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ABSTRACT 
 
Ceramic candle filters play an important role in coal-based turbine system for a modern power 
plant. However, after exposure to the high pressure and high temperature in the gas turbine 
chamber, the effectiveness of the filters deteriorates over time. Their failure to perform may create 
catastrophic consequences for the multi-million dollar equipment downstream.  A non-destructive 
evaluation procedure using artificial neural networks is proposed to examine the filters. In lieu of 
experimental data, the vibration signatures of filters damaged to various degrees are created by 
means of analytical simulation. Then, a feed-forward artificial neural network and a radial basis 
function neural network are built and trained to evaluate the signatures for the purpose of 
determining the filters’ degree of deterioration. Good results are obtained and presented here.  The 
application of the proposed procedure should not be confined to the ceramic candle filters alone. It 
is a general procedure that will find many applications on the evaluation of other structural 
components and engineering products in the industry. 
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1 Introduction 
 
About one half of the electricity in the United States and one third worldwide is generated with 
coal, thus it is extremely important to develop advanced power generating systems to produce very 
clean, efficient and affordable electricity. The National Energy Technology Laboratory of the U. S. 
Department of Energy (NETL/DOE) is developing two such systems: Integrated Gasification 
Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC), and has 
demonstrated with a pilot power plant for their commercialisation at the Southern Company 
Services located in Wilsonville, Alabama [1]. However, successful implementation of IGCC and 
PFBC in power generation gas turbine depends critically on the performance of a key element that 
is the ceramic candle filter. A typical filter assemblage made by Westinghouse is shown in Fig. 1. 
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These filters are a type of hot gas particulate filter. They serve to clean the gas for meeting the 
particulate emission requirements and hence to protect the downstream heat exchanger and gas 
turbine components from particle fouling and erosion effects [2]. The ceramic candle filters are 
composed of silicon carbide and are constantly subjected to high temperature 927°C (1,700°F) and 
high pressure 2.07 MPa (300 psi) conditions throughout their service life.  
 
The material strength of ceramic filters deteriorates after exposure to the high temperatures and 
high pressures in their plenum [4]. Their failure may create catastrophic consequences for the 
multi-million dollars equipment downstream and may result in unscheduled shutdown of the power 
plant. Hence, it is important to examine the filters frequently to detect their imminent failure. The 
maintenance shutdown period of the power plant offers a good opportunity for such an 
examination. The NETL recognised the importance of this filter evaluation and has supported a 
study to develop a non-destructive evaluation technique based on the measurements of vibration 
response [3]. They evaluated virgin filter as well as several used filters damaged to various degrees 
by using a traditional modal analysis procedure. In this procedure, the used filters were first 
dismounted from the plenum, brought to a laboratory and suspended on a tripod with elastic 
strings. After attaching an accelerometer to the filter, impact dynamic vibration was induced and 
acceleration signatures were recorded. The Fast Fourier Transform was then performed to 
transform the signatures in the time domain to those in the frequency domain. Deterioration of the 
filters could be determined based on the changes of their natural frequencies. Since the filter is 
confined in its plenum and subjected to the relatively homogeneous loads of high temperature and 
high pressure, the change in its natural frequency is largely attributed to a decrease in the modulus 
of elasticity caused by the loads [4]. 

             
                                               
                                              Fig. 1 Westinghouse Filter System 
 
In view of the above description, it is found that physically dismounting the filters and transporting 
them to a laboratory for a test are time consuming. Hence, we propose an in situ evaluation 
procedure using the artificial neural networks, which is more convenient to carry out and thus 
increases the efficiency of the filter evaluation. 
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2 In situ Non-destructive Evaluation 
 
The proposed in situ evaluation procedure may be described as follows: 

• Select a number of ceramic candle filters from the laboratory and the pilot power plant, 
which are at various degrees of degradation due to the lengths of their exposure to the loads 
and due to the intensity of their service loads. Consequently they have different moduli of 
elasticity [4]. Their vibration signatures will be collected and employed as training 
examples. 

• An artificial neural network (ANN) will be built and trained by using the collected 
signatures in order to have the capability in recognising the physical state of a filter from its 
vibration signature. 

• The well-trained ANN will be loaded onto a laptop computer, which can be brought to the 
site of the filter. The filter in its original hanging position is given a non-contact excitation 
and its vibration signature is remotely collected using a laser vibrometer. Finally, this 
signature is fed into the laptop computer and the resident ANN will produce an instant 
evaluation of the current state of the filter. Thus, an informed decision can be made on 
whether the filter needs to be replaced.  

The success of the proposed procedure is hinged on whether the ANN can perform the task of the 
evaluation promptly and accurately, which will be discussed in subsequent paragraphs. 
 
3 Artificial Neural Networks 

 
ANN is a richly connected network of simple computational elements, which can carry out 
complex cognitive and computational tasks [5]. A special feature of an ANN is that it can learn 
from examples through training without prior knowledge of the model structures. Therefore, once 
the networks are designed and properly trained, they can read the vibration signature and give an 
instantaneous evaluation of the filter. Two types of ANN will be presented: feedforward artificial 
neural network and radial basis function neural network. 
 
4 Feed-forward Artificial Neural Network 
 
Feed-forward artificial neural network (FANN) is perhaps the most popular neural network used in 
engineering applications. A standard FANN is shown in Fig. 2 that consists of an input layer, two 
hidden layers, and an output layer. Although the figure demonstrates a FANN with two hidden 
layers, we can change the number of hidden layers depending upon the FANN performance.  
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Fig. 2 Feed-forward Artificial Neural Netwo
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The RBFN also uses a clustering process on the input data before presenting them to the network. 
It uses activation functions [6] that are locally tuned to cover a region of the input space. The 
network structure is shown in Fig. 3 that consists of an input layer, a single hidden layer, and an 
output layer. Only the connections from the hidden layer to the output layer are weighted, leading 
to a much faster training rate than FANN. 
 
Specifically, NEWRB in software MATLAB[7] is used to create the RBFN for this work. In a 
radial basis network, neurons are added to the hidden layer one by one until the specified mean 
squared error goal is met. The goal used here is 0.15. The radial basis function has a spread. The 
spread chosen here is 40 [7]. 
 
6 Finite Element Method Simulation 
 
The vibration signatures of the virgin and the used filters may be collected in the laboratory [3]. 
However, for the purpose of demonstrating that the ANN are capable to do the evaluation, a set of 
training signatures as well as a set of testing signatures are created by computer simulations. Finite 
Element Methods and SAP2000 [8] are used for this simulations. 
 
We build 11 finite element models of the filters. Their dimensions are identical but their moduli of 
elasticity are different to reflect the degradation of the filter at various stages. Each model has a 
length of 1,514 mm (59.625 inch), an outside radius of 60 mm (2.363 inch), and an inside radius of 
30 mm (1.181 inch), with a closed end that has a thickened wall thickness of 36 mm (1.417 inch) 
and a length of 15mm (0.591 inch). These are the actual measurements of a ceramic candle filter. 
Their moduli of elasticity are varied from 6,895mpa (1,000,000 psi) to 41,370 mpa (6,000,000 psi) 
with an interval of 3,448 mpa (500,000 psi). 
 
The model with the highest modulus of elasticity represents the virgin filter. The others represent 
filters damaged to various degrees. 960 hexahedral isoparametric elements are used to build the 
model, see Fig. 4. An impulse was applied at the model and the velocity signatures at the free end 
are recorded through dynamic analysis. The reason for using velocity signatures instead of 
acceleration signatures as used in the laboratory tests [3] is due to the characteristics of the laser 
vibrometer. Laser vibrometer, which is available in NETL and also available commercially, is a 
device designed to remotely collect velocity signatures, not acceleration signatures. A sample 
velocity signature is shown in Fig. 5. A collection of such signatures is a set of valid training 
examples. Then, a FANN and a RBFN are built as mentioned in previous paragraphs. They are 
taught [7] with the said training examples. 

                          
 

Fig. 4 Finite Element Model of Ceramic Filter 
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Fig. 5 Time-Velocity Wave for Filter with E= 20,685 mpa (3,000,000 psi) 
 

 
 
7 Evaluations and Comparisons 
 
Next, we select some new models representing the filters to be evaluated, which have moduli of 
elasticity of 7,585 mpa (1,100,000 psi), 9,653 mpa (1,400,000 psi), 15,859 mpa (2,300,000 psi),  
24,822 mpa (3,600,000 psi), 28,270 mpa (4,100,000psi), 32,407 mpa (4,700,000 psi),  
35,854 mpa (5,200,000 psi), and 39,991mpa (5,800,000 psi). Based on these inputs, fresh velocity 
signatures are generated as before, which are not hitherto seen by the ANN. Namely, these 
signatures are not among the training examples and thus completely unknown to the ANN. We 
feed the signatures to the FANN and the RBFN respectively; then, each network produces a set of 
evaluations of the moduli of elasticity. The results are shown in Table 1. 
 

Table 1 Comparison of ANN’s Evaluation 
 

mpa 7,585 9,653 15,859 24,822 28,270 32,407 35,854 39,991 Ea 
x106 psi 1.1000 1.4000 2.3000 3.6000 4.1000 4.7000 5.2000 5.8000 

mpa 7,164 9,545 16,037 24,812 28,259 32,431 35,838 40,017 Ef 
x106 psi 1.0390 1.3844 2.3259 3.5986 4.0985 4.7035 5.1977 5.8038 

mpa 7,815 9,297 16,036 25,199 27,987 31,709 36,230 40514 Er 
x106 psi 1.1335 1.3483 2.3258 3.6547 4.0590 4.5988 5.2545 5.8758 

Erf(%) -5.5455 -1.1143 1.1261 -0.0389 -0.0366 0.0745 -0.0442 0.0655 
Err(%) 3.0455 -3.6929 1.1217 1.5194 -1.0000 -2.1532 1.0481 1.3069 

 
Ea: actual elastic modulus. 
Ef: elastic modulus estimated by FANN. 
Er: elastic modulus estimated by RBFN. 
Erf: error of the FANN. 
Err: error of the RBFN 
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From Table 1, the differences between the true modulus of elasticity and the ANN evaluations are 
indeed very small; the percentage errors are varied from 0.04% to 5.5% for FANN and 1% to 
3.69% for RBFN. They have assured that both neural networks can recognise velocity signatures 
and give accurate evaluations of the filters. Their performances point out that the proposed in situ 
evaluation procedure is viable. From our record, FANN takes two minutes for the training and 
evaluation while RBFN responds instantly. Their efficiency is indeed excellent. 
 
8 Concluding Remarks 
 
Two types of artificial Neural Networks, FANN and RBFN, are used to analyse the vibration 
signatures of the filters for the determination of their degree of deterioration. Both networks can 
perform the evaluation of the filter directly and accurately. But RBFN takes a much shorter time 
than FANN for the evaluation. This result shows that the proposed in situ non-destructive 
evaluation for the filter is a viable procedure, which is much more efficient and convenient than the 
traditional procedure. It also shows that ANN is an effective tool for non-destructive evaluation. 
The method presented here is a general method; it should not be confined to one application. It 
works for the ceramic candle filter; it should also work for any other similar engineering structural 
elements or engineering products in the industry.  
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