the sum of 2 ran-
dom variables, say X and Y, is 

 
Var(X+Y) = Var(X) + 2 Cov(X,Y) + Var(Y)   
                   (4) 

 
where Cov(X,Y) is the covariance of the 

product of the variables X and Y. If the 2 vari-
ables are independent, then Var(X+Y) = 
Var(X) + Var(Y). Note also that Var(X-Y) = 
Var(X) + Var(Y). The equation for the vari-
ance of the product of two independent ran-
dom variables X and Y is given by: 

 
σ2

XY = E[X]2σ2
Y + E[Y]2σ2

X + σ2
X σ2

Y.   (5)
   

There is no general formulation for the 
variance of a product of two random variables 
where covariance exists between the variables. 

The above expressions for the sums and 
products of random variables may be used to 
create stochastic models for use in decision 
making. For example, say that a pin connec-
tion in a structure has a pin with diameter A 
and a hole with diameter B. The diametral 
clearance C between the pin and hole is B-A. 
Assuming that the as-manufactured dimen-
sions of the pin and bore are normally distrib-
uted random variables, the risk that pin does 
not fit can be calculated from the probability 
distribution for the variable C using the ex-
pressions above. For simple stochastic models 
such as this, direct analytical methods using 
statistical analysis can be employed. As mod-
els become more complicated, such as when 
nonlinear functions or more variables are in-
volved, direct analytical methods quickly be-
come infeasible. In these situations, simulation 
is the preferred approach. 

7 SIMULATION 

Monte Carlo simulation is a numerical method 
used to find solutions to mathematical prob-
lems using random numbers. Often the 
method is used when the problem involves 
uncertainty, a large number of variables, or 
nonlinearities, or other features which make it 
difficult to solve analytically. Because of this, 
it is well suited to real-world problems, which 
often have complex nonlinear relationships 
with no closed-form solutions. The method 
becomes more efficient compared to other 
numerical methods as the dimension of the 
problem increases. Monte Carlo simulation is 
classified as a sampling method because the 
inputs are randomly generated from probabil-
ity distributions to simulate the process of 
sampling from an actual population. The 
simulation is an iterative process where sam-
pling is repeated until a statistically significant 
distribution of outputs is obtained. In the pin 
connection problem discussed in the previous 
section, Monte Carlo simulation could be used 
to sample values from the probability distribu-
tions defining the diameter of the pin and hole. 
The clearance is then calculated from each 
pair of dimensions, leading to a distribution of 
clearance values. 

The Monte Carlo method is a method of 
analyzing stochastic uncertainty propagation, 
which is used to determine the impact of un-
certainties such as random variation, lack of 
knowledge, or errors, on the performance of a 
system. Given representative probability dis-
tributions as input, the method generates dis-
tributions that are useful in the decision mak-
ing process. Similar to decision trees, Monte 
Carlo simulation results in an expected value 
that can be used in selecting the most attrac-
tive course of action. In addition to expected 
value, the simulation results can be converted 
to error bars, reliability predictions, tolerance 
zones, and confidence intervals. The useful-
ness of the results obviously depend on the in-
put distributions, which should closely match 
existing data or represent the current state of 
knowledge. 

Monte Carlo simulation requires a rela-
tively large number of model evaluations 
which are not practical without the use of the 
computer. In fact, the history of the Monte 
Carlo method is tightly linked to the history of 
the computer. The first significant application 
of the Monte Carlo method was run on the 
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first electronic computer, the ENIAC, to solve 
a problem in thermonuclear physics in 1947 
(Metropolis, 1987). Von Neumann and Ulam 
developed a statistical approach to solving the 
problem of neutron diffusion in fissionable 
material. The method was named by Ulam, 
who implemented the solution with Metropo-
lis (1949). 

Monte Carlo methods have been used to 
solve problems in a wide range of areas, in-
cluding finance, business, physics, mathemat-
ics, chemistry, medicine, manufacturing and 
engineering. Monte Carlo simulation is used 
extensively in business for risk and decision 
analysis to account for uncertainties in market 
trends and cash flows. The method is used in 
the modeling of materials and chemicals to 
study grain growth in metallic alloys, the be-
haviour of polymers, and protein structure 
predictions (Impact of Monte Carlo methods 
on scientific research, 2004). Sampling meth-
ods may be used to efficiently evaluate com-
plicated and many-dimensional integrals. In 
engineering applications, Monte Carlo simula-
tion is used for uncertainty analysis, optimiza-
tion, and reliability-based design. 

A relatively large number of samples must 
be completed using the Monte Carlo method, 
since increasing the sample size reduces the 
standard error of the results. In some cases the 
method is not practical because of the compu-
tation requirements, which may limit the com-
plexity of the model. Research has been di-
rected at the problem of improving the speed 
and efficiency of the method. Variance reduc-
tion is a technique that may be used to de-
crease computation time. The Latin Hyper-
cube Sampling method is an alternative that 
modifies the way in which the input distribu-
tion is sampled in order to reduce the number 
of solutions required compared to the simple 
Monte Carlo method (Isukapalli, 1999). In this 
method, the range of probable values for each 
uncertain input parameter is divided into or-
dered segments of equal probability which are 
sampled in such a way as to generate samples 
from all the ranges of possible values, produc-
ing information about the extremes of the out-
put probability distributions. Structural reli-
ability analysis, a well-known engineering 
application of sampling methods, involves 
very low probabilities of failure and requires a 
large number of samples. More efficient sam-
pling alternatives to Monte Carlo simulation, 
including first-order and second-order reliabil-

ity methods (FORM and SORM), as well as 
response surface methods (RSM), are often 
used in structural reliability problems. 

8 OPTIMIZATION 

A vast array of analytical and numerical tech-
niques are available to determine the optimum 
assignment of resources to minimize or maxi-
mize some aspect of a system. Optimization 
techniques may be classified in a number of 
different ways, based on the types of variables 
and equations used in the mathematical model 
of the system. Systems may be modeled as 
linear or nonlinear, continuous or discrete, de-
terministic or stochastic, and constrained or 
unconstrained. Optimization techniques are 
also classified as global or local, depending on 
whether they find the nearest local minimum 
relative to a given starting point, or whether 
they find the minimum value over all possible 
values of input. Table 1 lists a number of the 
available optimization techniques. Rao (1996) 
has written a thorough description of most 
commonly used engineering optimization 
techniques. A comprehensive online guide to 
numerical optimization techniques and soft-
ware is maintained as part of NEOS, the Net-
work Enabled Optimization System (2004). 

Optimization has been used in structural 
engineering to reduce costs while satisfying 
safety and serviceability constraints. Most 
structural optimization work has employed lo-
cal optimization techniques using relatively 
simple objective functions, generally to mini-
mize material weight. Although there is a 
range of different techniques for doing local 
optimization, many practical problems in en-
gineering have nonlinear components that can 
create a solution space with several locally op-
timum solutions. At this point there seems to 
be no sound systematic way of solving such 
problems. As Pinter (1998) indicates, “even 
the most advanced mathematical programming 
and scientific computing environments lack a 
universal and proven direct solver capability 
to tackle continuous problems which possess 
multiple optima.” 
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Table 1: Optimization methods 
• Linear Programming 

o Simplex Method 
o Revised Simplex Method 
o Primal-Dual Simplex Method 
o Dual Simplex Method 
o Interior Point Methods 
o Decomposition Method 
o Sensitivity Analysis 
o Parametric Programming 
o Quadratic Programming 

• Nonlinear Programming 
o Analytical Methods 

 Equality Constraints 
• Lagrange Multiplier Method 

 Inequality Constraints 
• Kuhn-Tucker Conditions 

o One-Dimensional Minimization Methods 
 Elimination Methods 
 Unrestricted Search 
 Exhaustive or Simultaneous Search 
 Dichotomous Search 
 Fibonacci Method 
 Golden Section Method 

o Interpolation Methods 
 Quadratic Interpolation 
 Cubic Interpolation 
 Newton's Method 
 Quasi-Newton Method 
 Secant Method 

o Unconstrained Optimization Methods 
 Direct Methods 

• Random Search Method 
• Grid Search Method 
• Univariate Method 
• Pattern Search Methods 
• Powell's method 

o Hooke-Jeeves'  Method 
o Rosenbrock's Method 

• Simplex (Polytope) Method 
 Descent Methods 

• Steepest Descent (Cauchy) Method 
• Fletcher-Reeves Method 
• Newton's Method 
• Marquardt Method 
• Quasi-Newton Methods 

o Davidon-Fletcher-Powell (DFP) 
Method 
o Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) Method 

o Constrained Optimization Techniques 
 Direct Methods 

• Random Search Methods 
• Heuristic Search Methods 
• Sequential Linear Programming Method 
• Sequential Quadratic Programming Method 
• Methods of Feasible Directions 

o Zoutendijk's Method 
o Rosen's Gradient Projection Method 

• Generalized Reduced Gradient Method 
 Indirect Methods 

• Transformation of Variables 
• Sequential Unconstrained Minimization 

o Interior Penalty Function Methods 
o Exterior Penalty Function Method 
o Exterior Interior Penalty Function 

Method 
o Penalty Function Method for Paramet-
ric Constraints 
o Augmented Lagrange Multiplier 
Method 

• Geometric Programming 
• Dynamic Programming 
• Integer Programming 

o Cutting Plane Method 
o Branch and Bound Method 
o Balas Method 
o Generalized Penalty Function Method 
o Sequential Linear Discrete Programming Method 

• Stochastic Programming 
• Separable Programming 
• Multiobjective Optimization 

o Pareto Optimum Solution 
o Utility Function Method 
o Global Criterion Method 
o Lexicographic Method 
o Goal Programming Method 

• Global Optimization 
o Exact Methods 

 Naïve Approaches 
 Enumerative Search Strategies  
 Homotopy (Parameter Continuation), Trajectory 

Methods, and Related Approaches 
 Successive Approximation (Relaxation) Methods 
 Branch and Bound Algorithms 
 Bayesian Search Algorithms 
 Adaptive Stochastic Search Algorithms  
 Interval Analysis Methods 

o Heuristic Methods 
 Global Extensions of Local Search Methods  
 Genetic Algorithms 
 Simulated Annealing 
 Neural-Network-Based Methods 
 Fuzzy Systems 
 Tabu Search 
 Scatter Search 
 Approximate Convex Global Underestimation  
 Continuation Methods 
 Sequential Improvement of Local Optima 

• Meta-Heuristic Methods 

8.1 Sensitivity analysis 
Sensitivity analysis is used to study the impact 
of changes in a model’s input parameters on 
the solution. In models involving uncertain in-
puts, sensitivity analysis is critical in deter-
mining the impact of assumptions about un-
certain quantities on the quality of the results. 
Sensitivity analysis results are often presented 
in graphical form, which intuitively shows 
which inputs are the most critical. Sensitivity 
analysis helps to guide the decision of where 
resources can be most efficiently utilized in 
refining the analysis model and collecting 
more input data.  

Sensitivity analysis may be performed us-
ing a number of different techniques, some 
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more informal than others. Sensitivity testing 
may be done by studying the response of a 
model to changes in the formulation of the 
model, and to changes in input parameter val-
ues and combinations. Analytical methods in-
volve the differentiation of equations govern-
ing the model, and the subsequent solution of 
the resulting sensitivity equations. Sampling-
based methods require multiple model runs us-
ing different input parameter combinations, or 
sample points, and the sensitivity is estimated 
using the output at those points. 

9 SOFTWARE 

A large number of software applications are 
available which implement the methods dis-
cussed in this paper. A survey of software 
with potential application to engineering deci-
sion making is given in the Appendix. For 
each software package, the capabilities are 
presented in tabular format. The applications 
were not rated or evaluated hands-on, and the 
capabilities shown generally rely on informa-
tion provided by the software manufacturer.  

As a general comment, some of the soft-
ware packages may not be suitable for use in 
the typical structural engineering office. Some 
may be too expensive, specialized, or have 
hardware requirements unsuited for the deci-
sion making scenarios that occur in engineer-
ing practice. The table is presented as an at-
tempt to give insight into the capabilities of 
various commercial software products that 
might be useful in engineering decision mak-
ing, both in research and in practice.  

Spreadsheet applications deserve special at-
tention in the context of decision making. The 
ubiquitous Microsoft Excel program has some 
capabilities that might not be apparent to the 
casual user. What-if analysis, expected utility 
calculations, Monte Carlo methods, optimiza-
tion and sensitivity analysis can be done di-
rectly in Excel without additional third-party 
add-ins. Although there exist better programs 
for large-scale problems, the spreadsheet is an 
invaluable tool for everyday use and for gain-
ing familiarity with the various techniques. 
Excel comes with a general-purpose optimizer 
for small-scale linear, integer, and nonlinear 
problems, and can do linear programming and 
nonlinear programming with continuous or 
discrete variables. 

10 APPLICATIONS 

There is a range of potential practical applica-
tions of decision analysis tools in structural 
steel engineering. Engineering by its nature 
involves many uncertainties, and the engineer 
is often expected to decide between competing 
requirements in uncertain conditions.  A num-
ber of applications for engineering decision 
making under risk and uncertainty are de-
scribed in this section. 

10.1 Design 
Design decisions made early in the life of a 
project have greater economic impact than 
those made later on. The early stages of a pro-
ject have the greatest uncertainty. Decisions 
made at the conceptual stage may have pro-
found impacts on detail design, fabrication, 
shipping and erection of the structure. It is be-
coming increasingly important for engineers 
to make decisions which take into account the 
true cost drivers of a structural project. Deci-
sion analysis tools may be used to help make 
more rational decisions early, and to quantify 
the risk associated with different design op-
tions. 

10.2 Optimization 
When steel structures are optimized for weight 
independent of other cost considerations, the 
most efficient structure is one characterized by 
many different member cross-sections and 
connection configurations. Taken to the ex-
treme, minimum weight optimization leads to 
structures which are usually not the most cost-
effective solution overall. Optimization for 
minimum cost generally favours structures 
with more common components: a limited set 
of member sizes, bay or module sizes, and 
connection types. Symmetry of design is often 
a key to cost-effective structures, even when 
the loading is not strictly symmetrical and 
weight optimization would lead to non-
symmetric structures. Currently the engineer 
has few tools to approach cost optimization in 
a systematic way; intuition, experience, and 
heuristics are the norm in practice. Some 
structural design programs allow minimum 
weight optimization with constraints that fa-
vour common member sizes; however, there 
are many additional cost-drivers at the fabrica-
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tion and erection stages which these programs 
do not consider.  

As a further illustration of the caveats of 
minimum weight optimization, consider the 
design of structures using hollow structural 
section (HSS) members. Minimum weight 
member design favours relatively thin-walled 
sections. Thin-walled sections are more prone 
to local buckling and wall yielding limit 
states. Increasing connection resistance by us-
ing internal stiffener plates is generally a 
highly inefficient option. The most cost-
effective approach with HSS structural design 
is to choose heavier wall sections to alleviate 
the need for external or internal stiffening 
plates. This situation is not limited to struc-
tural design with HSS members; a similar 
situation arises in beam to column moment 
connections using wide flange members. The 
most cost-effective solution often involves se-
lecting heavier columns than dictated by the 
minimum weight solution in order to avoid the 
need for column stiffener plates and doubler 
plates.   

As a general observation, optimization to 
minimize overall costs produces more conser-
vative designs than optimization to minimize 
member weight. Using more conservative 
connection design details for example may re-
sult in greater numbers of common connection 
details, less detailing time and less shop fabri-
cation time. Reduced activities durations im-
prove project schedule performance and re-
duce overall costs. 

10.3 Overall costs 
Knowledge of overall costs throughout all 
stages of a project produces better designs. Al-
though much of this information may be 
tightly bound to experience and intuition, de-
cision analysis offers techniques for quantify-
ing complex decision factors and allowing 
them to be queried and reused. It is possible to 
incorporate the impact of design decisions on 
a structural engineering project into a decision 
model. Such a model could be capable of 
modeling the impact of design choices on: de-
sign, fabrication and erection time; fabrication 
costs, based on the ease of fabrication and 
possibility of errors and related rework; the 
cost of fabrication jigs; inspection costs, de-
pending on accessibility and method; estimat-
ing errors, accounting for higher risk of error 
with unfamiliar designs; shipping costs; erec-

tion falsework costs; and safety, and related 
costs of injury claims.  

Overall costs are not limited to hard costs; 
the value of intangibles should be factored 
into engineering decisions as well. Utility 
Theory provides a basis for quantifying non-
monetary values. Examples of intangible fac-
tors in structural engineering include: ease of 
maintenance, inspectability, employee satis-
faction, and the impact of repetition (there 
may be an element of greater satisfaction in 
designing one versatile component as opposed 
to many similar, but different designs). 

10.4 Estimating 
Accurate cost estimation of steel structure fab-
rication plays a key part in successful bidding 
of new jobs and in setting baselines for pro-
duction planning and control. Estimators fore-
cast the costs of producing components as a 
function of piece size and weight, based on 
specific information about shop conditions, 
including overall layout, equipment, and man-
power resources. Traditionally, estimators use 
average values based on historical data for 
known operations in a particular shop. Since 
the shop layout is typically fixed, it is possible 
to create simulation models to study the flow 
of work through a given shop to understand 
production bottlenecks and other inefficien-
cies. Many computer programs have been 
written to optimize production planning and 
control. Rather than use historical data, a 
promising new avenue for estimating steel 
fabrication costs is through virtual shop mod-
eling. Virtual shop simulation models can be 
integrated into the engineering decision mak-
ing process to provide accurate cost informa-
tion 

10.5 Tolerances 
Tolerances on structural steel encompass mill 
tolerances, fabrication tolerances due to im-
precision in the measuring, cutting, fitting and 
welding processes, and erection tolerances. In 
particular, the welding process is highly un-
certain and there is no reliable method of 
quantitatively predicting distortion in steel 
weldments due to weld shrinkage. Tolerances 
specified incorrectly by the engineer may have 
considerable impact on overall structural 
costs. Fabrication tolerances that are too nar-
rowly specified unnecessarily increase costs 
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because of additional labour and possibly un-
necessary additional jigs. On the other hand, 
tolerances specified too loosely may cause fit 
problems, also increasing costs due to addi-
tional time and rework. Tolerances have a 
similar impact in the field, having the poten-
tial to significantly increase costs and back 
charges. Tolerance specification has implica-
tions to safety as well, as steel members that 
that do not fit might be forced into position, 
putting additional unaccounted stresses into a 
structure and increasing risk of injury to the 
erector. In critical applications, structural tol-
erances can be simulated by Monte Carlo 
simulation or more general reliability meth-
ods. Tolerances can also be included in overall 
structural cost models to balance tradeoffs be-
tween the additional cost of poorly fitting 
members and the additional cost of maintain-
ing tighter tolerances in the shop. 

10.6 Metrology 
Metrology, the scientific study of measure-
ment, is a topic where uncertainty plays a key 
role. Measurement instruments have limited 
accuracy, and there are the questions of how 
the measured point represents a theoretical da-
tum on the object being measured, and on the 
impact of temperature on the object. Of 
course, it is always possible to spend more to 
achieve a more accurate measurement, but 
there is value in being able to reason with un-
certain information and make logical predic-
tions. For example, in erecting a structure sub-
ject to measurement uncertainty and 
temperature fluctuations, how much time 
should be spent aligning components, and 
what is the best that can be achieved with the 
components at hand, understanding their accu-
racy limitations? Structural metrology prob-
lems can be approached using simulation 
methods. Bayes’ method, which uses condi-
tional probabilities to make statistical infer-
ences about the state of a model, may be used 
to improve measurement accuracy by effi-
ciently incorporating new data into existing 
sets of measurements. 

10.7 Testing 
Material and component testing is often a 
cost-effective and less risky alternative to fur-
ther analysis studies. In addition, testing is of-
ten necessary when dealing with designs not 

covered by applicable codes and standards, 
new materials and designs, or components that 
were incorrectly fabricated or installed but 
costly to remake or rework. Test results may 
be summarized using classical statistical 
methods and incorporated into decision analy-
sis models. 

10.8 Planning and scheduling 
Risk analysis can be incorporated into plan-
ning and scheduling in order to estimate the 
probabilities of meeting key project mile-
stones. It is common practice to use only de-
terministic scheduling tools which do not re-
flect uncertainty in data inputs and do not 
perform sensitivity analysis. 

10.9 Forecasting 
Forecasting is an important activity for deter-
mining business plans in virtually any indus-
try. Statistical analysis tools such as regres-
sion analysis and correlation models may be 
used to analyze historical data to predict future 
occurrences. Recent fluctuations in the price 
of steel highlight the need to accurately fore-
cast and include the risks of possible future 
variations on current decisions. 

10.10 Material and component selection 
Decision analysis tools may be used to de-
velop a rational basis to select materials and 
components for a design. The Analytical Hier-
archy Process (AHP) has been used to charac-
terize the selection of materials for bridges by 
highway officials in the U.S. (Smith, Bush, & 
Schmoldt, 1997). 

CONCLUSION 

Many well-established decision making tools 
are currently used in business, economics and 
politics, however these tools have yet to find 
widespread application in the engineering of-
fice. Decision making theories have a wide 
range of potential applications in structural 
engineering, from design through to fabrica-
tion and installation. Several potential applica-
tions of decision analysis tools to structural 
steel engineering have been presented here. 
Decision theories are particularly well suited 
to conditions of uncertainty, and offer signifi-
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cant economic benefits by improving the qual-
ity of decisions made early in the design proc-
ess. Further research work in improving deci-
sion making during conceptual and 
preliminary engineering stages is therefore 
recommended.  
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APPENDIX: SOFTWARE SURVEY 

Software Vendor Functions 
DECISION ANALYSIS 

1 Analytica 
Lumina Decision 
Systems Inc. 

Visual tool for creating, analyzing, and communicating deci-
sion models; influence diagrams; create and manage multidi-
mensional tables; Monte Carlo simulation and sensitivity 
analysis http://www.lumina.com/software/influencediagrams.html 

2 Comlab Games 
Carnegie-Mellon 
University 

Game theory based software for instructors and students to 
design, run, and analyze the outcomes of games played over 
the internet; modules for strategic form, discrete form, free 
form, market game http://www.cmu.edu/comlabgames/ 

3 Criterium Decision Plus InfoHarvest 

Decision management software using multi-criteria analysis 
(AHP and SMART) and uncertainty analysis 
http://www.infoharvest.com/ihroot/index.asp 

4 Crystal Ball Decisioneering 

Decision analysis and simulation add-in for Microsoft Excel; 
what-if analysis, monte carlo simulation, sensitivity analysis, 
trend charts, linear and nonlinear global optimization, time-
series forecasting (cyclic pattern analysis) using linear regres-
sion http://www.decisioneering.com 

5 DecisionPro Vanguard 

Integrated application for building models that aid in decision 
making; decision tree analysis; Monte Carlo Simulation (cus-
tom and predefined input distributions, automatic distribution 
fitting to historical data, correlated inputs, unlimited number 
of stochastic inputs); forecasting (regression-based curve fit-
ting, exponential smoothing; Fourier analysis); Markov simu-
lation; linear and integer programming optimization (Simplex 
method); general business modeling 
http://www.vanguardsw.com 

6 DecisionTools Palisade 

Risk analysis and simulation add-in suite for Microsoft Excel; 
@RISK Monte Carlo simulation, sensitivity and scenario 
analysis; PrecisionTree influence diagrams and decision tree 
add-in; TopRank what-if analysis and Tornado Charts; 
RiskOptimizer combined genetic optimization algorithms and 
Monte Carlo simulation; BestFit data fitting routines 
http://palisade.com 

7 DPL 
Syncopation Soft-
ware 

Sequential decision analysis and real option valuation using 
influence diagrams, decision trees and Bayesian networks; 
supports multiple objective analysis; links with Microsoft Ex-
cel; Monte Carlo simulation with continuous random vari-
ables; mix continuous chance nodes with discrete chance 
nodes and decisions; outputs can be exported in XML format 
http://www.syncopationsoftware.com/ 

8 ERGO 
TechnologyEvalua-
tion 

MAUT decision support environment; single-user; detailed 
knowledge bases for decision support activities in ERP, 
CRM, HR, SCM, PLM, EAM, financial, and security systems 
http://www.arlingsoft.com 

9 EVOLVER Palisade 

Optimization using genetic algorithm technology, a stochastic 
directed searching technique; add-in for Microsoft Excel; 
solves linear, nonlinear, stochastic, combinatorial, noisy, or 
probabilistic problems http://palisade.com 

10 Expert Choice Expert Choice 

Decision support software employing Analytic Hierarchy 
Process (AHP), a mathematically rigorous application for 
prioritization and decision making; supports group decision 
making; graphical-based presentation of decision criteria hi-
erarchy http://www.expertchoice.com 
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Software Vendor Functions 

11 GAMBIT 
Texas A & M Uni-
versity 

Open source library of game theory software and tools for the 
construction and analysis of finite extensive and normal form 
games; mission of the Gambit Project is to provide libraries 
and software tools both for teaching game theory, and for do-
ing original research in game theory and its applications 
http://econweb.tamu.edu/gambit/ 

12 GeNIe/SMILE 
University of Pitts-
burgh 

SMILE class library implementing graphical probabilistic and 
decision theoretic models, including Bayesian networks, in-
fluence diagrams, and structural equation models; 
GeNIe creates decision theoretic models intuitively using the 
graphical interface, supports chance nodes with General, 
Noisy OR/MAX and Noisy AND distribution; complete inte-
gration with Microsoft Excel http://www2.sis.pitt.edu/~genie/  

13 HUGIN Hugin Expert A/S 

System for construction, maintenance and usage of knowl-
edge bases, based on Bayesian network technology; construc-
tion of knowledge bases using Bayesian networks and influ-
ence diagrams technology; supports development of object 
oriented Bayesian networks; automated learning of knowl-
edge bases from databases; wizard for generation of probabil-
ity tables http://www.hugin.com 

14 HIPRE 
Helsinki University 
of Technology 

Decision support software integrating the Analytic Hierarchy 
Process (AHP) and the Simple Multiattribute Rating Tech-
nique (SMART); run both methods independently or combine 
them in one model; visual and customizable graphical inter-
face http://www.hipre.hut.fi/ 

15 ISMAUT Tools 
University of Michi-
gan 

Software application of Imprecisely Specified Multi-Attribute 
Utility Theory in engineering design 
http://www.eecs.umich.edu/techreports/cse/1996/CSE-TR-
289-96.pdf 

16 JAVABayes CMU 

Set of tools for the creation and manipulation of Bayesian 
networks; composed of a graphical editor, a core inference 
engine and a set of parsers; engine produces: the marginal 
probability for any variable in a Bayesian network, the expec-
tations for univariate functions (for example, the expected 
value of a variable), configurations with maximum a posteri-
ori probability; produces marginal distributions and expecta-
tions using two different algorithms: variable elimination and 
bucket tree elimination; conducts robustness analysis on top 
of inferences; distributed under the GNU License 
http://www.cs.cmu.edu/~javabayes/Home/ 

17 Logical Decisions Logical Decisions 

Multiple objective decision analysis; multi-attribute utiliy 
theory (MAUT); multiple tradeoff and preference weighting 
techniques including swing weighting, direct entry, SMART, 
SMARTER, and AHP; preference tradeoff analysis; multi-
user capabilities http://www.logicaldecisions.com/ 

18 Lumenaut Lumenaut 

Decision analysis and statistical analysis add-in for Microsoft 
Excel; decision trees; sensitivity analysis; parametric and 
non-parametric statistics including paired tests, ANOVA, re-
gression, correlation, and time series http://www.lumenaut.com

19 MACBETH 
Technical University 
of Lisbon 

Interactive approach for converting qualitative judgments to 
quantitative values for decision analysis; employs an initial, 
interactive, questioning procedure that compares two ele-
ments at a time, requesting only a qualitative preference 
judgment; automatically verifies consistency as judgments are
added; a numerical scale is generated that is entirely consis-
tent with all the decision maker 's judgments; through a simi-
lar process weights are generated for criteria; software pro-
vides tools to facilitate complete model structuring, 
management of complex problems involving qualitative value 
scores and weights, and interactive sensitivity and robustness 
analyses http://www.m-macbeth.com/Msite.html 
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Software Vendor Functions 

20 MSBN Microsoft Research 

Application for Bayesian belief network construction and in-
ference tool called Microsoft Belief Networks; developed by 
Decision Theory & Adaptive Systems Group (DTAS), fo-
cused on investigating the use of probability and utility the-
ory to enhance computer applications and platforms 
http://www.research.microsoft.com/dtas/msbn/ 

21 Netica Norsys 

Program for belief networks and influence diagrams; user in-
terface for drawing networks; relationships between variables 
may be entered as individual probabilities, equations, or 
learned from data files; compiles belief (Bayesian) networks 
into a junction tree of cliques for fast probabilistic reasoning; 
utility-free sensitivity analysis; produces a confusion matrix, 
error rate, logarithmic and quadratic (Brier) scoring rule re-
sults, calibration table and surprise indexes for each node de-
sired; finds optimal decisions for sequential decision prob-
lems; extensive built-in library of probabilistic functions and 
other mathematical functions; facilities for the easy discreti-
zation of continuous variables http://www.norsys.com 

22 Predict! RiskDecisions 

Database application for recording and managing risks, op-
portunities and mitigation strategies; web-enabled and client-
server versions on Oracle or Sybase 
http://www.riskdecisions.com 

23 REMBRANDT 
Delft University of 
Technology 

System for Multi-Criteria Decision Analysis (MCDA) using a 
direct rating of preferences on a logarithmic scale; created as 
an amalgamation of the Multiplicative AHP and SMART 
methods; preference ratios can be expressed in their original 
magnitudes on a geometric scale or in orders of magnitude on 
an arithmetic scale; designed for group decision making, with 
power coefficients assigned to the respective members 
http://www.inescc.pt/~ewgmcda/Lootsma.html 

24 TESS 
TechnologyEvalua-
tion 

Same as ERGO but with remote file sharing for collaborative 
decision making (Technology Evaluation Support System) 
http://www.arlingsoft.com 

25 TreeAge TreeAge Software 

Decision trees; influence diagrams; Markov models; multi-
attribute models; sensitivity analysis (1-, 2-, 3-way, tornado 
diagrams); Monte Carlo simulation; Bayes' revision; thresh-
old analysis; spreadsheet links http://www.treeage.com 

26 TreePlan 
Decision Support 
Services 

Decision modeling add-ins for Microsoft Excel; decision 
trees; sensitivity analysis (simple plots, spider charts, tornado 
charts); Monte Carlo simulation http://www.treeplan.com 

27 VISA Simul8 Corp. 
Multi-criteria decision analysis tool (MCDA); visual interac-
tive sensitivity analysis http://www.simul8.com/products/visa.htm

SIMULATION 

1 ARENA Rockwell Software 

Process modeling and simulation software; 3D animation; 
OptQuest optimization includes sampling techniques and ad-
vanced error control, and incorporating algorithms based on 
tabu search, scatter search, integer programming, and neural 
networks http://www.arenasimulation.com 

2 ProModel ProModel Solutions 

Discrete-event simulation and modeling package; manufac-
turing and logistics; factory and supply chain modeling; VAO 
(Visualize Analyze Optimize) technology; probabilistic mul-
tiple element simulation optimization; probabilistic schedul-
ing; 2D process animation 
http://www.promodel.com/solutions/m&lhome.asp 

3 RDD-100 Holagent 

Requirements management software with discrete event 
simulation capability 
http://www.holagent.com/products/features.html 
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4 Simphony 
University of Al-
berta 

Decision and risk analysis software; computer simulation 
platform for construction industry; result of over 10 years re-
search in simulation-based planning in industry; applied to 
virtual shop model for structural steel fabrication 
http://irc.construction.ualberta.ca/ 

5 Simul8 Simul8 Corp. 

Discrete-event simulation and modeling; optimization; data 
fitting; integrated planning, scheduling and simulation; 
AutoMod link for 3D virtual reality simulation 
http://www.simul8.com/products/s8prof.htm 

GENERAL OPTIMIZATION 

1 AMPL 
AMPL Optimization 
LLC 

A comprehensive algebraic modeling language for linear and 
nonlinear optimization problems, in discrete or continuous 
variables. Linear programming, network, mixed integer pro-
gramming, quadratic programming, and general nonlinear 
programming problems http://www.ampl.com 

2 CPLEX ILOG 

High-performance, robust, flexible optimizers for solving lin-
ear, mixed-integer, and quadratic programming problems in 
mission-critical resource allocation applications; Simplex al-
gorithms (primal, dual, network); Barrier solver (primal-dual 
interior point algorithm including a predictor-corrector strat-
egy, and a crossover algorithm to convert mid-face solutions 
to basic, vertex solutions); mixed integer programming (vari-
ety of branching and node selection techniques, including 
cuts, heuristics, and branch-and-bound algorithms) 
http://www.ilog.com 

3 Excel Microsoft 

General-purpose optimizer for small-scale linear, integer and 
nonlinear programming problems; linear programming (dense 
Simplex method with bounds on the variables); nonlinear 
programming (variant of Lasdon and Waren's GRG2 Gener-
alized Reduced Gradient code); integer linear and nonlinear 
programming (branch and bound method using Simplex or 
GRG2 for subproblems); Premium Solver includes an ex-
tended Simplex-based solver for quadratic programming; 
Large-Scale Solver uses sparse Simplex method using LU 
decomposition with dynamic Markowitz refactorization and 
two-sided bounds on both variables and constraints 
http://www.microsoft.com 

4 FQSP AEM Design 

Nonlinear and minmax constrained optimization, with feasi-
ble iterates; algorithms based on the concept of feasible se-
quential quadratic programming 
http://www.aemtechnology.com/aemdesign/FSQPframe.htm 

5 GAMS 
GAMS Development 
Corp. 

A high-level modeling system for mathematical programming 
problems; consists of a language compiler and a stable of in-
tegrated high-performance solvers; tailored for complex, 
large scale modeling applications; linear and nonlinear pro-
gramming, nonlinear programming with discontinuous de-
rivatives; mixed-integer programming (linear and nonlinear); 
mixed complementarity problems; constrained nonlinear sys-
tems; quadratically constrained problems; mixed integer 
quadratically constrained problems http://www.gams.com 

6 
MATLAB Optimization 
Toolbox MathWorks 

Extends the MATLAB environment to provide tools for gen-
eral and large-scale optimization; linear programming, quad-
ratic programming, nonlinear least-squares, and nonlinear 
equations; unconstrained nonlinear minimization; constrained 
nonlinear minimization, including minimax, goal attainment, 
and semi-infinite minimization problems; quadratic and linear 
programming; nonlinear least-squares and curve-fitting with 
bounds nonlinear system of equations solving; constrained 
linear least-squares; specialized large-scale algorithms for 
solving large sparse problems; data fitting using curve fitting, 
nonlinear least-squares, nonlinear zero finding, and nonlinear 
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systems of equations 
http://www.mathworks.com/products/optimization/ 

7 MOSEK MOSEK ApS 

Designed to solve large-scale mathematical optimization 
problems; linear problems (integer constrained variables al-
lowed); conic quadratic problems; quadratic and quadratically 
constrained problems (integer constrained variables allowed); 
general convex nonlinear problems; simplex and interior-
point based algorithms (continuous problems); branch & 
bound & cut algorithm (mixed integer problems); interior-
point optimizer is capable of exploiting multiple processors; 
C/C++ API, command line; JAVA API and Microsoft .NET 
API interfaces http://www.mosek.com 

8 OptQuest OptTek Systems Inc.

Optimization software sold primarily as a value-added mod-
ule imbedded in simulation software (i.e., Crystal Ball, Front-
line, Arena, Simul8 etc); uses a combination of metaheuristic 
procedures from methods such as Tabu search, neural net-
works, and scatter search find global optimal solutions to 
nonlinear problems including uncertainty 
http://www.opttek.com/products/optquest.html 

9 OSL IBM 

Open-source operations research software including linear, 
convex quadratic, mixed integer and stochastic programming 
programs; BCP parallel branch-cut-price framework; CGL 
cut generation library; CLP native simplex solver; DFO 
package for solving general nonlinear optimization problems 
when derivatives are unavailable; IPOPT interior point algo-
rithm for general large-scale nonlinear optimization; Multi-
fario continuation method for computing implicitly defined 
manifolds; NLPAPI subroutine interface for defining and 
solving nonlinear programming problems; OSI open solver 
interface layer; OTS open framework for tabu search; SBB 
branch and cut code; SMI stochastic modeling interface for 
optimization under uncertainty 
http://oss.software.ibm.com/developerworks/opensource/coin
/ 

10 PCx 
Optimization Tech-
nology Center 

Freely available primal-dual interior-point code for linear 
programming; implements Mehrotra's predictor-corrector al-
gorithm; solution of a linear system with a large, sparse posi-
tive definite coefficient matrix performed with the sparse 
Cholesky package of Ng and Peyton (Oak Ridge National 
Laboratory), with minor modifications to handle small pivot 
elements http://www-fp.mcs.anl.gov/otc/Tools/PCx/ 

11 SAS/OR SAS 

Linear and mixed-integer programming (revised simplex al-
gorithm with LU factorization of the basis, interior-point al-
gorithm, branch and bound algorithm for integer variables, 
sparse column representation, crash routine, special ordered 
sets); network flow programming (primal simplex network 
algorithm, primal partitioning algorithm, primal-dual predic-
tor-corrector interior-point algorithm, crash routines); quad-
ratic programming (linear complementary, active set tech-
niques); general nonlinear programming (trust region, 
Newton-Raphson with line search, Newton-Raphson with 
ridging, quasi-newton methods, double-dogleg method, con-
jugate gradient methods, Nelder-Mead Simplex method); 
nonlinear least-squares (Levenberg-Marquardt, hybrid quasi-
Newton methods) http://support.sas.com/rnd/app/or/MP.html
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12 SOL/UCSD 
Stanford Business 
Software Inc. 

A suite of packages for solving linear, quadratic, and nonlin-
ear programs; MINOS for large-scale optimization problems 
(linear and non linear programs); SNOPT general-purpose 
software for optimization problems involving many variables 
and constraints; NPSOL is a set of C dlls for minimizing a 
smooth function subject to constraints, which may include 
simple bounds on the variables, linear constraints and smooth 
nonlinear constraints; QPOPT is a set of subroutines for solv-
ing the quadratic programming problem http://www.sbsi-sol-
optimize.com/# 

13 TOMLAB 
TOMLAB Optimiza-
tion 

General purpose development environment in Matlab for re-
search, teaching and practical solution of applied optimiza-
tion problems; solves sparse and dense problems in the fol-
lowing areas: mixed-integer linear, quadratic and nonlinear 
programming; semidefinite programming with bilinear matrix 
constraints; semidefinite programming with LMI (linear ma-
trix inequalities); constrained nonlinear parameter estimation, 
Minimax and L1 data fitting; global optimization (several 
minima), box-bounded, nonlinear and integer constraints; 
costly global nonconvex optimization; linear and nonlinear 
least squares; nonsmooth optimization; unconstrained optimi-
zation; approximation of empirical data to positive sums of 
exponential functions; mixed complementarity problems 
http://tomlab.biz/about/ 

14 XPRESS-MP Dash Optimization 

Suite of optimization software, used to solve linear, integer, 
quadratic and non-linear optimization problems; linear (LP), 
mixed integer (MIP), quadratic (QP), mixed integer quadratic 
(MIQP), non-linear (NLP), and mixed interger non-linear 
programming problems (MINLP); Simplex optimizer in-
cludes primal and dual methods, solves LP problems, and is 
also used within a branch-and-bound framework; Newton 
barrier interior point method for solving LP and QP prob-
lems; sparse matrix handling; presolve procedure to reduce 
problem size before it is solved; ability to solve numerically 
hard or unstable problems which are common in process in-
dustries; MIP/MIQP optimizer uses a sophisticated branch-
and-bound algorithm http://www.dashoptimization.com/ 

DESIGN OPTIMIZATION 

1 COSMOS/SM SRAC 

Finite element optimization; sensitivity analysis to examine 
the effect of various design variables on the results of the op-
timization analysis (global, local and offset); support for 
multi-disciplinary optimization analysis involving results 
from static, dynamic, thermal, fatigue, nonlinear, and buck-
ling analyses; optimization using multiple load cases; modi-
fied feasible direction method; singular value decomposition 
technique; automatic determination of polynomial type; lin-
ear, quadratic, and cubic approximations; restart and restore 
engines; convergence and sensitivity plots 
http://www.cosmosm.com/pages/products/modules_OPTSTAR.html

2 DesignSpace Extra ANSYS Inc. 

Topology, shape and size optimization; probabilistic design; 
subproblem approximation (zero order) method; first order 
method; random design generation; sweep generation; facto-
rial evaluation (statistical tool for design of experiments) us-
ing a 2-level, full and fractional factorial analysis; gradient 
evaluation http://www.designspace.com 

3 DesignXplorer VT ANSYS Inc. 

Finite element optimization using Variational Technology, 
sensitivity analysis, what-if analysis, six sigma design, para-
metric CAD integration; automatically calculate the entire de-
sign envelope within a single finite element solution; handles 
over 100 discrete parameters, in comparison to traditional de-
sign of experiments (DOE) approach which is limited to 
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about 10 parameters; handles geometric, discrete, element 
property and material variations; uses Uncertainty Variables 
to support probabilistic analysis and design 
http://www.ansys.com/ansys/designxplorer_vt.htm 

4 EPOGY Engineous 

Process Integration and Design Optimization (PIDO) solu-
tion; automatically link applications and iterate the impact 
that thousands of variables have on the design of a product or 
process; runs on all operating systems and supports the most 
relevant CAD, CAE, FEA and CFD packages 
http://www.synaps-inc.com 

5 GENESIS 

Vanderplaats Re-
search and Devel-
opment Inc. 

Topology, topography, shape and size optimization; DOT and 
BIGDOT optimization algorithm http://www.vma.com 

6 ISIGHT Engineous 

Integrates and manages the computer software required to 
execute simulation-based design processes, including com-
mercial CAD/CAE software, internally developed programs, 
and Excel spreadsheets http://www.engineous.com 

7 LINDO Lindo Systems Inc. 
Interactive modeling environment for  linear, integer, and 
quadratic programming problems http://www.lindo.com 

8 LINGO Lindo Systems Inc. 

Optimization package including solvers for linear, nonlinear 
(convex & nonconvex), quadratic, quadratically constrained, 
and integer optimization http://www.lindo.com 

9 OPTISHAPE Quint 
Topology, shape and size optimization 
http://www.quint.co.jp/english/ 

10 OptiStruct Altair Engineering 
Topology, topography, shape and size optimization 
http://www.altair.com 

11 STRAP 
ATIR Engineering 
Software 

Select member sizes to satisfy drift/deflection criteria; opti-
mization based on cost-factors for each property group; opti-
mization driven by members that have most impact on 
sway/cost criteria http://www.atirsoft.com/ 

12 VisualDOC 

Vanderplaats Re-
search and Devel-
opment Inc. 

Gradient and non-gradient based optimization, response sur-
face optimization, design-of-experiments (DOE) optimization 
http://www.vma.com 

13 What'sBest Lindo Systems Inc. 

Microsoft Excel add-in for large-scale linear, nonlinear and 
mixed integer programming; linear solvers (primal and dual 
simplex; barrier or interior point method); nonlinear solvers 
(generalized reduction gradient algorithm, crash procedure, 
steepest edge/descent option, sequential linear programming); 
automatic selection of algorithm based on problem 
http://www.lindo.com 

 


