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Abstract 

This work is based on Winkler’s theory to analyze laterally loaded single piles using the finite element method. 
Soil nonlinearity is considered via nonlinear springs “p-y” curves.  Exact element displacement shape functions 
and stiffness matrix are used for the element in the case of linear Winkler’s modulus of subgrade reaction. In the 
nonlinear stage, an averaging technique for the element secant Winkler modulus is used to calculate the shape 
functions and stiffness matrix. An iterative technique is used to consider the nonlinearity of the soil. Few elements 
are required to simulate the pile efficiently. Unlike other analytical methods, the current method can be used to 
analyze piles with any load-transfer curves with arbitrary variation with depth. 
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1. Introduction 

Piles are increasingly used to support axial and lateral loads in many 
structures such as tall buildings, earth retaining structures, and bridge 
substructures. The important aspects in the design of laterally loaded 
piles are the amount of deflection and the moment in the pile [Poulos and 
Davis 1980]. Laterally loaded piles can be analyzed by different methods 
[Liao and Lin, 2003; Zhang et al., 2013; Gupta and Basu, 2019; Franklin 
and Scott, 1979; Basu et al., 2009; Budhu and Davies, 1987; Sun, 2011]. 
Some methods treat the soil as an elastic continuum [Basu and Prezzi, 
2009; Budhu and Davies, 1987; Sun, 2011]; which requires significant 
modeling and computation effort. These methods are used primarily for 
research and not for design purposes [Sun, 2011]. One of the most 
suitable and popular methods is known as the Winkler foundation 
method in which the supporting soil is represented by closely spaced 
springs. For the nonlinear analysis, these springs are assumed to have a 
nonlinear force-displacement relationship [Reese and Van, 2011]. These 
relationships are sometimes called p-y curves. The p-y method is very 
versatile and can be used to analyze and design a variety of cases 
encountered in practice. The main advantage of the p-y analysis method 
of laterally loaded piles is that it does not require discretizing the 
supporting soil into elements. Therefore, the API standard and many 
commercial software packages such as SAP, pileLAT, GEO5, LAP and 
many others use this method to analyze and design laterally loaded piles. 
Therefore, many researchers [Amirmojahedi et al., 2023; Wei et al., 
2023; Franke, and Rollins, 2013; Lianyang, 1992; Xiaoling et al, 2020] 
focused on developing p-y curves for different types of soils. Psaroudakis 
et al. in 2021 developed a semi-analytical method based on Winkler’s 
theory to analyze laterally loaded single piles. Shape functions that 
describe the elastic displacements of the pile under loading were used in 
combination with the principle of virtual work in the analysis. Soil 
nonlinearity was simulated via nonlinear ‘‘p-y’’ springs located along the 
pile axis.  Using the finite difference method, Yin et al. in 2018 proposed 
a simplified iterative method based on p-y curves to analyze laterally 
loaded single piles in or near a sloping ground. Basu et al. in 2011 
developed an analytical method to analyze piles subjected to horizontal 
loads and moments at the pile head. The soil supporting the pile was 
considered a multi-layered and elastic continuum. The energy principles 
were used in deriving the governing differential equations. An iterative 
method based on the finite difference method was used to solve the 
differential equations and determine the displacements and forces along 
the pile. This study makes use of the p-y curves with arbitrary shapes to 
efficiently analyze piles using the finite element method with very few 
elements. 

2. Problem Description and Modeling of 
the Pile-soil System 

The pile model under consideration has length L with flexural 
rigidity EI. The pile material is considered linear elastic. The pile is 
considered embedded in multi-layered soil of random mechanical 

properties. Each soil layer may have a nonlinear reaction modulus (k) 
and varying ultimate lateral resistance along with its depth. The reaction 
modulus (k) is defined as the soil reaction per unit length of the pile due 
to unit lateral displacement of the pile at that location.  A force P0 and 
moment M0 are applied at the pile head.   

3.  Element shape functions and stiffness 
matrix 

3.1 Homogeneous elastic soil 

For the case of homogeneous elastic soil, the reaction modulus k, 
sometimes referred to as the modulus of subgrade reaction is constant. 
Using Winkler’s hypotheses, the governing differential equation for 
bending of laterally loaded piles in homogeneous elastic soil is the same 
as the equation of beam on elastic foundation [Reese and Van, 2011]: 

 

𝐸𝐼 
𝑑4𝑦

𝑑𝑥4
+ 𝑘𝑠 𝑦(𝑥) = 0    (1) 

 
Where 𝑦 = Lateral deflection of the pile  

𝐸𝐼 = Flexural rigidity of pile  
𝑘𝑠  = Soil reaction modulus  

Element nodal displacements and their corresponding forces and nodal 
degrees of freedom are shown in Fig. 1. 

  
Fig.1 (a) Element nodal displacements; (b) Nodal forces; (c) 
Nodal D.O.F 

Putting λ = √
𝑘𝑠

4𝐸𝐼

4
     (2) 

Equation 1 can be written as  
𝑑4𝑦

𝑑𝑥4
+ 4𝜆4 𝑦(𝑥) = 0     (3) 

 
The general solution of this equation is [Reese 1977]: 
𝑦(x) = 𝐴 𝑒𝜆𝑥 cos 𝜆𝑥 + 𝐵 𝑒𝜆𝑥 sin 𝜆𝑥 +𝐶 𝑒−𝜆𝑥 cos 𝜆𝑥  
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+𝐷 𝑒−𝜆𝑥 sin 𝜆𝑥     (4) 
Where A, B, C and D are arbitrary constants and can be determined 

from the boundary conditions of the pile element. 
The slope at any point within the pile element is the derivative of the 
general solution of the differential equation (Eq.4). Therefore,  

 
𝑑𝑦

𝑑𝑥
 = 𝜆[ 𝑒𝜆𝑥 cos 𝜆𝑥(𝐴 + 𝐵) +  𝑒𝜆𝑥 sin 𝜆𝑥 (𝐵 − 𝐴) +  𝑒−𝜆𝑥 cos 𝜆𝑥 (𝐷 − 𝐶) +

 𝑒−𝜆𝑥 sin 𝜆𝑥 (−𝐷 − 𝐶)]            (5)  
                     

To derive the element shape functions, the following four boundary 
conditions are set for the element: 
1:  𝑦(0)  = 𝑦1,     𝑦′ (0)  =  𝜃1    (6 a) 
2:   𝑦(𝐿)  = 𝑦2,     𝑦′ (𝐿)  = 𝜃2    (6 b) 
 

Where 𝑦1 and 𝜃1 represent displacement and rotation respectively 
at node 1 of the element. Similarly,  𝑦2 and 𝜃2 represent displacement 
and rotation respectively at node 2 of the element.  
 

Substituting these four boundary conditions into equations 4 and 5, 
the arbitrary constants 𝑐1 − 𝑐4 can be determined by solving the 
resulting four simultaneous equations. And Eq. 4 can be written in terms 
of nodal displacements as: 
𝑦(𝑥) = 𝑁1 𝑦1 +  𝑁2 𝜃1  + 𝑁3 𝑦2 +𝑁4 𝜃2   (7) 
 

Where N1, N2, N3 and N4 are the element displacement shape 
functions and are given by: 
 

𝑁1 = 
1

𝐺
 [cosh (𝜆𝑥 − 2𝜇)  - 2cosh (𝜆𝑥)] cos (𝜆𝑥) + 

1

𝐺
 cosh(𝜆𝑥) cos (−𝜆 + 2𝜇) 

+  
1

𝐺
 sinh(−𝜆𝑥) sin (−𝜆𝑥 + 2𝜇) +

1

𝐺
 sinh(−𝜆𝑥 + 2𝜇) sin (𝜆𝑥) (8a) 

 

𝑁2 = 
1

𝜆𝐺
 sinh(−𝜆𝑥) cos (𝜆𝑥) + 

1

𝜆𝐺
 [cosh(𝜆𝑥 − 2𝛼) − cosh(𝜆𝑥)]sin (𝜆𝑥)  

+ 
1

𝜆𝐺
 sinh(𝜆𝑥) cos (−𝜆𝑥 + 2𝜇)    (8b) 

 

𝑁3 = 
1

𝐺
 [cosh (𝜆𝑥 + 𝜇) - 2cosh (𝜆𝑥 − 𝜇)]cos (−𝜆𝑥 + 𝜇) + 

1

𝐺
 cosh(𝜆𝑥 −

𝛼) cos (𝜆𝑥 + 𝜇)+ 
1

𝐺
 sinh(𝜆𝑥 − 𝜇) sin (𝜆𝑥 + 𝜇)  

+ 
1

𝐺
 sinh(𝜆𝑥 + 𝜇) sin (−𝜆𝑥 + 𝜇)    (8c) 

 

𝑁4 = 
1

𝜆𝐺
 sinh(−𝜆𝑥 + 𝜇) cos (−𝜆𝑥 + 𝜇) + 

1

𝜆𝐺
 [cosh(𝜆𝑥 − 𝜇) − cosh(𝜆𝑥 +

𝜇)]sin (−𝜆𝑥 + 𝜇)+ 
1

𝜆𝐺
 sinh(𝜆𝑥 − 𝜇) cos (𝜆𝑥 + 𝜇)  (8d) 

 
Where   𝜇 =  𝜆𝑙  and           𝐺 = cosh(2𝜇) − 2𝑠𝑖𝑛2𝜇 − 1. 
 

These shape functions depend on the value of λ and reduce to the 
Lagrange interpolation polynomials when λ approaches zero. Figure 2 
shows the shape functions for different λ values. 

 

 

 

 
Fig. 2 Shape functions for beam on elastic foundation. 

The element stiffness matrix is derived by applying the principle of 
minimum potential energy and may be written as follows. 

𝐾 = [

𝑘11

𝑘21 𝑘22 𝑠𝑢𝑚𝑚.
𝑘31

𝑘41

𝑘32

𝑘42

𝑘33            
𝑘43 𝑘44

]    (9) 

 
The terms in the stiffness matrix [K] corresponding to the degrees of 

freedom shown in Fig. 1 are given by: 
 

𝑘11 = 
𝑘

𝜆
 
cos 𝜇  sin 𝜇 + cosh 𝜇 sinh 𝜇

𝐻
,          𝑘21 = 

𝑘

2𝜆2
 
sinh2 𝜇 + 𝑠𝑖𝑛2 𝜇

𝐻
 , 

𝑘31 = −
𝑘

𝜆
   

sinh 𝜇 cos 𝜇+cosh 𝜇 sin 𝜇 

𝐻
 ,      𝑘41= 

𝑘

𝜆2
 
sinh 𝜇 sin 𝜇

𝐻
,  

 

𝑘22 =  
𝑘

2𝜆3
 
sinh 𝜇 cosh 𝜇 −sin 𝜇 cos 𝜇

𝐻
 ,           𝑘32 = 𝑘41,  

𝑘42 = 
𝑘

2𝜆3
 
cosh 𝜇 sin 𝜇 −sinh 𝜇 cos 𝜇

𝐻
,              𝑘33 =  𝑘11,     𝑘43 = - 𝑘21 , 

 𝑘44 =  𝑘22     
  

Where 𝐻 = 𝑠𝑖𝑛ℎ2𝜇 − 𝑠𝑖𝑛2𝜇. 
 

When the value of λ approaches zero, the stiffness matrix reduces to 
the ordinary beam element stiffness matrix. 

3.2 Nonlinear layered soil 

Assuming the supporting soil as a linear elastic material is an 
oversimplification of reality. Soil behaves non-linearly in the range of 
loading of practical interest [Reese, 1977; Davies and Budhu 1986]. 
Moreover, the hardness of soil profiles changes with depth due to soil 
stratification. Therefore, the value of soil reaction (𝑘) is not constant 
along the element length. Therefore, the differential equation of the 
laterally loaded pile element will be as follows: 

 𝐸𝑝𝐼
𝑑4𝑦

𝑑𝑥4
+ 𝑘𝑠(𝑦, 𝑥)𝑦(𝑥) = 0    (10) 

 
Where 𝑘𝑠(𝑦, 𝑥) represents the variation of the reaction modulus 

with depth and displacements. The exact solution for Eq.10 is available 
for special cases in which the reaction modulus is elastic and varies 
linearly with depth. Psaroudakis et al. in 2021 proposed a solution for an 
elastic and parabolic profile of reaction modulus. However, for nonlinear 
analysis and randomly varying soil profiles, some approximation must 
be done to solve the governing differential equation.  

In this study, an average reaction modulus is calculated for each 
element as follows:   

kav=
∫ |𝑅(𝑥) |𝑑𝑥  

𝐿
0

∫ |𝑦(𝑥)|𝑑𝑥
𝐿

0

     (11) 

 
In the nonlinear case, the soil side resistance R(x) can be written as 

R(x)=|𝑘𝑠(𝑦, 𝑥) 𝑦(𝑥)|    (12) 
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Where 𝑘𝑠(𝑦, 𝑥) is the secant soil reaction modulus which is presented 
graphically in Figure 3.  

Fig. 3 Secant reaction modulus 

Therefore, the average secant reaction modulus can be written as: 

 𝑘𝑎𝑣 =
∫ |𝑘𝑠(𝑦,𝑥) 𝑦(𝑥)|𝑑𝑥  

𝐿
0

∫ |𝑦(𝑥)|𝑑𝑥
𝐿

0

    (13) 

 
In which  𝑘𝑎𝑣 represents the total lateral soil reaction within the 

element divided by the total element lateral displacements. The absolute 
value notation is to take account of displacements in the negative 
direction. The value of ks depends on the p-y curve of the soil layers, and 
explicit integration of the numerator may not be possible for many p-y 
models. Therefore, numerical integration is used to evaluate integrals in 
equation 13. Using Gaussian quadrature rule, Eq. 13 is evaluated as: 

 

𝑘𝑎𝑣 =  
∑ |𝑦𝑖𝑘𝑠𝑖 𝑤𝑖| 

𝑛
𝑖=1

∑ |𝑦𝑖𝑤𝑖|𝑛
𝑖=1

    (14) 

 
where  𝑦𝑖 , 𝑘𝑠𝑖  𝑎𝑛𝑑  𝑤𝑖 are lateral displacement, secant soil reaction 

modulus, and Gaussian weight at Gauss point 𝑖 on the element 
respectively. The number of Gaussian points (n) used in this study is five. 
Due to soil nonlinearity, an iterative procedure is used to determine  𝑘𝑎𝑣 
and the related lateral displacements. A flow chart of the solution 
procedure is shown in Figure 4. 
 

 
Fig. 4 Flow chart of the proposed solution algorithm 

 
The iterative solution algorithm is shown graphically in Fig. 5. 

 
Fig. 5 Schematic diagram of iterative secant stiffness method. 

The proposed method can analyze piles in multilayered soils with 
different p-y curves. A computer program was developed to implement 
the proposed analysis method.  Only a few elements are required for 
good accuracy. 

Validation of the of the proposed method 
To check the feasibility of the proposed analysis method, two 

examples were solved and compared with others well documented in the 
literature. 

Example 1  
A case history analyzed by Reese [Reese 1977] is reanalyzed and the 

results are compared with those of Reese. The geometrical properties 
and loading of the pile are shown in Fig. 6. The load transfer “p-y “curves 
of the soil are shown in Fig. 7 in which the soil properties vary with 
depth. Linear variation is assumed between any two curves. The soil 
properties are constant for a depth of more than 3.91 m. This example 
was reanalyzed using three elements only with five Gauss points along 
each element.  The lateral deflection of the pile is calculated using 
displacement shape functions of each element and is shown in Fig. 8. On 
the same figure is shown the results of [Reese, 1977] using the finite 
difference method obtained by dividing the pile into 72 segments. The 
bending moment diagram of the pile is shown in Fig. 9. The results are 
very close to those of Reese by using only three elements. 

    

 

Fig.6 Properties and loading of pile. 

 
Fig. 7 p-y curves of supporting soil 
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Fig. 8 Load deflection curve of laterally loaded pile. 

 

Fig. 9 Bending moment along the pile. 

Example 2 
Reese and William in 2011 analyzed a laterally loaded steel pipe pile 

driven into stiff clay.  The p-y curves for the clay layers are shown in Fig. 
10.  The experimental p-y curves in Fig. 10 were derived from data from 
the tests at Manor- Texas [Reese, and Robert 1975]. The soil properties 
were assumed constant below a depth of 3.05m below the ground 
surface. Linear variation is assumed between any two curves. The pile 
consists of two pieces with a total length of 15.24 m. The length of the 
upper piece is 7.01 mm, and its outside diameter is 641 mm. The bottom 
piece has a length of 8.23 m and an outer diameter of 610 mm. The 
flexural rigidity (EI) of the two pieces is 493,700 and 168,400 kN.m2 
respectively. The load was applied 0.305m above the ground surface.  

 
Fig. 10 p-y curves of supporting soil of example 2 [Reese and 
William 2011] 

This example was reanalyzed using four elements with only five Gauss 
points along each element. The load-deflection relationship of the pile 
head is shown in Fig. 11. In the same Figure, the experimental results and 
analytical solution of [Reese and William, 2011] are shown for 
comparison. 

 

 
Fig. 11 Load- Deflection curve of the pile head 

The pile was instrumented with strain gauges along its shaft for 
measurement of the bending moments. The maximum bending moment 
of the pile using the present study in addition to the experimental and 
analytical results of [Reese and William, 2011] are also shown in Figure 
12. The agreement is excellent among the experimental, analytical 
[Reese and William, 2011] and the present study for both the load-

deflection and the load-maximum moment on the pile. 

 
Fig. 12 Relationship of maximum bending moment and lateral 
load  

4. Conclusion  

A simple and efficient technique is presented for the nonlinear 
analysis of laterally loaded piles in multilayered soils using p-y curves. 
Averaging technique is used to calculate the soil reaction modulus for 
each element. The corresponding exact shape functions are used to 
calculate displacements, soil reaction and stiffness matrix for the 
elements. An iterative method using the secant stiffness method is used 
to track the soil nonlinearity. The present method does not necessitate 
discretizing the pile into many elements. Only two to four elements are 
sufficient for good accuracy.  
 

Conflict of Interest:  

The authors declare that they have no conflicts of interest.   

References 

Amirmojahedi M., Abu-Farsakh M., Voyiadjis G., and Souri A. (2023) 
Development of p-y Curve Model for Sand Using Finite Element Analysis 
of Laterally Loaded Piles.  Canadian Geotechnical Journal. 
https://doi.org/10.1139/cgj-2021-0014 

Basu D., Salgado R., and Prezzi M. (2009). A continuum-based model 
for analysis of laterally loaded piles in layered soils. Ge´otechnique 59, 
No. 2, 127–140.   https://doi.org/10.1680/geot.2007.00011 

Basu, D., Salgado, R., and Prezzi, M. (2011). A new model for analysis 
of laterally loaded piles”, Geo-Frontiers: Advances in Geotechnical 
Engineering.  doi.org/10.1061/41165(397)14 

Basu D., Salgado R., and Prezzi M. (2021) A new model for analysis 
of laterally loaded piles. Geo-Frontiers: Advances in Geotechnical 
Engineering. doi.org/10.1061/41165(397)14 

0

100

200

300

400

500

600

700

0 5 10 15 20 25

L
at

er
al

 l
o
ad

, 
P

 (
k

N
)

Ground  line deflection (mm)

Experimental

Analysis (Reese and William, 2011)

Analysis ( present study)

0

100

200

300

400

500

600

700

0 500 1000 1500

L
at

er
al

 l
o
ad

 (
k

N
.m

)

Maximum bending moment (kN.m)

Experimental

Analysis (Reese and William,

2011)
Analysis ( present study)

https://doi.org/10.1139/cgj-2021-0014
https://doi.org/10.1680/geot.2007.00011
https://doi.org/10.1061/41165(397)14
https://doi.org/10.1061/41165(397)14


5  
Electronic Journal of Structural Engineering, 2023, Vol 23, No. 3 

Budhu M., and Davies T. G. (1987) Nonlinear analysis of laterally 
loaded piles in cohesionless soils. Can. Geotech. J. 24, 289–296. 
https://doi.org/10.1139/t87-034 

Davies T. G. and Budhu M. (1986) Non-linear analysis of laterally 
loaded piles in heavily overconsolidated clays. Geotechnique 36(4):527–
538. https://doi.org/10.1680/geot.1986.36.4.527 

Franke K. W. and Rollins K. M. (2013) Simplified Hybrid p-y Spring 
Model for Liquefied Soils. Journal of Geotechnical and Geoenvironmental 
Engineering, ASCE, Vol. 139, No. 4, pp. 564-576. 
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000750 

Franklin J. F., and Scott R. F. (1979) Beam equation with variable 
foundation coefficient. J. Eng. Mech. ASCE 105(5):811–
827.https://doi.org/10.1061/JMCEA3.0002525 

Gupta B. K. and Basu D. (2019) Nonlinear solutions for laterally 
loaded piles. Can. Geotech. J., 57, 1566–1580. 
https://doi.org/10.1139/cgj-2019-0341 

Lianyang Z. and Zhuchang C. (1992) Method for calculating p-y curve 
of cohesive soil. Ocean. Eng., 4, 50–58.  

Liao J. C. and Lin S. S.  (2003) An analytical model for deflection of 
laterally loaded piles. J. Mar. Sci. Technol. 2003, 11, 149–154. 
https://doi.org/10.51400/2709-6998.2274 

Psaroudakis E. G., Mylonakis G. E. and Klimis N. S. (2021) Non-linear 
Analysis of Laterally Loaded Piles Using ‘‘p-y’’ Curves. Geotech Geol Eng. 
https://doi.org/10.1007/s10706-020-01575-0 

Poulos H. G.  and Davis E. H. (1980) Pile foundation analysis and 
design. Willey, Hoboken.  

Reese L. C. and Robert C. (1975) Lateral loading of deep foundations 
in stiff clay. Journal of the Geotechnical Engineering Division, ASCE 
101(GT7): 633–649. https://doi.org/10.1061/AJGEB6.0000177 

Reese L. C. (1977) Laterally loaded piles: program documentation. J. 
Geotech. Engng Div., ASCE 103, 287-305. 
https://doi.org/10.1061/AJGEB6.0000401 

Reese L. C. and William V. (2011) Single Piles and Pile Groups Under 
Lateral Loading. 2nd Edition, Taylor & Francis Group, LLC.  

Sun K. (1994) Laterally loaded piles in elastic media. J. Geotech. 
Engng ASCE 120, No. 8, 1324–1344. 

Wei L., Wang J., Zhai S. and He Q. (2023) Analysis of Internal Forces 
and Deformation for a Single Pile in Layered Soil Based on the p-y Curve 
Method.  Appl. Sci., 13, 3520. https://doi.org/10.3390/app13063520 

Xiaoling Z., Dongzhi Z., Chengshun X., and Xiuli D., (2020) Research 
on p-y curve of pile-soil interaction in saturated sandy soil under the 
condition of weakened strength. Rock Soil Mech., 41, 2252–2260.  

Yin P., He W. and Yang Z. J. (2018) A Simplified Nonlinear Method for 
a Laterally Loaded Pile in Sloping Ground. Advances in Civil Engineering 
Volume 2018, Article ID 5438618, 9 pages. 
https://doi.org/10.1155/2018/5438618 

Zhang L., Zhao M. H. and Zou X. J. (2013) Elastic-plastic solutions for 
laterally loaded piles in layered soils. J. Eng. Mech. 139, 1653–1657. 
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000580 
 

https://doi.org/10.1139/t87-034
https://doi.org/10.1680/geot.1986.36.4.527
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000750
https://doi.org/10.1061/JMCEA3.0002525
https://doi.org/10.1139/cgj-2019-0341
https://doi.org/10.51400/2709-6998.2274
https://doi.org/10.1007/s10706-020-01575-0
https://doi.org/10.1061/AJGEB6.0000177
https://doi.org/10.1061/AJGEB6.0000401
https://doi.org/10.3390/app13063520
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000580

