Numerical Modeling of Steel Fiber Reinforced Recycled Concrete Filled Steel Tube Column Under Cyclic Loading

Mohamed A. Sakr*, Ayman A. Seleemah*, Omnia F. Kharoob*, Mostafa M. Aboelnour**

* Dept. of Structural Engineering, Tanta University, Tanta, Egypt.
** Corresponding author: Mostafa.Aboelnour@t-Eng.tanta.edu.eg

Abstract

A finite element model (FEM) was created with the aim of analyzing the behavior of steel fiber reinforced recycled concrete (SFRR)-filled steel tube columns under combined cyclic loading and monotonic axial load. The FEM by ABAQUS considered the effect of steel tube confinement on the inner concrete behavior under cyclic loading. The numerical model was described in detail, with a focus on modeling the materials involved (normal concrete, SFRC, and steel) under cyclic loading. A constitutive concrete model - with and without considering confinement - was based on utilizing a concrete damaged plasticity (CDP) model. The steel tube - concrete core interface was modeled by a surface-to-surface contact. A stress-strain constitutive concrete model, confined by circular steel tubes, was implemented, and validated using experimental results from the literature. The developed FEM considered various parameters: steel tube thickness, volume ratios of steel fibers, besides strengths of both concrete core and the steel tube. The FEM results showed great agreement with the experimental results under cyclic loading. The results indicated that the core concrete confinement pressure must be considered in CDP model. A good correlation between numerical and experimental findings was obvious, including failure modes, and hysteretic curves of load-displacement.

Keywords

FE modeling, Steel fiber reinforced recycled concrete, Concrete-filled steel tube (CFSF) Columns, Cyclic loading

1. Introduction

The recent popularity of concrete-filled steel tubular (CFST) columns in engineering construction is the result of their excellent behaviors concerning ductility, strength, seismic performance, fire resistance, lateral stiffness, and energy dissipation capacity. A CFST column is best featured by its components' decline in cross-section, a rise in the availability of structures' space and a fall in the structure self-weight (Y. Chang, Chen, Xiao, Rong, & Peng, 2021; Han, Li, & Bjorhovde, 2014; Bañez, Hernández-Figueirido, & Piquer, 2021; X. Liu, Liu, Yu, Yang, Cheng, & Lanning, 2020; Nguyen, Thai, Ngo, Uy, & Li, 2021; Xu, Xue, Sun, Liu, & Wang, 2023; Tu, Shi, Liu, Wang, & Ban, 2021). Concrete combined with steel tube in CFST columns has resulted in its extensive usage as frame columns in high-rise buildings, with the core concrete confined by the steel tube, enhancing both ductility and strength with prevention of concrete spalling (Di, Han, et al., 2022; J. Liu, Zhou, & Zhang, 2008; Liu, Liu, & Yen, 2007; Probst, Kang, Ramseyer, & Kim, 2010; Yildizel et al., 2023). Consequently, core concrete causes protection, and delays local buckling of the steel tube (X. Chang, Fu, Zhao, Zhao, 2013; Di, Fan, et al., 2022). Fayed, Badr el-din, Basha, & Mansour, 2022; Lai & Ho, 2015; Madenci, Fayed, Mansour, & Özkılcı, 2022; A. Zhu, Zhang, Zhu, Zhu, & Liu, 2017). No further reinforcement is required since the steel tube plays the role of both concrete lateral and longitudinal reinforcement. Practically, steel tubes function as a permanent formwork in the construction of multistory buildings, aiming at efficient reduction of construction challenges and duration (Chen, Wang, Xie, & Jin, 2016).

The tubes' diameter-to-thickness ratios (D/t) influence the concrete confinement. As indicated by (Han, Huang, Ta, & Zhao, 2006), the CFST ultimate strength is much greater compared to individual strength summation of both the reinforced concrete column and the steel tube. This can be illustrated as follows: "1 (steel tube) + 1 (concrete core) = 2 (the two materials simple summation)". Therefore, using CFST leads to efficiency in bridge piers and other columns.

The few recent decades have witnessed conducting several quasistatic cyclic loading tests in investigation of the CFST columns' seismic behavior (Emad et al., 2022; Fam, Qie, & Rizkalla, 2004; Ge & Usami, 1996; Hajjar & Gourley, 1997; Morishita, 1982; Tam, Minikang, Lau, Mansour, & Wu, 2023; H. Zhu, Zhang, & Liu, 2021). However, the widespread of using normal concrete (NC) in the construction of bridges as well as other buildings around the world needs further addressing due to the remarkably contrary effluence as a result of its brittle property affecting the components of the structures during seismic responses. Concerning material qualities and modifying the brittle nature of NC, researchers' efforts have involved steel tube filled with concrete. This traditional technique modifies the NC brittle properties. Latest studies (Amin, Agwa, Massah, Mahmood, & Abd-EIrahman, 2023; Gopal & Manoharan, 2006; Jal et al., 2023; Y. Lu, N. Li, S. Li, & H. Liang, 2015; Osama & Sakr, 2023; Saad, Sakr, Khalifa, & Dankish, 2003; Tokgoz & Dundar, 2010) point out that core concrete properties could considerably affect the ductility of CFST columns, achieving a higher ductility by using steel fiber reinforced concrete (SFRC) instead of NC. Additionally, extra investigations demonstrate that the insertion of steel fibers into the matrix might provide a similar result on the SFRCFST columns (Aksoylu, Özkılcı, Hadimana-Nyariko, Işık, & Arslan, 2022; Choi, Jung, & Choi, 2013; ElWakkad, Heiza, & Mansour, 2023; Fayed, Madenci, Özkılcı, & Tawkif, 2024; Y.-Y. Lu, N. Li, S. Li, & H.-J. Liang, 2015; Madenci et al., 2022; Xu, Wu, Liu, & Shao, 2019; Zeybek et al., 2022).

Recently, there have been large quantities of concrete waste resulting from the demolition of old buildings. Therefore, it is important to use recycled concrete (RC). Recycled concrete is manufactured from recycled concrete aggregate (RCA) that we obtain from crushing and processing concrete waste (Fayed, Madenci, Bahrami, Özkılcı, & Mansour, 2023; Fayed, Madenci, Özkılcı, & Mansour, 2023; Mansour, Li, Wang, & Badawi, 2024; Xiao & Xiao, 2019; Yildizel, Özkılcı, & Yavuz, 2024). RC can reduce environmental pollution and it can help preserve natural resources. Moreover, adding steel fibers to recycled concrete can improve performance in compressive and tensile, which is called steel fiber reinforced recycled concrete (SFRR) (Funti, Vallini, & Chiaia, 2011; Song & Hwang, 2004; Yu, Lin, Geng, Wei, & Jia, 2013) to develop the application of RAC. One of the innovative composite columns involves filling (SFRR) into the steel tube column. (Zhao, Huang, Liu, Wang, & Lu, 2022) identifies this as steel fiber reinforced recycled concrete filled steel tube (SFRRCFST) column. This composite element SFRRCFST column can compensate for the side effects of recycled concrete by filling the steel tube with it. The tube can confine RAC and protect it. Which produces triaxial-compressive state, which leads to an increase in compressive strength, deformability, and durability. At the same time, the concrete prevents the local buckling of the steel tube (ACI, 2014; Z. Liu, Lu, Li, & Liao, 2019; Z. Liu, Lu, Li, Zong, & Yi, 2020; Zhao et al., 2022). It was important to study the possibility of using SFRRCFST column in seismic areas. (Zhao et al., 2022) study the seismic performance of SFRRCFST columns, 14 circular specimens with different parameters, volume fractions (Vf) of steel fiber, axial compression ratios (a), steel tube thickness (t), and concrete strengths were tested to failure under constant axial and lateral cyclic loads. All specimens showed the same type of failure, and it was compression bending failure. The deterioration of the stiffness, the deterioration of the strength, the ability to dissipate energy, and the hysteretic curve were all obtained under the influence of various...
parameters. Regarding the results obtained by the research, it is that adding steel fibers to recycled concrete improves its behavior in general in compression and tension. It is clear that increasing the volume of steel fibers led to an improvement in the lateral load capacity, as well as ductility and energy dissipation. It is also important that increasing the thickness of the steel tube led to a very clear improvement in the overall seismic behavior. Moreover, the seismic performance became lower when the axial pressure ratio increased, and this was evident in the amount of deformation and ductility.

The authors knowledge, the majority of recently performed studies have experimentally focused on studying the behaviors of NF CST and SFRRCFST columns under combined cyclic loading and monotonic column axial load with only a few numerical analyses. Conducting experimental studies on these columns can be expensive, which is why the authors of this paper aim to bridge this gap by developing a reliable numerical model. The objective is to create a simulation that accurately replicates the behavior of NF CST and SFRRCFST columns under lateral cyclic loading, ensuring its validity and accuracy with available experimental tests.

Presentation and description of the numerical model is initially done in detail, followed by validation of numerical results through comparison with the specimens confirmed experimentally by (Zha et al., 2022). The developed FEM takes into account key parameters of considerable effect on the (CFST) columns behavior. These parameters include steel tube thickness (t), steel fibers volume ratios (Vf), besides strengths of both steel tube (fy) and concrete (fc).

2. Finite element models’ description

Utilizing ABAQUS Version 6.2 (D. S. Simulia, 2013), numerical modeling of NF CST and SFRRCFST columns with circular cross-sections investigated by (Zhao et al., 2022) under mixed cyclic lateral loading and monotonic column axial load are discussed in this part. A detailed 3-dimensional (3D) model is implemented to provide the anticipated behavior with a detailed description of the constitutive models used throughout the procedures.

2.1 Properties of materials and constitutive models

Unconfined concrete

For unconfined concrete the “Concrete damage plasticity model" (CDP) was utilized to simulate the nonlinear behavior of concrete (Sakr, Elnashai, Seleemah, Aboelnour, & Osama, 2021). This damaged plasticity model is usually recommended to have a general capacity to analyze quasi-brittle materials under monotonic, cyclic, and/or dynamic loading (A. U. M. Simulia, 2007). Compressive crushing and tensile cracking are the two major failure mechanisms in the CDP model (A. U. M. Simulia, 2007), the compression stress-strain response suggested by (Saez, Desayi, & Krishnan, 1964) was used as shown in Fig.1. To draw the tension stress-strain response, the elastic modulus, and tensile strength, fce parameters are needed (ACI Committee, 2008).

Confined concrete

When the concrete is under triaxial stress, compressive strength in a uniaxial condition is determined through the stress (σ) and strain (ε) (Mander et al., 1988). The descending line can be determined by a curve of 1.1174 D/t (MPa) and its ending point ε0 = 11.0 εc. The corresponding values of r to concrete cubes strengths of 30 MPa and 100 MPa are set to 1.0, and 0.5, respectively. The linear interpolation approach can be used to determine the value of r in general. Eq. (8) from (Hu et al., 2003) determines the parameter k3 as follows:

\[k_3 = \frac{1}{0.000339(D/t)^2 - 0.010085(D/t) + 1.3491 (40 \leq D/t \leq 150)} \]

The descending line can be determined by a curve of 1.1174 D/t (MPa) and its ending point ε0 = 11.0 εc. The corresponding values of r to concrete cubes strengths of 30 MPa and 100 MPa are set to 1.0, and 0.5, respectively. The linear interpolation approach can be used to determine the value of r in general. Eq. (8) from (Hu et al., 2003) determines the parameter k3 as follows:

\[k_3 = \frac{1}{0.000339(D/t)^2 - 0.010085(D/t) + 1.3491 (40 \leq D/t \leq 150)} \]

The descending line can be determined by a curve of 1.1174 D/t (MPa) and its ending point ε0 = 11.0 εc. The corresponding values of r to concrete cubes strengths of 30 MPa and 100 MPa are set to 1.0, and 0.5, respectively. The linear interpolation approach can be used to determine the value of r in general. Eq. (8) from (Hu et al., 2003) determines the parameter k3 as follows:

\[k_3 = \frac{1}{0.000339(D/t)^2 - 0.010085(D/t) + 1.3491 (40 \leq D/t \leq 150)} \]
In brittle materials (like concrete and similar materials), as a result of damage, when plastic strains grow, the tangent of the curve decreases compared to the initial tangent (modulus of elasticity, E_0), as seen in Fig. 2a. At the maximum value of compressive stress, the damage parameter (dc) is zero. Thereafter, it starts to change and keeps changing until it reaches 0.8 with regard to 20% of the residual strength under great strains. Despite the existence of several constitutive models for concrete in the tension phase, no obvious changes in results are found due to the brittle behavior of concrete. As a ratio of compressive stress (f_c), the highest value of tension phase is chosen in accordance with the following equation for constitutive models:

$$f_c = 0.33/f_c^e$$

(10)

as f_c^e is compressive cylinder strength

Fig. 2b shows that the increase in tension damage is so related to the increase in the hardening cracking strain, ε_{cr}, which is to be expressed through the following equation:

$$d_c = 1 - \frac{\varepsilon_{cr}}{\varepsilon_{cr}}$$

(11)

Steel tube

In this investigation, steel material was modeled using the Chaboche model (Chaboche, 1986, 1989), an elastic-plastic stress-strain law with combined isotropic/kinematic hardening. The experimental values of Young’s modulus (E_s) and Poisson’s ratio (ν) were utilized to determine the elastic properties.

The Chaboche model can be represented in ABAQUS as a plastic constitutive model with defining its parameters (σ_0, Q_s, b, C_s, γ_s), where at zero plastic strain σ_0 is the yield stress; the isotropic hardening parameters are Q_s and b; the kinematic hardening parameters are C_s and γ_s.

The part of isotropic hardening in the steel constitutive law reads (D. S. Simulia, 2013)

$$\sigma = f_c + Q_s (1 - e^{-b\varepsilon_{pl}})$$

(12)

Q_s is the greatest change in the size of the yield surface and b is the rate at which the size of the yield surface varies as plastic strain develops, where f_c and ε_{pl} are the yield stress and plastic strain ($\varepsilon_{pl} = \varepsilon - \varepsilon_0$) of the steel, respectively. Both parameters of C_s and γ_s of Chaboche’s model need to be validated with regard to the kinematic hardening section of the steel constitutive law.

The kinematic hardening part of the steel constitutive law reads (D. S. Simulia, 2013)

$$\alpha = \frac{\varepsilon}{\gamma_s} (1 - e^{-\gamma_s \varepsilon_{pl}})$$

(13)

2.2 Elements type and meshing size of the FE models

The model consisted of two parts: Concrete and steel tube. Concrete was modeled using the solid 8-node element C3D8R while steel tube was modeled using the shell 4 node element S4R. In the experimental test, reinforcing stiffening ribs were installed in the base along the direction of load, which can increase the foundation’s stiffness and help it conform to the rigid body assumption. Consequently, the foundation was constructed as a rigid plate in the FE model for ease and quick simulation. The mesh size was chosen based on the mesh sensitivity analysis in the previous study (Osama & Sakr, 2023).

In the meanwhile, the model had a rigid plate installed on the column’s top. The foundation and rigid plate were made with 4-node bilinear rigid quadrilateral R3D4 elements. To imitate the contact between the top and bottom rigid plates and the steel tube column, the tie function was used. An appropriate mesh type that ensured accurate results and quick calculation was targeted. The ideal element size was determined to be 5t for the steel and 10t for the concrete, where t is the tube thickness as shown in Fig. 3, and where the ideal element size is in the lateral and longitudinal directions. In Fig. 3, the standard FE model is displayed.

3. Numerical results and discussion

In section 2 the material modeling were generally described then in this section these models will applied on the experimental study.

3.1 General descriptions of specimens

Previous work experimental data was utilized to validate the FEM models precision and applicability of NCFS and SPRFCFS columns under combined cyclic lateral loading and monotonic column axial load.

Experimental results of (Zhao et al., 2022) on 14 cantilever columns with 168 mm circular cross sections were published in their study the scale of the tested columns is 1/3 scale, and part of the specimens were chosen to validate the FEM. To look into the seismic performance of CFST columns with various parameters, including strength of concrete, axial load ratio, diameter-thickness ratio, and steel fiber ratio, specimens were designed and tested. Table 1 summarizes the characteristics and geometry of the experimentally tested specimens. (Zhao et al., 2022) presented the mixture design. As shown in Fig. 4, each of the specimens had a test length L of 950 mm, and this was measured from the lateral loading position to the highest point of the base stub.

Figure 4 demonstrates experimental set-up and loading system and how a fixed restriction that met the test criteria was created at the specimen’s base. In the experimental set-up, the cap for the column was used with the following goals in mind: 1) When exposed to axial compression and lateral force, the specimen will not experience local compression failure or visible deformation if the top of the specimen is rigid. 2) Additionally, the actuator will be clamped to apply a horizontal load cling to the specimen.

Table 1. Characteristics and geometry of the experimentally tested specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>D (mm)</th>
<th>T (mm)</th>
<th>D/t</th>
<th>\bar{V}_f (%)</th>
<th>f_c^e (MPa)</th>
<th>f_c (MPa)</th>
<th>n</th>
<th>N (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-S</td>
<td>168</td>
<td>2.82</td>
<td>59.6</td>
<td>0</td>
<td>29.5</td>
<td>359.4</td>
<td>0.25</td>
<td>260.5</td>
</tr>
<tr>
<td>S1</td>
<td>168</td>
<td>2.82</td>
<td>59.6</td>
<td>1.2</td>
<td>32.1</td>
<td>359.4</td>
<td>0.25</td>
<td>271.9</td>
</tr>
<tr>
<td>S2</td>
<td>168</td>
<td>2.82</td>
<td>59.6</td>
<td>1.2</td>
<td>32.1</td>
<td>359.4</td>
<td>0.35</td>
<td>380.6</td>
</tr>
<tr>
<td>S3</td>
<td>168</td>
<td>2.82</td>
<td>59.6</td>
<td>1.2</td>
<td>32.1</td>
<td>359.4</td>
<td>0.45</td>
<td>489.4</td>
</tr>
<tr>
<td>S7</td>
<td>168</td>
<td>3.70</td>
<td>45.4</td>
<td>1.2</td>
<td>32.1</td>
<td>375</td>
<td>0.25</td>
<td>316.4</td>
</tr>
<tr>
<td>S8</td>
<td>168</td>
<td>4.52</td>
<td>36.7</td>
<td>1.2</td>
<td>32.1</td>
<td>369.8</td>
<td>0.25</td>
<td>349.2</td>
</tr>
</tbody>
</table>

Note: The outer diameter(D), thickness of steel tube(t), volume ratio of steel fiber (\bar{V}_f), cylinder compression strength of concrete (f_c^e), yield strength of steel tube (f_c), axial compression ratio(n), Applied axial load (N).
3.2 Material properties in the FEM

The NC and SFRRC nonlinear behavior can obviously be shown into two parts of the curves: tension and compression. For instance, to \(f'_c = 32.1 \text{MPa} \), the suggested constitutive model of confined concrete material under compression determined according to Eqs. (1)-(7), as shown in Fig. 5(a), and the elastic modulus of concrete according to Eqs. (6), \(E_c = 26.6 \text{GPa} \).

Fig. 5 Concrete material properties (a) Compression stress-strain, (b) Concrete compression damage, (c) Tension Stress-strain and (d) Concrete tension damage

Table 2. Steel grades properties

<table>
<thead>
<tr>
<th>Steel type</th>
<th>T [mm]</th>
<th>E_s [GPa]</th>
<th>(f_y) [MPa]</th>
<th>(f_u) [MPa]</th>
<th>(\varepsilon_u)</th>
<th>(Q_\infty) [MPa]</th>
<th>b</th>
<th>(C_1)</th>
<th>(\gamma_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qt3</td>
<td>2.82</td>
<td>210</td>
<td>359.4</td>
<td>461.5</td>
<td>0.27</td>
<td>21</td>
<td>1.2</td>
<td>7993</td>
<td>175</td>
</tr>
<tr>
<td>Qt4</td>
<td>3.70</td>
<td>208</td>
<td>375.0</td>
<td>469.6</td>
<td>0.26</td>
<td>21.9</td>
<td>1.25</td>
<td>8339</td>
<td>182</td>
</tr>
<tr>
<td>Qt5</td>
<td>4.52</td>
<td>205</td>
<td>369.8</td>
<td>369.8</td>
<td>0.26</td>
<td>21.6</td>
<td>1.23</td>
<td>8224</td>
<td>180</td>
</tr>
</tbody>
</table>

Fig. 5(b). shows the compressive damage (\(d_c \)) has been calculated according to Eq. (8). The tension behavior was calculated according to Eq. (10) and tension damage (\(d_t \)) according to Eq. (9), as shown in Fig. 5(c and d).

On measuring steel grades experimentally (Zhao et al., 2022) in terms of mechanical properties, these steel grades are illustrated in Table 2, namely, (i) yield strength (\(f_y \)) (ii) tensile strength (\(f_u \)) and (iii) elongation\% (\(\varepsilon_u \)), while Table 2 shows the steel parameters under cyclic loading can be obtained by data fitting (Sakr et al., 2021; Wang, Shi, Wang, & Shi, 2013).

3.3 Loading and boundary conditions

The experimental specimens were tested under combined cyclic loading and axial compression. The axial compression was applied in the model as a uniform pressure (Fig. 6). During the cyclic protocol simulation, this axial load was kept constant. In order to apply the cyclic lateral loading, nodal horizontal displacements (\(dh \)) that were specified at the center of the above rigid steel plate were applied. The type of loading scheme applied in the lateral-loading was a displacement-controlled loading protocol (Zhao et al., 2022), as seen in Fig. 7. As indicated in Fig 6, a boundary condition is determined at the bottom reference point aiming at the prevention of displacements and rotations totally. \(U2=0 \) and \(UR3=0 \) are the higher reference points.
Verification of the FEM

Effect of concrete confining pressure

The CDP model is used to analyze specimen S9 (Table 1) without considering the confining pressure from Eq. (3). As illustrated in Fig. 8, FEM relationships of lateral load versus lateral displacement are compared with and without considering confined concrete and experimental results. The effect of using confined concrete has a little response on the computational cost of the model where the run time greater than the unconfined concrete by less than 5%.

Fig. 8 also shows that the CDP model is unable to make an accurate prediction of ultimate lateral load and lateral-strain behavior in the post-peak range without taking the confining pressure into account. To apply the CDP model in ABAQUUS, the concrete confining pressure specified in Eq. (3) must be utilized.

Fig. 8 Concrete confinement effect on lateral load-displacement hysteretic curves.

Comparison of experimental and finite element results

In this sub-section, Fig. 9 compares failure modes of both the experimental specimen and FEM. The columns plastic strains distributions are exhibited in figs. (9 and 10). A similar failure mode of compression bending was experienced remarkably in all the specimens. The concrete core and the steel tube bulged in both the compressive and tensile zones at the bottom, in addition to the existence of a crush of the concrete core, as can be observed in Figs. 9 and 10. This failure pattern of FEM was the same as that in the experiment. Figs. (9 and 10) illustrate the failure mode comparison between the experimental specimen and the FEM.

Fig. 9 Comparison of steel tube failure modes (a) FE modeling (steel tube plastic strain distribution at peak lateral load) and (b) Experimental

Fig. 10. Comparison of concrete failure modes (a) FE modeling (plastic strain distribution at peak lateral load) and (b) Experimental

Figures 11(a-g) illustrate the simulated outcomes of the non-linear analyses of the column models that were exposed to cyclic bending together with axial compression, comparing the experimental findings (Zhao et al., 2022). There is a trivial difference between simulated findings and experimental results, as seen in Figs.11(a-g). However, good agreement with each other was generally shown. Table 3 provides an overview of the experimental as well as simulated ultimate load. The average of the mean values on dividing the ultimate lateral load of the finite element model by the experimental ultimate lateral loads was 0.936.

In conclusion, there was good observed compatibility between the experimental and simulation results. The FE models’ precision and reliability were proven.

Table 3. Comparison between experimental ultimate lateral load and FE model results

<table>
<thead>
<tr>
<th>Specimen label</th>
<th>P_{me} (kN)</th>
<th>P_{mf} (kN)</th>
<th>$P_{\text{mf}}/P_{\text{me}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-S</td>
<td>39.4</td>
<td>37.3</td>
<td>0.946</td>
</tr>
<tr>
<td>S1</td>
<td>42.92</td>
<td>38.5</td>
<td>0.903</td>
</tr>
<tr>
<td>S2</td>
<td>42.79</td>
<td>39.3</td>
<td>0.918</td>
</tr>
<tr>
<td>S3</td>
<td>38.32</td>
<td>37.1</td>
<td>0.968</td>
</tr>
<tr>
<td>S7</td>
<td>43.28</td>
<td>39.1</td>
<td>0.930</td>
</tr>
<tr>
<td>S8</td>
<td>52.24</td>
<td>49.2</td>
<td>0.941</td>
</tr>
<tr>
<td>S9</td>
<td>57.73</td>
<td>56.5</td>
<td>0.978</td>
</tr>
<tr>
<td>Average values</td>
<td>-</td>
<td>-</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Note: Ultimate Experimental lateral load (P_{me}), ultimate FE model lateral load (P_{mf}).

In the first stage of loading, the behavior of the specimens appeared to be essentially elastic, as the curves appeared to almost overlap and had no major deformations, the energy dissipation appeared to be minimal. Then, the specimens gradually entered the plastic-elastic state. Moreover, the slope of the hysteretic loop began to decrease, which means that the lateral stiffness began to decrease. The specimens appeared to have a great ability to dissipate energy, as the hysterical loops were pumped. As the level of lateral displacement increased, residual lateral deformations clearly appeared. For each hysteretic loop, the lateral load continues to increase.
until it reaches the maximum load. After that, a decrease in the lateral load appears, accompanied by a slight decrease in the descending branch, which indicates the good ductility of the element. The behavior of the specimens was greatly affected by changing the thickness of the tube and the axial pressure. As the thickness and axial pressure increased, the shape of the hysteretic curves became fuller. This indicates a significant improvement in energy dissipation at the same load for the experimental specimens. In general, all samples showed a continuous decrease in the load-stiffness as the loading stage progressed and lateral displacement increased. This may be due to shear damage or plastic displacement, which causes accumulated damage. In the initial stages, the curves decrease rapidly, and then in the final stage they tend to flatten.

4. Conclusions

In this study, ABAQUS was used to conduct a numerical analysis of the cyclic behavior of normal and steel fiber reinforced recycled concrete-filled steel tubes (CFST) columns with square cross-section. This was performed under a combination of cyclic loading and monotonic column axial load. The numerical outcomes were compared with the experimental findings produced by (Zhao et al., 2022) after the numerical models had initially been described. The model novelty lies in the confinement behavior of NC and SFRRC in the FE model. This study draws these main conclusions:

1. A precise prediction of the ultimate lateral load, initial stiffness and stiffness degradation can be reached through the FEM developed for the investigation of CFST columns and the average of the mean values on dividing the ultimate lateral load of the finite element model by the experimental ultimate lateral load was 0.936.
2. Similarity in behaviors was obviously shown through the numerical and experimental hysteretic curves and failure modes. This indicates that the currently suggested FEM provides an accurate tool for representing the performance of NCST and SFRCCST columns.
3. On comparing lateral load versus story drift relationships of FEM with and without considering confined concrete and experimental result, it is clear that the (CDP) model cannot make an accurate prediction of the ultimate lateral load as well as lateral-strain behavior in the post-peak region without taking the confining pressure of concrete core into account. As a result, the CDP model in ABAQUS should employ concrete confining pressure.

References

Famill, A. P., Pallin, V., & Chiaia, B. (2011). Ductility of fiber

https://doi.org/10.1016/j.jcsr.2014.04.016

https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(736)

https://doi.org/10.1016/j.jcsr.2005.09.004

https://doi.org/10.1016/j.jcsr.2014.04.016

