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Abstract 

This paper investigated progressive collapse analysis of three-dimensional (3D) reinforced concrete (RC) 
frames that are optimized for carrying structural loads by introducing a unique simultaneous multi-column 
removal using Machine Learning. The various load paths resulting from multiple-column removal are 
incorporated in the optimization automatically. The investigation includes formulating an integrated 
computational framework that incorporates a self-training machine learning algorithm. The efficiency of the 
algorithm is tested by using several hundreds of optimized structures. The efficiency of the computational 
framework was shown by conducting a comprehensive study on the optimization and behavior of structures 
considering seismic loading, alternative load path due to progressive collapse, and second order (P–delta) effects. 
The results show that the proposed framework ensures that system solutions meet both structural integrity and 
constructability requirements of the ACI and the Unified Facilities Criteria. 
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1. Introduction 
Local failure of structural members will result in increased internal 

forces and overloading and may cause a progressive collapse of the entire 
or a part of a given structures. A few examples of progressive collapse (PC) 
include the Murrah Building in Oklahoma City in 1995, the Twin Towers in 
New York City in 2001, and the Plasco Building in Tehran in 2017, and the 
Hard Rock Hotel in New Orleans in 2019.  PC results in economic losses and 
death of occupants. Hence, structures must be designed to better withstand 
progressive collapse.  

The number of PC studies consisting of experimental programs and 
numerical studies have increased significantly since 2001. Byfield et al 
(Byfield et al., 2014), Wang et al (Wang et al., 2014) and Qian and Li (Qian 
and Li, 2015) provided detailed reviews on this topic. 

As far as numerical studies are concerned, various representative 
models are found in literature (Bao et al., 2008; Talaat and Mosalam, 2007; 
Buscemi and Marjanishvili, 2005) including computational FEM models for 
determining the response of structures before failure with a reasonable 
accuracy and DEM models that are more effective for moving and collision 
between rigid bodies after failure. Marchand et al (Marchand and Stevens, 
2015) argued that common structural design software (e.g., SAP2000 and 
ETABS) can provide reasonable results than those determined with high-
fidelity physics-based software. Esfandiari et al (Esfandiari and Urgessa, 
2018) presented a non-linear time history pull-down of a two-span steel 
frame in ETABS and showed that the numerical results were in excellent 
agreement with experimental results.  

Machine Learning (ML) and Artificial Intelligence (AI) applications in 
recent years have opened new opportunities for use in traditional 
engineering problems. Machine learning mostly deals with problems where 
paired examples, X → Y, exist. For this paper, X and Y can be interpreted as 
features of the structure and the optimum solution, respectively. As such, 
the machine learning technique attempts to map G: X → Y  ̂ with the 
translated domain Y ̂ distributed identically to Y. However, in the field 
structural engineering, the main challenge is the lack of adequate optimum 
data that is needed to train the algorithm. Therefore, seeking an algorithm 
that could learn to map between domains without paired input-output 
scenarios is crucial.  

Zue et al. (Zhu et al., 2017) used Cycle-Consistent Adversarial Networks 
in image-to-image transformation for learning to map between an input and 
output image when paired examples are absent. They simultaneously 
trained G: X → Y and another translator F: Y→ X with a cycle consistency 
loss such that F(G(x)) ≈ x and G(F(y)) ≈ y. However, in structural analysis, it 
is important to create an alternative algorithm for capturing the complex 
system behavior where few training paired data are available. 

Sra et al. (Sra et al., 2012) showed that learning from available dataset 
combined with optimization is applicable to a myriad of complex, dynamic, 
and stochastic problems. Mosavi et al. (Mosavi and Varkonyi-Koczy, 2017) 
combined machine learning with optimization to increase the learning 

ability of robots. They concluded that integrating ML and optimization 
significantly increases the quality of decision making and learning 
capability in decision systems. 

As far as machine learning techniques, Jong-Su Jeon et al. (Jeon et al., 
2014) proposed probabilistic joint shear strength models by implementing 
ML. They used the prediction model as joint response models for evaluation 
of seismic performance and inelastic responses of frames.      (Nick et al., 
2015)      have used different machine learning techniques for identifying 
the existence and location of damage, and the type and severity of damage. 
Ni Hong-Guang and Wang Ji-Zong (Ni and Wang, 2000) used a multi-layer 
feed-forward neural network and presented a method for predicting 28-
day compressive strength of concrete. Dac-Khuong Bui et al. (Bui et al., 
2018) developed a model for determining the tensile strength of High-
Strength Concrete. They selected neural network for their research due to 
the nonlinear relation between concrete strength and its components.  

In this      paper, classification techniques are used because the 
algorithm needs to correctly determine the class labels for unseen instances 
on the basis of previously observed optimum structural system data and 
suggests a specific class to the optimization for further constraints 
handlings. The algorithm starts to run with a few training data and as it is 
applied on different structures, it can consider the result for its future 
training data. As the training data becomes more available, the performance 
improves dramatically over time. Different classification techniques such as 
decision tree, SoftMax, and nearest neighbors are presented. 

2. Structural optimization problem for 
reinforced concrete frames 

Esfandiari et al (Esfandiari et al., 2018b) presented a general structural 
optimization problem as shown in Equation 1. 

𝑥𝑥 = [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]𝑇𝑇  
𝑔𝑔(𝑥𝑥) ≤ 0,            𝑘𝑘 = 1, … ,𝑚𝑚                                                                                                                    
𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈           (1) 

where x is a vector of n structural system variables, 𝑓𝑓(𝑥𝑥): 𝑅𝑅𝑛𝑛 →  𝑅𝑅 is the 
objective function which returns a scalar value to be minimized, the vector 
function 𝑔𝑔(𝑥𝑥): 𝑅𝑅𝑛𝑛 →  𝑅𝑅𝑚𝑚 returns a vector of length m containing the values 
of the inequality constraints evaluated at x, and 𝑥𝑥𝐿𝐿, 𝑥𝑥𝑈𝑈are two vectors of 
length n containing the lower and upper bounds of the structural system 
variables, respectively. The above equation contains only inequality 
constraints because equality constraints are usually not found in structural 
optimizations.  

Equation 2 shows a common constraint k in a structural optimization 
problem. 

𝑔𝑔𝑘𝑘(𝑥𝑥) = |𝑞𝑞𝑘𝑘(𝑥𝑥)| − 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘 (2) 
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where 𝑞𝑞𝑘𝑘(𝑥𝑥) is a response measure for analysis and design x; and 
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘 is its maximum allowable absolute value. 

The objective function in structural optimization problems is generally 
defined by the weight or total cost of the structure (Tahmouresi et al., 
2021). When considering total cost, the concrete, steel and labor costs are 
included. However, when the objective function is the total weight, only the 
weight of concrete and steel are included. Equation 3 shows the resulting 
objective function. 

𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓 (3) 

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐,𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓 are the costs of concrete, reinforcing steel 
bars, and labor, respectively. 

Equations 4-6 show the costs of each component      when the objective 
function is the total cost of a structural frame.  

𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐 = 𝐶𝐶𝐶𝐶 �� 𝑂𝑂𝑖𝑖 .𝑎𝑎𝑖𝑖. 𝐿𝐿𝑛𝑛  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1

+ � 𝑂𝑂𝑎𝑎 𝑗𝑗 .ℎ𝑂𝑂 . 𝐿𝐿𝑂𝑂𝑏𝑏𝑎𝑎𝑚𝑚 𝑗𝑗

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐

𝑂𝑂=1

� (4) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 = 𝐶𝐶𝑠𝑠.𝛾𝛾𝑠𝑠 .��  � 𝐴𝐴𝑆𝑆𝑆𝑆  𝑗𝑗 .𝐿𝐿𝑂𝑂𝑎𝑎𝑏𝑏  𝑗𝑗 + 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖

𝑂𝑂=1

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1

� � 𝐴𝐴𝑆𝑆ℎ  𝑘𝑘 . 𝐿𝐿𝑆𝑆𝑖𝑖𝑏𝑏 𝑘𝑘

𝑁𝑁𝑡𝑡𝑖𝑖𝑏𝑏,𝑖𝑖

𝑘𝑘=1

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1

+ �  � 𝐴𝐴𝑆𝑆𝑆𝑆  𝑐𝑐 . 𝐿𝐿𝑂𝑂𝑎𝑎𝑏𝑏  𝑐𝑐

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐

𝑎𝑎=1

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐

𝑚𝑚=1

+ � � 𝐴𝐴𝑆𝑆ℎ  𝑐𝑐 . 𝐿𝐿𝑂𝑂𝑎𝑎𝑏𝑏  𝑐𝑐 

𝑁𝑁𝑡𝑡𝑖𝑖𝑏𝑏,𝑐𝑐

𝑛𝑛=1

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚=1

� 

 

(5) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓 = 𝐶𝐶𝑓𝑓 ��  �2(𝑂𝑂𝑖𝑖 +  ℎ𝑖𝑖) .𝐿𝐿𝑛𝑛  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖  �
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1

+ �  ��𝑂𝑂𝑎𝑎 𝑗𝑗 + 2ℎ𝑂𝑂�  . 𝐿𝐿𝑂𝑂𝑏𝑏𝑎𝑎𝑚𝑚 𝑗𝑗  �
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐

𝑂𝑂=1

−�  𝑂𝑂𝑘𝑘 +  𝑎𝑎𝑘𝑘

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑘𝑘=1

� 

(6) 

where 𝑁𝑁𝑐𝑐𝑎𝑎𝑎𝑎  , 𝑁𝑁𝑂𝑂𝑏𝑏𝑎𝑎𝑚𝑚 , 𝑂𝑂, 𝑎𝑎, 𝑂𝑂𝑎𝑎 , ℎ, 𝐿𝐿, and  𝐿𝐿𝑛𝑛 are the number of columns, 
the number of beams, the width of column, the depth of column, the width 
of beam, the height of beam, the length of the members, and the length of 
clear span between supports, respectively; 𝐶𝐶𝐶𝐶 , 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑠𝑠 are unit cost of the 
concrete, the labor and the steel, respectively; 𝐴𝐴𝑠𝑠𝑆𝑆  , 𝐿𝐿𝑂𝑂𝑎𝑎𝑏𝑏 , and 𝑁𝑁𝑂𝑂𝑎𝑎𝑏𝑏 are the 
area, the length and the number of main rebars placed in the member while 
𝐴𝐴𝑠𝑠ℎ , 𝐿𝐿𝑆𝑆𝑖𝑖𝑏𝑏, and 𝑁𝑁𝑆𝑆𝑖𝑖𝑏𝑏  are the area, the length and the number of shear 
reinforcement used in the member respectively; and 𝛾𝛾𝑠𝑠 is the density of 
rebars (kg/m3). 

3. Proposed DMPSO-ML algorithm 
3.1 Overview 

Figure 1 shows the basic concept of the particle movement in the 
traditional Particle Swarm Optimization method (PSO) versus the proposed 
Decision-Making Particle Swarm Optimization method (DMPSO). As shown 
in the figure, each particle in PSO only searches for the best solution 
according to its own best experience, and the best solution is determined 
by all particles (Kennedy and Eberhart, 1995). However, in structural 
optimization, it is important to ensure that the structure is stable and safe. 
An experienced structural engineer can decide the sort of alterations in the 
system variables that could lead to a preferable solution. As an example, if 
the demand to capacity ratio of a member is greater than one, the 
acceptable solution for addressing this issue may be changing the cross-
sectional sections of the member or the rebar reinforcement ratio of the 
section. However, a human decision maker cannot be available and actively 
participate in the solution process and direct it according to the preferences 
in the entire process of an optimization. The decision maker (DM) algorithm 
acts similar to an experienced structural engineer. 
 

More details regarding how the DM is formulated and operates, and 
how it is fused with PSO, are discussed in the following subsections. 

 

3.2 DMPSO Algorithm Enhanced with ML 
DMPSO uses an informed strategy and the knowledge beyond the 

definition of the problem itself, to empower PSO optimization algorithm 
and accelerate convergence toward the optimum solution. The DM 
formulation in this paper, which is inspired by Bayes’ theorem, seeks the 
probability of a member not failing given the geometry and loading 
application. Bayes’ theorem is stated mathematically by Equation 7. 

𝑃𝑃(𝐵𝐵) =  
𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  (7) 

 

Fig 1. PSO versus DMPSO 

The probability of geometry and loading for a given member 
specification can be determined from previously analyzed optimum 
structures. Accordingly, DM implements machine learning to find the most 
probable structural member according to the geometry, loading condition 
and location of the member. However, for incorporating dependencies, 
Bayes’ theorem needs fundamental assumptions about dependence and 
independence between system variables, and determining the marginal in 
the Bayes’ theorem is computationally expensive. For that reason, 
alternative machine learning methods can be cost effective and are 
investigated in this paper. 

The decision maker algorithm can also disregard a solution at any given 
time of the computation process when it determines that a better fitness 
cannot be obtained. The principle of pruning from AI was adopted in this 
paper, which allows the DM algorithm to ignore portions of the search space 
or analysis that make no difference to the final choice. The heuristic 
evaluation function allows us to estimate the objective function without 
doing a complete analysis. When pruning is applied to a standard search 
tree, it returns the same move as a search would, but it prunes away 
branches that cannot possibly influence the final decision. This requires 
examining first the successors that are likely to be the optimum solution.  

To equip the DM with machine learning power, different ML methods 
were investigated in this paper.  

 The first step was the collection and preparation of the training data 
set. Since there was no training data available at the beginning, a small sub-
set of structures was selected, and the optimization algorithm was used for 
producing the training set. The small sub-set of structures was later used to 
produce more complex training sets. Then, the behavior of 640 more 
complex structures were considered as the training data. For each 
structure, the structure was separately optimized for 10 random column 
removal scenarios for progressive collapse analysis. The goal was to classify 
the best cross section for the elements under different loading conditions. 
For this purpose, three separate machine learning (ML) models were 
trained. Table 1 provides the specifics of these ML models. 

 
DM 

(AI and ML) 

PSO 

DMPSO 



3  
Electronic Journal of Structural Engineering, 2023, Vol 23, No. 2 

Table 1.  Detail of the ML models 

 Model 1 Model 2 

Features 

Number of bays in 
each direction Element type 

Maximum bay span 
in each direction 

Maximum adjacent bays length at the 
element 

Number of stories Moment and shear of the element 
Dead load Top and bottom connected beams, 

Live load The number of stories above the 
element 

Seismic parameters The number of stories below the 
element. 

Usage 
Initial randomized 
section at the 
beginning 

Optimum separate elements based on 
conventional loading 

 
Model 1 related the final result of the average size of optimum elements 

in each story to the overall geometric feature of the structure, including 
number of bays in each direction, maximum bay span in each direction, 
number of stories, dead load, live load and seismic parameters. This model 
was only used in the first iteration to generate initial randomized sections.  

The second and third models connected the output of the optimum 
separate elements to its learning feature for the whole structure and 
progressive collapse removal scenario cases, respectively.  The learning 
features considered include element type, actual bay length, moment and 
shear of the element before and after removal scenarios, bottom and top 
connected beams, and the number of stories above and below the removed 
element. 

To streamline the problem for ML and to avoid overfitting, the class of 
the sections for columns and beams were restricted to 8 and 6 sections, 
respectively as shown in Fig. 2 and Fig. 3. Rectangular cross-sections were 
deliberately considered with 100mm difference in width and height to have 
the best arrangement of the classes covering most of the practical results. 

 

Fig 2. Different section classes for columns in the ML 
classification problem 

Fig 3. Different section classes for beams in the ML classification 
problem 

For the beams, cross sectional dimensions and the location of the rebar 
were considered as variables. The corresponding reinforcement amount 
was calculated and placed later based on strength requirements. 

The section restrictions did not affect the final results because the initial 
guess from ML is fed to the optimization algorithm with no restriction on its 
variable. In other words, these initial guesses show the preference of the DM to 
the optimization algorithm and guide it to find a better solution. 

For identifying the best ML technique that will be integrated with the 
optimization algorithm, the following classifiers were investigated. 

3.3 K-Nearest Neighbor (KNN)  
The K-nearest-neighbor (KNN) density estimation method (Paya et al., 

2008) was applied to each class followed by employing Bayes’ theorem. 
Consider a data set comprising Nk members’ cross section in class Ck with 
a total of N points. To classify a new structural element x, a sphere centered 
on x can be drawn in the feature space, precisely holding K elements’ cross 
section regardless of their class. Suppose this sphere contains Kk member 
from class Ck. The posterior probability of selecting a structural element’s 
cross section can be obtained by applying the Bayes’ theorem as shown in 
Equation 8. 

𝑝𝑝(𝐶𝐶𝑘𝑘) =  
𝑃𝑃(𝐶𝐶𝑘𝑘)𝑝𝑝(𝐶𝐶𝑘𝑘)

𝑝𝑝(𝑥𝑥)
=  

𝐾𝐾𝑘𝑘
𝐾𝐾

 (8) 

 

In the KNN formulation, the cross section with the largest posterior 
probability should be assigned to element x to minimize the probability of 
misclassification. When the algorithm needs to find an appropriate cross 
section for a new element, it can identify the K nearest similar members 
from the training data set of optimum structures and then assign a cross 
section with the average of variables from the KNN. It is important to find 
the best K for the problem. Small Ks result in many small regions of each 
class and make the model more biased. On the other hand, large Ks led to 
fewer larger regions which may affect the final result. 

3.4 SoftMax Classifier  
SoftMax classifier (Duan et al., 2003) is the generalization of binary 

Logistic Regression classifier to multiple classes. Softmax classifier uses a 
linear classifier for mapping and generating scores as the unnormalized log 
probabilities with cross-entropy loss having the form shown in Equation 9.  

𝐿𝐿𝑖𝑖 = log �
𝑒𝑒𝑓𝑓𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑓𝑓𝑗𝑗𝑂𝑂
� (9) 

 
Where fj is the j-th element of the vector of class scores f. The use of the 

exponential scores gives the unnormalized probabilities, and the division 
for normalization purpose. This will ensure that the sum of the probabilities 
is one. The stochastic gradient descent was used for training. Here the best 
section that has the highest probability for the corresponding element was 
sought. The data was trained in 16 mini batches. 

3.5 Decision Tree Classifier 
Decision tree classification algorithms (Safavian and Landgrebe, 1991) 

have a significant potential for a variety of problems and have been used in 
civil engineering applications. There are different measures that can be 
utilized to determine the best way to split between classes. Gini index and 
entropy were used for selecting the best split based on the degree of 
impurity of the child nodes. Binary decision tree with 5 and 6 depths were 
tested. 

4. Metrics and performance evaluation 
The data set used here was divided into 3 different groups: training, 

validation, and testing. The training dataset was used to train models with 
various hyper parameter values. Then the validation dataset was used to 
identify the best working parameters. To validate the model, a 5-fold cross 
validation was used. After that, the training and validation datasets were 
used to train the final model.  

Evaluation presented a major challenge. Consider a single column 
under pure compression loading. This column can be designed with 
different cross sections that can satisfy the stability requirements of the 
structure. Since the optimization does not warrant the global optimum in a 
complex system, it accepted near-optimum solutions in the evaluation. 
Moreover, the element classes of the final result did not exactly match the 
output of the machine learning classes. For the machine learning outputs, 
only 8 classes were considered for the columns and 6 classes for the beams, 
while the final result of the optimum structure does not have any restriction 
and the dimensions of the elements might change through the optimization 
process. Therefore, if the structural requirements were only checked, all 
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over designed solutions would pass the evaluation criteria. On the other 
hand, if the optimum solution was only checked, the accuracy would be very 
low. This issue was addressed by finding the nearest neighbor of the actual 
sections of the structure with class samples of one increment threshold for 
accepting the result. 

Finding the final optimum solution was not the goal of this initial step 
but rather keeping the variables within an acceptable range of initial 
guesses. Later the algorithm would find the best optimum solution. 
Therefore, different hyperparameters and methods were investigated, and 
the best parameters were      selected for integrating it with the optimization 
algorithm. The comparison of the results is shown in Fig. 4. 

 

 

Fig 4. Box plot of different hyper parameters 

The number and size of rebars in each direction of the concrete section 
presented a challenge because specific required rebar area could be placed 
in several arrangements. As an example, 450 mm2 of required rebar area 
can be satisfied by using 6-D10, 4-D12, or 2-D25 bars. The results can be 
improved by only considering the cross-sectional dimension parameters 
and the overall required area of the rebar for the section with 10 percent 
threshold for the columns and the beams. Later, when this section is ready 
to be fed to the optimization algorithm, the overall required area would be 
converted to the best arrangement for the rebars size and numbers in each 
direction, for that specific section. This approach dramatically improved the 
findings obtained as shown in Fig. 5. 

 

Fig 5. Box plot when only cross-sectional dimensions were 
considered as variables 

The KNN-5 method resulted in the highest accuracy compared to all the 
techniques investigated. The DMPSO then modifies its velocity and position 
according to its experience, neighboring particles’ experience, and the 
preference of the decision maker (DM) by employing Equation 10 and 
Equation 11 (Esfandiari et al., 2018a).  

𝑣𝑣𝑂𝑂(𝑡𝑡 + 1) = 𝑤𝑤𝑣𝑣𝑂𝑂(𝑡𝑡) + 𝑐𝑐1𝑟𝑟1⨀�𝑥𝑥𝑃𝑃𝑂𝑂,𝑂𝑂 − 𝑥𝑥𝑂𝑂(𝑡𝑡)� + 𝑐𝑐2𝑟𝑟2 ⊙ �𝑥𝑥𝐺𝐺𝑂𝑂,𝑂𝑂 − 𝑥𝑥𝑂𝑂(𝑡𝑡)�

+ 𝑐𝑐3𝑟𝑟3 ⊙ �𝑥𝑥𝐷𝐷𝐷𝐷,𝑂𝑂 − 𝑥𝑥𝑂𝑂(𝑡𝑡)� 

 

(10) 

𝑥𝑥𝑂𝑂(𝑡𝑡 + 1) = 𝑥𝑥𝑂𝑂(𝑡𝑡) + 𝑣𝑣𝑂𝑂(𝑡𝑡 + 1) (11) 
 
Where 𝑣𝑣𝑂𝑂(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥𝑂𝑂(𝑡𝑡) represent the velocity and the position vectors 

of particle 𝑂𝑂 at time 𝑡𝑡, respectively. The term 𝑤𝑤 is a modifier employed to 

control the exploration capabilities of the swarm. Vector 𝑥𝑥𝑃𝑃𝑂𝑂,𝑂𝑂  denotes the 
personal best position which is registered by particle 𝑂𝑂, vector 𝑥𝑥𝐺𝐺𝑂𝑂,𝑂𝑂 is the 
global best position attained by the entire swarm up to the current iteration, 
and vector 𝑥𝑥𝐷𝐷𝐷𝐷,𝑂𝑂 indicates the position of preference of the decision maker 
in the search space. The acceleration coefficients 𝑐𝑐1 and 𝑐𝑐2, and 𝑐𝑐3 rule the 
impact of the particle's own experiences, the other particles' experiences, 
and the decision maker’s preference on the trajectory of each particle, 
respectively. 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 are three random vectors with uniformly distributed 
numbers in the interval [0, 1]. The symbol “⨀” is the element-wise product 
of two vectors. The two acceleration coefficients (c1 and c2) and the 
smallest and largest value of inertial factor (wmin and wmax) were taken 
as 2.025, 2.025 and 0.4, 0.9, respectively (Alam et al., 2015; Eberhart and 
Shi, 2000). The acceleration coefficient for DM, c3, was initially taken as 
2.025 (the same as c1 and c2) and decreased over iterations.  Therefore, for 
the first few iterations, the algorithm mostly relies on the DM. To ensure the 
functionality, if the demand to capacity ratio of a member is not within 50% 
in the optimization process, the DM algorithm suggests its preference, such 
as increasing or decreasing a relevant parameter, to the DMPSO algorithm. 

The DM algorithm gathers statistics from a database of previously analyzed 
structures to determine members most often lead to an optimum structure. In the 
early iterations, there were a few choices among the large number of possible 
variables. Thus, the DM commentary based on past structures has a higher 
impact on DMPSO. Usually after the first 100 iterations, the DMPSO algorithm 
mostly relies on optimization rather than the DM preference. 

5. Incorporating progressive collapse in 
DMPSO-ML 

In progressive collapse analysis, multiple scenarios of removing critical 
members should be considered, which drives the structural system and 
cross-section selection to be tedious and costly. Therefore, investigating the 
formulation of a computational framework is important for producing d 
cost-effective solutions. This was achieved by a series of steps. First, a finite 
element model capable of accurately modeling new load paths to 
progressive collapse analysis was developed. Then, the finite element 
model was integrated with DMPSO to automatically evaluate structural 
response for progressive collapse.  

There are two groups of constraints needed for expanding the 
optimization problem and incorporating progressive collapse. These 
include general concrete structural system constraints and progressive 
collapse (UFC) constraints. The first group includes parameters typical of 
structural systems subjected to traditional lateral loads such as plastic 
rotations.  

The second group includes those related to progressive collapse as 
defined in UFC (Gsa, 2003; Defense, 2005) and GSA. These constraints 
ensure that the structure is capable of bridging over critical vertical load-
carrying elements that are eliminated during a progressive collapse 
scenario such as redundancy requirements.  
The integrated framework of the DMPSO algorithm that is empowered by 
ML is shown schematically in Fig. 6 and Fig. 7. 

Fig 6. Modified DMPSO for Progressive Collapse 
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Fig 7. Flowchart of decision maker empowered by Machine 
Learning (ML) 

 

6. Practical example on progressive 
collapse analysis of 3D optimized RC 
frames. 

The proposed DMPSO-ML framework was used to analyze a given 7-
story RC frame with three spans whose geometry, grouping details, and 
removal scenarios are shown in Fig. 8. A total of sixteen unique column 
removal scenarios were implemented in the alternate path investigation of 
this example frame. Although a symmetric plan was used, sections A and C 
differ in size. This implies that one set of eight removal scenarios, as shown 
in Fig. 8, is considered in each of these sections. These columns eliminated 
are located at the corner and middle of each direction of the members in the 
first story above the grade, the story directly below the roof, and the story 
above the location of a column splice at every other floor. The objective 
function here is the construction weight similar to a baseline optimized 
structure for conventional loadings without considering progressive 
collapse (Esfandiari et al., 2018b). The frame includes 180 members, 84 
beams and 96 columns, which were arranged into 42 groups: 28 groups for 
beams and 14 groups for columns. It contains 574 system variables, 504 
were for beams and 70 were for columns. Beams and columns were 
grouped to satisfy the uniformity of members and having similar behaviors 
according to their place in the frame and loading conditions. To ensure best 
results for the stochastic decline, a population size of 150 was selected. 

Table 2 shows the optimal frame systems from the present progressive 
collapse optimization, considering all of the given removal scenarios Both 
linear static (LS) and nonlinear dynamic (ND) methods were considered. 
Furthermore, the result of the optimal frame analysis without including 
progressive collapse is also presented as the baseline to depict the changes 
made in the structural member and reinforcing steel sizes of optimal results 
when compared to current integrated progressive collapse analysis. 

Fig. 9 shows DMPSO-ML algorithm evolutions for obtaining the 
solutions.      DMPSO did not confine      local values and carried on 
converging. As validated, the baseline structure without considering the 
progressive collapse requirements converged to the optimum results in 
smaller number of structural analysis and flatten out within less 
generations. This is expected because for progressive collapse analysis 
DMPSO has to confirm the constraints in two steps. In the first step, 
constraints related to traditional lateral systems (e.g., seismic) 
requirements were checked (Randall W. Poston and Basile G. Rabbat, 
2011). If the criteria are not met here, it proceeds to the Decision Maker 
(DM) portion of the algorithm for adjusting parameters. Otherwise, it 
proceeds to the second step for checking progressive collapse 
requirements. The results are not registered until every constraint 
consisting of both lateral and progressive collapse requirements are met. 

Fig 8. Geometry, member classification, and removal scenarios 
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Thus, the need for evolutionary generation to handle these two types of 
constraints is evident in the progressive analysis case.  

Fig. 10 illustrates the demand to capacity ratio (DCR). The demand 
capacities for LS and ND were calculated for regular loading after the 
structure was totally designed for progressive collapse. This implies that 
after the process of removing elements are completed and the optimum 
result was obtained, the DCR is calculated using those sections.  Bigger 
sections were used in LS and ND when compared to the structure 
considered without progressive collapse. As a result, the DCR of elements 
in LS is the least among all the methods. Nevertheless, all the DCRs obtained 
were above 0.61, which shows that the algorithm can obtain acceptable 
results. 

Note that in the ML algorithm, the results are obtained instantaneously 
given data is used to train the algorithm and the pretrained model is used 
for prediction. The optimization piece requires close to 12 hours to run 
because each iteration takes around 10 seconds. 

Fig 9. Convergence rate from DMPSO, based on LS, ND compared 
to the system without considering progressive collapse. 

Fig 10. Maximum DCR of members for each analysis method 

 

7. Conclusion 
This paper presented the integration of optimization and progressive 

collapse analysis computational framework empowered by machine 
learning. The main objective was to evaluate the behavior of reinforced 
concrete structures while satisfying the limitations and specifications of the 
American Concrete Institute 318 code and Unified Facilities Criteria 
progressive collapse requirements. Three machine learning algorithms, K 
nearest neighbor, SoftMax, and decision tree classifiers were evaluated. The 
KNN machine learning   algorithm provided better performance to alleviate 
the computational challenge for the structural optimization problem 
involving progressive collapse.    

Using a case study, the analysis was shown to enhance load 
redistribution capability of the structure by considering the alternate path 
criteria through finding appropriate structural member sizes. Meanwhile, 
the cost of the example frame analyzed reduced substantially through the 
optimization process. The case study showed the capability of the DMPSO-
ML algorithm to accelerate convergence toward the optimum system 
solutions while reducing computational effort. 
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Appendix 
Table 2. Results of optimum systems based on LS; ND compared to the system without considering progressive collapse.  

 LS ND DMPSO 

 Sectional 
dimensions Reinforcements Sectional 

dimensions Reinforcements Sectional 
dimensions Reinforcements 

Type  

H
eight 

W
idth  

Top-rebar Bot-rebar 

H
eight 

W
idth  

Top -rebar 
 
 

Bot -rebar 

H
eight 

W
idth  

Top -rebar Bot -rebar 

T1 350 350 5-D16 
3-D12 3-D14 6-D16 

4-D12 
6-D16 
4-D12 

3-D12 
1-D16 

5-D16 
3-D12 350 350 5-D12 

4-D12 3-D14 5-D12 
3-D14 

3-D12 
3-D14 

4-D14 
4-D16 

3-D12 
3-D14 300 300 3-D12 

3-D14 3-D12 3-D12 
3-D14 

3-D12 
3-D14 

3-D12 
1-D16 

3-D12 
3-D14 

T2 400 350 3-D16 
3-D16 3-D14 5-D16 

5-D16 
3-D16 
3-D16 6-D14 4-D16 

4-D16 350 350 5-D12 
5-D12 3-D14 5-D12 

5-D12 5-D14 4-D12 
4-D14 5-D14 350 350 3-D14 

3-D14 3-D14 3-D14 
3-D14 3-D14 3-D14 3-D14 

T3 350 350 4-D14 
4-D12 3-D12 4-D14 

4-D12 
5-D14 
4-D12 

3-D12 
1-D16 

6-D14 
4-D12 350 300 4-D16 

2-D14 3-D12 3-D16 
3-D14 3-D12 2-D12 

2-D12 3-D12 300 300 3-D12 
4-D16 3-D12 3-D12 

4-D16 3-D12 3-D12 
1-D16 3-D12 

T4 350 350 5-D16 
4-D14 3-D14 4-D16 

3-D14 
2-D16 
2-D14 5-D14 2-D16 

3-D14 350 350 4-D14 
4-D14 3-D14 3-D14 

3-D14 5-D14 5-D14 
5-D12 4-D14 350 350 3-D14 

2-D22 3-D14 3-D14 
2-D22 4-D14 4-D14 4-D14 

T5 400 300 5-D16 
4-D14 3-D12 5-D16 

4-D14 
3-D16 
1-D14 

3-D12 
1-D16 

2-D16 
2-D14 350 350 5-D14 

4-D12 3-D12 5-D14 
4-D12 

3-D12 
2-D16 

4-D12 
3-D12 

3-D12 
3-D14 300 300 3-D12 

3-D20 3-D12 3-D12 
3-D20 

3-D12 
1-D14 

3-D12 
1-D16 

3-D12 
1-D14 

T6 400 350 4-D16 
5-D12 3-D14 5-D16 

3-D12 
3-D16 
2-D12 4-D14 3-D16 

4-D12 400 350 5-D14 
5-D14 3-D14 4-D14 

4-D14 
5-D16 
3-D12 

4-D14 
2-D12 6-D16 350 350 3-D14 

2-D22 3-D14 3-D14 
2-D22 4-D14 4-D14 4-D14 

T7 450 350 9-D14 
9-D14 3-D14 5-D14 

5-D14 
5-D14 
3-D12 

3-D12 
1-D16 

4-D14 
4-D12 400 300 4-D16 

3-D14 3-D12 3-D16 
3-D14 6-D12 4-D16 

4-D16 5-D12 300 300 3-D12 
2-D22 3-D12 3-D12 

2-D22 3-D12 3-D12 
1-D16 3-D12 

T8 400 300 4-D12 
5-D14 3-D14 5-D12 

6-D14 
5-D12 
2-D14 

3-D12 
4-D16 

5-D12 
2-D14 350 300 5-D12 

5-D12 3-D12 4-D12 
4-D12 

3-D12 
1-D14 

2-D14 
3-D14 4-D14 300 300 3-D12 

1-D16 3-D12 3-D12 
1-D16 

3-D12 
1-D10 

3-D12 
4-D16 

3-D12 
1-D10 

T9 300 300 3-D16 
2-D12 3-D14 3-D16 

2-D12 
3-D16 
2-D12 

3-D14 
1-D12 

3-D16 
2-D12 300 300 3-D14 

2-D12 3-D14 3-D14 
2-D12 3-D14 3-D16 

3-D14 3-D14 300 300 3-D14 
3-D22 3-D14 3-D14 

3-D22 3-D14 3-D14 
1-D12 3-D14 

T10 350 300 3-D16 
2-D14 3-D12 4-D16 

4-D14 
2-D16 
2-D14 

3-D12 
3-D18 

4-D16 
3-D14 300 300 2-D12 

3-D16 3-D12 2-D12 
3-D16 

3-D12 
2-D14 

2-D16 
2-D12 

3-D12 
2-D14 300 300 3-D12 

3-D24 3-D12 3-D12 
3-D24 

3-D12 
3-D12 

3-D12 
3-D18 

3-D12 
3-D12 

T11 300 300 3-D16 
3-D14 3-D12 3-D16 

3-D14 
3-D16 
2-D14 

3-D12 
3-D18 

2-D16 
2-D14 300 300 4-D14 

3-D12 3-D12 4-D14 
3-D12 

3-D12 
2-D20 

2-D12 
2-D14 

3-D12 
2-D10 300 300 3-D12 

3-D25 3-D12 3-D12 
3-D25 

3-D12 
2-D18 

3-D12 
3-D18 

3-D12 
2-D18 

T12 350 350 4-D16 
4-D14 3-D12 5-D16 

4-D14 
4-D16 
3-D14 

3-D12 
3-D18 

5-D16 
4-D14 300 300 2-D16 

2-D16 3-D12 2-D16 
2-D16 

3-D12 
3-D16 

3-D12 
3-D12 

3-D12 
3-D16 300 300 3-D12 

4-D22 3-D12 3-D12 
4-D22 

3-D12 
3-D16 

3-D12 
3-D18 

3-D12 
3-D16 

T13 350 350 3-D14 
4-D16 3-D12 4-D14 

4-D16 
3-D14 
3-D16 

3-D14 
3-D16 

2-D14 
3-D16 350 350 4-D12 

4-D14 3-D14 4-D12 
5-D14 

3-D14 
2-D12 

4-D14 
4-D16 

3-D14 
2-D12 350 350 3-D14 

3-D25 3-D14 3-D14 
3-D20 

3-D14 
2-D12 

3-D14 
3-D16 

3-D14 
2-D12 

T14 400 350 5-D16 
3-D12 3-D12 8-D16 

5-D12 
6-D16 
4-D12 

3-D12 
3-D18 

5-D16 
3-D12 350 300 5-D12 

5-D12 3-D12 4-D12 
4-D12 

3-D12 
2-D12 

3-D14 
3-D14 

3-D12 
2-D12 300 300 3-D12 

3-D24 3-D12 3-D12 
3-D24 

3-D12 
2-D12 

3-D12 
3-D18 

3-D12 
2-D12 

T15 350 350 3-D12 
5-D16 3-D12 4-D12 

6-D16 
2-D12 
3-D16 

3-D12 
1-D16 

3-D12 
4-D16 350 350 5-D12 

5-D12 3-D12 5-D12 
5-D12 3-D12 3-D12 

3-D14 3-D12 300 300 3-D12 
2-D16 3-D12 3-D12 

2-D16 3-D12 3-D12 
1-D16 3-D12 

T16 400 350 5-D16 
5-D16 3-D14 3-D16 

3-D16 
2-D16 
1-D16 

3-D12 
1-D16 

2-D16 
1-D16 350 350 4-D12 

5-D14 3-D12 3-D12 
4-D14 5-D12 5-D12 

4-D12 6-D12 300 300 3-D12 
3-D16 3-D12 3-D12 

3-D16 3-D12 3-D12 
1-D16 3-D12 

T17 350 350 7-D16 
4-D12 3-D12 4-D16 

3-D12 
5-D16 
3-D12 

3-D12 
1-D12 

4-D16 
3-D12 350 300 3-D14 

3-D14 3-D12 3-D14 
3-D14 3-D14 2-D14 

3-D14 
3-D12 
1-D14 350 300 3-D12 

4-D16 3-D12 3-D12 
4-D16 3-D12 3-D12 

1-D12 3-D12 

T18 350 350 3-D16 
3-D16 3-D12 3-D16 

3-D16 
3-D16 
3-D16 

3-D12 
2-D16 

3-D16 
3-D16 350 350 5-D14 

4-D12 3-D12 5-D14 
4-D12 

3-D12 
1-D16 

4-D14 
4-D14 

3-D12 
1-D16 350 300 3-D12 

3-D20 3-D12 3-D12 
3-D20 

3-D12 
1-D16 

3-D12 
2-D16 

3-D12 
1-D16 

T19 450 300 4-D14 
4-D14 3-D14 6-D14 

6-D14 
3-D14 
3-D14 

3-D14 
1-D12 

4-D14 
4-D14 450 350 5-D12 

6-D14 3-D14 4-D12 
6-D14 

3-D14 
3-D16 

6-D14 
2-D14 

3-D14 
2-D16 400 300 3-D14 

3-D20 3-D14 3-D14 
3-D20 

3-D14 
2-D16 

3-D14 
1-D12 

3-D14 
2-D16 

T20 400 350 5-D14 
6-D16 3-D14 4-D14 

4-D16 
3-D14 
4-D16 

3-D12 
1-D16 

2-D14 
5-D16 400 350 4-D14 

4-D14 3-D12 4-D14 
4-D14 

3-D14 
3-D12 

3-D12 
3-D12 6-D12 300 300 3-D12 

2-D25 3-D12 3-D12 
2-D25 

3-D12 
1-D16 

3-D12 
1-D16 

3-D12 
1-D16 

T21 450 350 5-D14 
3-D16 2-D16 5-D14 

3-D14 
3-D14 
7-D14 

2-D16 
3-D14 

5-D14 
5-D14 400 300 5-D14 

4-D12 2-D16 5-D14 
4-D12 

2-D16 
2-D14 

5-D12 
5-D12 

2-D16 
2-D14 350 300 2-D16 

2-D22 2-D16 2-D16 
2-D22 

2-D16 
3-D14 

2-D16 
3-D14 

2-D16 
3-D14 

T22 500 400 5-D14 
1-D16 3-D20 5-D14 

1-D16 
5-D14 
2-D14 3-D20 5-D14 

5-D14 500 350 4-D16 
4-D16 2-D20 4-D16 

4-D16 
3-D14 
2-D12 

5-D12 
1-D12 2-D20 450 300 2-D20 2-D20 2-D20 2-D20 2-D20 2-D20 

T23 300 300 3-D16 
3-D14 3-D12 3-D16 

3-D14 
2-D16 
2-D14 

3-D12 
2-D24 

2-D16 
2-D14 300 300 2-D14 

3-D16 3-D12 2-D14 
3-D16 3-D12 2-D12 

3-D14 3-D12 300 300 3-D12 
4-D20 3-D12 3-D12 

4-D20 3-D12 3-D12 
2-D24 3-D12 

T24 350 300 4-D12 
5-D14 3-D12 4-D12 

5-D14 
3-D12 
3-D14 

3-D12 
2-D24 

3-D12 
4-D14 300 300 3-D12 

3-D14 3-D12 3-D12 
3-D14 

3-D12 
1-D16 

3-D12 
2-D14 

3-D12 
2-D16 300 300 3-D12 

3-D25 3-D12 3-D12 
3-D25 

3-D12 
3-D14 

3-D12 
2-D24 

3-D12 
3-D14 

T25 450 350 6-D16 
4-D12 3-D14 8-D16 

5-D12 
8-D16 
5-D12 

3-D12 
2-D24 

7-D16 
5-D12 400 300 5-D16 

3-D12 3-D12 4-D16 
3-D12 

3-D12 
2-D20 

4-D12 
3-D14 

3-D12 
2-D20 300 300 3-D12 

5-D20 3-D12 3-D12 
5-D20 

3-D12 
2-D20 

3-D12 
2-D24 

3-D12 
2-D20 

T26 350 350 6-D12 
3-D14 3-D12 5-D12 

3-D14 
3-D12 
4-D14 

3-D12 
2-D24 

5-D12 
7-D14 300 300 2-D12 

3-D16 3-D12 2-D12 
3-D16 

3-D12 
2-D20 

2-D14 
2-D14 

3-D12 
2-D20 300 300 3-D12 

5-D20 3-D12 3-D12 
4-D20 

3-D12 
2-D20 

3-D12 
2-D24 

3-D12 
2-D20 

T27 350 350 6-D16 
5-D14 3-D12 4-D16 

4-D14 
3-D16 
2-D14 

3-D12 
2-D24 

4-D16 
3-D14 350 350 4-D16 

3-D12 3-D12 4-D16 
3-D12 

3-D12 
2-D20 

3-D12 
4-D16 

3-D12 
2-D20 300 300 3-D12 

5-D20 3-D12 3-D12 
5-D20 

3-D12 
2-D20 

3-D12 
2-D24 

3-D12 
2-D20 

T28 400 350 6-D12 
6-D12 3-D14 7-D12 

7-D12 
7-D12 
7-D12 

3-D12 
2-D20 

7-D12 
7-D12 350 300 4-D16 

3-D12 3-D12 3-D16 
2-D12 

3-D12 
2-D16 

3-D12 
3-D14 

3-D12 
2-D16 300 300 3-D12 

3-D20 3-D12 3-D12 
3-D20 

3-D12 
2-D16 

3-D12 
2-D20 

3-D12 
2-D16 

T29 350 350 4-D16 4-D16 350 350  3D-14   4D-14  300 350 2D-14 4D-14 
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T30 350 350 4-D16 3-D16 350 350  4D-16   3D-16  300 350 2D-20 2D-20 

T31 350 350 4-D20 4-D20 350 350  4D-20   4D-20  300 350 2D-25 2D-25 

T32 350 350 4-D20 4-D20 350 350  3D-25   2D-25  300 350 3D-25 2D-25 

T33 350 400 3-D20 4-D20 350 350  2D-25   2D-25  300 350 2D-25 2D-25 

T34 400 400 5-D16 5-D16 350 400  3D-16   3D-16  350 400 3D-16 3D-16 
T35 400 400 3-D20 5-D20 350 400  4D-16   4D-16  400 400 2D-16 6D-16 

T36 350 400 5-D20 3-D20 350 350  4D-20   3D-20  300 300 4D-20 2D-20 

T37 350 400 3-D20 5-D20 350 350  2D-20   2D-20  300 300 2D-20 2D-20 

T38 400 400 4-D20 4-D20 400 400  3D-16   5D-16  400 300 2D-16 6D-16 

T39 450 400 5-D16 4-D20 450 400  2D-20   4D-20  450 300 2D-16 6D-16 

T40 450 400 4-D25 4-D25 450 400  2D-25   2D-25  450 350 2D-25 2D-25 
T41 450 450 4-D25 5-D25 450 450  3D-25   3D-25  450 400 2D-25 2D-25 
T42 500 500 6-D25 4-D25 500 500  5D-25   5D-25  450 400 2D-25 6D-25 
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