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ABSTRACT 
There is a growing interest in the use of neural networks in civil engineering to model complicated 
nonlinearity problems. A recent enhancement to the conventional back-propagation neural network 
algorithm is the adoption of a Bayesian inference procedure that provides good generalization and a 
statistical approach to deal with data uncertainty. A review of the Bayesian approach for neural network 
learning is presented. One distinct advantage of this method over the conventional back-propagation 
method is that the algorithm is able to provide assessments of the confidence associated with the network’s 
predictions. Two examples are presented to demonstrate the capabilities of this algorithm. A third example 
considers the practical application of the Bayesian neural network approach for analyzing the ultimate 
shear strength of deep beams. 
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1    Introduction 
Neural networks are an emerging computational tool that offers a new strategy to analyze 
complicated multivariate problems. Neural networks are computer algorithms based loosely on 
modelling the stimulus-response neuronal structure of the brain. They are typically used to learn 
an input-output mapping of a set of example patterns. The functional relationships between the 
input-output variables are “learned” without the need to specify the relationship between 
variables. They are particularly useful for problems in which there is a lack of a complete 
understanding of the relationship between the variables [1, 2, 3, 4]. 

To date, most of the neural network applications in civil engineering have focused on the use of 
the back-propagation learning algorithm [5] because of the simplicity of the methodology. As 
shown in Fig. 1, the architecture of a back-propagation neural network is composed of an input 
layer, one or more hidden layers, and an output layer. Each layer contains neurons that are fully 
connected with neurons in the neighboring layers by weights.  

The objective of training is to modify the connection weights to reduce the errors between the 
actual output values and the target output values to a satisfactory level. This is carried out 
through the minimization (optimization) of the sum squared error function using the gradient 
descent approach. In mathematical terms, the algorithm essentially seeks in a step-wise method 
to search for the optima in a high-dimensional weight space with the objective of minimizing 
the sum squared error. At the end of training, the associated trained weights of the model are 
tested with a separate data set, to assess the generalization capability of the neural network 
model to give good predictions on a set of data that the network has not seen during training. 
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Figure 1: Neural network architecture 
 
Generally, the neural network predictions become more accurate as the number of hidden layers 
and/or neurons increases. However, if too complicated an architecture is used, “overfitting” will 
occur. The training data will be well modeled and the sum squared error will be small. 
However, the network will be modeling the noise in the data as well as the trends, as illustrated 
for a simple example of a single input-output relationship in Fig. 2. Therefore, the network will 
not generalize well on the testing data set. To overcome overfitting, the technique of early 
stopping is commonly used. This approach involves monitoring the generalization error of the 
testing data set and to stop training when the minimum testing error is observed. However, some 
care and judgment is needed to decide when to stop, since the error surface of the weight space 
is in general not a smooth surface, but contains many local and global minima, and/or long flat 
regions preceding a steep drop-off. 

 

2   Bayesian neural network approach 
To overcome the limitations of the conventional back-propagation neural network, Mackay [6] 
and Neal [7] proposed the use of Bayesian inference to analyze the neural network data. In 
conventional back-propagation neural networks the weights are assigned deterministic values.  
In the Bayesian framework, the weights of the neural network are considered random variables 
and are characterized by a joint probability distribution representing the degree of belief in the 
different values of the weight vector. The objective in training is to maximize the posterior 
distribution over the weights w, to obtain the most probable parameters values wMP in the 
network. The posterior distribution is then used to evaluate the predictions of the trained 
network for new values of the input variables.  
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Figure 2: A simple illustration of a well-fit model and an overfitted model. 

The Bayesian approach involves the optimization of the objective function S(w) that comprises 
the conventional sum squared error function ED as well as an additional weight error term EW 
which is the sum of the square of all the weights. S(w) is defined as 

 S(w) = θED + ξEW                (1) 

in which θ and ξ are termed regularization parameters or hyperparameters. The motivation for 
including EW is to penalize the more complex weight functions in favor of simpler functions. 
When the weights are kept small, the neural network response will be smooth. This decreases 
the tendency of the neural network to fit the noise in the training data. The hyperparameter ξ 
controls the weight distribution of the network model and hence its nonlinear mapping ability. 
Noise present in the data is expressed as θ. 

Consider the data set D with N training patterns of inputs x and corresponding targets t, and W 
number of connection weights. For a neural network model with weights w, applying Bayes’ 
rule, the posterior distribution of the weights given the observed data  p(w|D) can be written as 

)(p)|D(p
)D(p

1)D|(p www =       (2) 

p(D|w) is termed the “likelihood” function, p(w) is the “prior”, and p(D) is a normalizing factor 
called the “evidence”.  
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Mackay [6] showed that p(w|D) can be expressed as 

( ) ( )( )ww Sexp
Z
1EEexp

Z
1)D|(p

S
WD

S
−=−−= ξθ    (3) 

in which ZS is a normalizing constant given by 

∫ −= ww d))(Sexp(ZS        (4) 

The weight vector wMP corresponding to the maximum posterior distribution p(w|D) is found by 
minimizing the negative logarithm of Eq. (3) with respect to the weights. Since ZS in Eq. (4) is 
independent of the weights, this is equivalent to minimizing S(w) given in Eq. (1). 

Because the normalizing factor ZS in Eq. (4) cannot be evaluated analytically, Mackay [6] used 
a Gaussian approximation for the posterior distribution by considering the Taylor expansion of 
S(w) around its minimum value and retaining terms up to second order so that 

wwww ∆∆+≈ A
2
1)(S)(S T

MP       (5) 

in which A is the Hessian (second partial derivative) matrix of the total regularized error 
function given in Eq. (1) 

 

)(S MPww wA ∇∇=         (6) 

and 

∆w = w – wMP.         (7) 

The expansion of Eq. (5) leads to a posterior distribution that is now a Gaussian function of the 
weights, given by 

( ) 






 ∆∆−−= wAwww T
*
S 2

1Sexp
Z
1)D|(p MP     (8) 

and the normalization term becomes 

2/12/W)(S*
S )2(eZ MP −−= Aw π       (9) 

in which W is the total number of connection weights. For a new input x* and target t*, the 
predicted output is y(x*; w). The conditional probability density of t* can be written as 

∫= wwwxx d)D|(p)*,|*t(p)D*,|*t(p      (10) 

in which the integral is over the whole w-space. In the Bayesian approach, the noise (i.e., the 
error between the target and predicted value) is assumed to be Gaussian with zero mean and 
variance 1/θ, which results in 

{ } 






 −−∝ 2*)*;(
2

exp)*,|*( tytp wxwx θ
     (11) 

Substituting Eq. (8) and Eq. (11) into Eq. (10) leads to the relationship 
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Assuming the width of the posterior distribution is sufficiently narrow, the function y (x*;w) 
may be linearly approximated by expanding about wMP. That is 

y(x*;w) ≈ y(x*;wMP) + gT∆w       (13) 

in which the partial derivative g is defined as 

MP
|)*;(y www wxg =∇=        (14) 

Substituting into Eq. (12) and evaluating the integral over w leads to the expression 

{ }
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in which the standard deviation is given by 

gAg 1T
t

1 −+=
θ

σ         (16) 

in which A is the data Hessian and g is the partial derivative of the output with respect to the 
weights. 

The adjustment of the hyperparameters and the weight vector to their near optimal values is 
carried out iteratively during training, and therefore is less computationally intensive than the 
heuristic search procedures required in conventional back-propagation to find the optimal 
network for generalization. 

Another limitation of the conventional back-propagation neural network algorithm is the lack of 
a method for analyzing the confidence intervals of the predictions. The Bayesian neural network 
approach yields the posterior distribution of the prediction and allows the calculation of the 
standard deviation on the network output, instead of just providing a single output. The standard 
deviation can be interpreted as an error bar on the mean value of the prediction. The standard 
deviation is computed from Eq. (16). 

Some enhancements have been carried out to the original Bayesian neural network algorithm 
developed by Mackay [6]. The main features of this hybrid model [8, 9], called the evolutionary 
Baysesian back-propagation (EBBP) algorithm, are the use of the genetic algorithms (GA) 
search technique and a higher order search algorithm, the Levenberg-Marquardt algorithm.  

 

3 Analyses using the hybrid Bayesian neural network 
Three examples are presented that demonstrate the convergence and generalization capabilities 
of the hybrid Bayesian neural network approach. 

3.1 Robot arm problem 
A complicated validation problem commonly used to evaluate the non-linear mapping 
capabilities of neural network and other computer algorithms, the “robot arm” with two input 
and two output variables was considered. The task in the robot arm problem is to learn the 
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mapping from joint angles to position for an imaginary “robot arm”. The actual relationship 
between inputs and outputs is as follows: 
                             y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + noise                            (17) 

                             y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + noise                             (18) 

in which the noise is independent Gaussian noise with standard deviation of  0.05. 

Comparisons were carried out with the test error reported by Mackay [6] and Neal [7]. The data 
sets of training and testing were obtained from Mackay’s website (http:// 
wol.ra.phy.cam.ac.uk/mackay/Bayes_FAQ.htm.) Both these data sets contain 200 input-target 
pairs, which were randomly generated by picking x1 uniformly from the ranges [1.932, -0.453] 
and [+0.453, +1.932], and x2 uniformly from the range [0.534, 3.142]. The distribution for the 
two targets in y1 and y2 space is shown in Fig. 3.  The sum squared errors of the testing patterns 
from the three different network models are summarized in Table 1. Overall, the hybrid 
Bayesian neural network (EBBP) gives comparable results to the other models.    
 
 Table 1: Average squared test errors for robot arm problem.                  
 

Neural network model Average squared test error 
Mackay [6] 0.00557 
Neal [7] 0.00554 
EBBP [8, 9] 0.00542 

        

The robot arm problem
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Figure 3: arget values in y1 and y2 space for robot arm problem. 



Electronic Journal of Structural Engineering, 1 (2004) 
 
 

 2004 EJSE International. All rights reserved.                                                                            Website: http://www.ejse.org 
 

114eeJJSSEE  
 International 

3.2 Sine function with additive noise 
A total of 21 data points were randomly generated from a simple sine function with additive 
Gaussian noise as shown in Fig. 4. This example serves to demonstrate the capabilities of the 
hybrid Bayesian neural network model (EBBP) to deal with noise and an uneven data density. 
The solid curve in Fig. 5 shows the function learned by the neural network and the dashed 
curves represent the associated error bars on the predictions. As expected, the error bars are 
higher for regions where the data density is low and the error bars are small where the data 
density is high. 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 4.  Plot of training data for the sine function. 

 
 

Figure 4: Plot of training data for the sine function. 
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Figure 5: Predicted results (solid curve) and associated error bars (dashed curves). 
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3.3 Deep beam analysis 
The design of deep beams is of considerable relevance in structural engineering and is 
commonly used in tall buildings and offshore structures. Deep beams have depths that are 
comparable to their span lengths. The behavior of deep reinforced concrete beams has been the 
subject of numerous experimental and analytical studies. Because of the significant number of 
factors (parameters) that affect the behavior of deep beams and the complexity of behavior of 
these beams when subjected to shear failure, to date, the understanding of deep beam behavior 
is still limited. Several design methods have been proposed, each based on differing 
assumptions and concepts. It is beyond the scope of this paper to discuss these conventional 
design methods. A study by Goh [10] demonstrated the feasibility of using the conventional 
back-propagation neural network to evaluate the ultimate shear strength of reinforced concrete 
deep beams. Recently, Sanad and Saka [11] carried out a similar study using an expanded 
database. Their study indicated that the predictions using the back-propagation neural network 
model were more accurate that those determined from conventional methods [12, 13, 14]. 
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Fig. 6. Deep beam configuration (with reinforcement omitted) 

In this paper, the hybrid Bayesian neural network was used to analyze this expanded database 
[11]. Training was carried out using 101 patterns and another ten patterns were used in the 
testing phase. For brevity, the data have been omitted in this paper. The basic parameters of the 
deep beam are shown in Fig. 6.  

Following the work of Sanad and Saka [11], the nine input parameters considered in the neural 
network analysis are: the effective span/effective depth ratio (L/d), the effective depth/breadth 
ratio (d/bw), the shear span/effective depth ratio (a/d), the cylinder compressive strength of 
concrete (f’c), the yield strength of the longitudinal steel (fyh), the yield strength of the transverse 
steel (fyv), the reinforcement ratio of the horizontal tensile steel (ρh), the reinforcement ratio of 
the total horizontal steel (ρht), and the reinforcement ratio of the transverse steel (ρv). The range 
of the input parameters is summarized in Table 2. The architecture of the neural network used in 
this problem is 9 input neurons, 7 hidden neurons and 1 output neuron representing the ultimate 
shear strength (V/bwd). 
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Table 2.  Range of data for deep beam analysis. 

 
Parameter Range of values 

L/d 0.95-5.4 
d/bw 2.83-47 
a/d 0.23-2.16 

f’c (MPa) 12.5-76 
fyh (MPa) 250-600 
fyv(MPa) 0-460 
ρh (%) 0.05-1.94 
ρht (%) 0.14-2.95 
ρv (%) 0-2.45 

 

A plot of the neural network predicted versus the actual measured values for the training data 
patterns is shown in Fig. 7. Most of training data fall within the ± 10% error line. As shown in 
the plot of the testing data in Fig. 8, another advantage with the Bayesian inference is that every 
prediction of the test set data is associated with an error bar. These error bars are the standard 
deviations for the predictions based on the data distribution and inherent noise. The ratios of the 
predicted strength to the actual strength of the 10 testing patterns for the EBBP model are shown 
in Table 3 together with the neural network predictions by [11]. Also shown in Table 3 are the 
results based on the various conventional methods as reported by [11]. The specimen numbers 
are the reference numbers for the testing data patterns as reported in [11]. The results clearly 
demonstrate the accuracy of the neural network approaches over the conventional methods. 
Overall, the average ratio of the predicted strength to the actual strength for the EBBP model is 
slightly better than the neural network model used by [11]. 
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Fig. 7.  Predicted versus measured values for training data. 
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Fig. 8.  Predicted versus measured values for testing data. 

 
 

Table 3: Predicted shear strength results for deep beam testing data. 
 
 Predicted strength/Actual strength 
Specimen 
number 

ACI method 
[12] 

Truss method [14] Mau-Hsu 
method [13] 

Neural 
network [11] 

EBBP 

3 0.33 0.89 0.97 0.91 0.97 
7 0.52 0.84 0.94 0.98 0.93 

23 0.47 1.04 1.10 1.00 1.02 
36 0.49 1.26 0.95 1.11 1.03 
45 0.32 1.03 0.97 1.02 0.98 
80 0.44 0.76 1.67 1.01 0.94 
86 0.67 2.14 2.04 1.21 0.97 
93 0.36 0.86 1.48 1.01 1.08 
95 0.23 1.62 1.30 1.00 1.06 
99 0.31 1.91 1.45 1.07 1.02 

Average 0.41 1.24 1.29 1.03 1.00 
 

4   Summary 
This paper demonstrates the robustness of the Bayesian neural network approach to model 
complicated nonlinear relationships. One distinct advantage of the Bayesian neural network 
approach is that the uncertainty of data can be indicated as an error bar based on the data 
distribution and intrinsic noise. These error bars will aid in giving confidence to the predicted 
values and the interpretation of the results. As demonstrated in the second example, in regions 
of low data density, the error bars of the predictions are higher than in regions of high data 
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density. The two other examples demonstrate the accuracy of the algorithm to model 
complicated multivariate relationships. As pointed out by [15], it is crucial to remember that 
while neural networks provide a powerful and efficient tool to model non-linear problems, 
neural networks do no exempt engineers from intimate and detailed knowledge of the data and 
problem domain. 
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