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ABSTRACT 
This paper describes a computer software application, the Qualitative Engineering System (QES), which the 
engineer can use to perform qualitative and semi-quantitative analysis of preliminary engineering designs. 
In engineering practice, many situations arise in which the engineer wishes to perform a logical, objective 
comparison between conceptual or preliminary design options. Although there exist many applications 
which can be used to perform detailed numerical analysis to justify detailed final designs, relatively few 
useful programs are available to validate designs at the preliminary stages. The early stages of design are 
characterized by higher levels of uncertainty than the latter stages. Established qualitative and semi-
quantitative reasoning techniques may be used to detail with uncertainty and incomplete information in a 
sound, logical manner. The QES application utilizes a unified framework, which is used to implement a 
number of qualitative and semi-quantitative reasoning techniques. This paper gives an explanation of 
qualitative and semi-quantitative analysis in the context of the QES application. In addition, the paper gives 
some practical examples of how the QES program can be used in the engineering environment. 
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1 Introduction 
An accurate evaluation of conceptual design alternatives holds many potential benefits for the 
engineering practice. Unworkable designs can be eliminated early, and more resources can be 
dedicated to the concepts, which are most practical and efficient. It is accepted that the earlier a 
decision is made in a project the greater the financial implications of the decision. Often a large 
amount of capital and time is expended at the latter stages of a project in order to make an 
unworkable design workable. A better understanding of the feasibility of a conceptual design 
allows the engineer to be more competitive, because the inherent risk of working in new 
territory can be decreased. 

A fundamental problem in evaluating conceptual design alternatives is the relatively high level 
of uncertainty present in design concepts. Many of the currently available analytical tools are 
not effective in coping with the type of uncertainty, which exists in design concepts. Numerical 
analysis tools are indispensable in the practice of engineering today. The finite element method, 
for example, is a widely used systematic approach to predicting the behaviour of systems in a 
wide range of applications, including thermal analysis, structural analysis, mechanical analysis 
and electromagnetics. In most of the available numerical analysis packages, input must be 
specified in a rigid, structured format. If these tools are used in the conceptual stages, many of 
the required input fields must be estimated, and there is usually no systematic way of 
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determining how the accuracy of the program output relates to uncertainty in the input 
parameters. 

Probability methods are useful in evaluating the level of risk in a completed design. At the 
conceptual design stages however, these methods are cumbersome and suspect because of the 
large amount of input required. Much of the input used for describing the probability 
distribution functions for various design parameters would have to be estimated at the early 
stages of a design. The time and effort required preparing the input, and the value of the results 
given the uncertainty in the output both detract from the worth of probability methods in such an 
application. 

Expert systems have been successfully used in the past for reasoning with information that is 
characterized by a high level of uncertainty. The problem with expert systems is that they are 
notoriously “brittle” - they are domain specific and tend to be of limited use outside their narrow 
range of expertise. Expert systems do not generally reason with established physical principles, 
which apply over a number of domains. There is a great deal of incentive in engineering to 
develop new, innovative, and cost-effective solutions to problems. Innovation often involves 
interdisciplinary approaches to problem solving which are incompatible with the domain-
specific nature of expert systems. 

An alternative approach to evaluating conceptual designs is to use the techniques of qualitative 
and semi-quantitative analysis. The systematic study of qualitative techniques developed out of 
artificial intelligence research in the early eighties. Qualitative and semi-quantitative techniques 
may be used to perform sound reasoning about physical systems, which are characterized by a 
high degree of uncertainty. 

2 The QES Program 
The goal of this research is to develop a tool to evaluate conceptual designs using proven, 
logical, and sound reasoning techniques. The tool must be able to cope with a high level of 
uncertainty, and flexible enough to accept more information and adapt to the changing level of 
uncertainty as a project progresses. In order to fulfil the goals of this research, the QES program 
was developed. The program uses a number of qualitative and semi-quantitative analysis 
techniques. These techniques were described in detail in a previous paper and will be only 
briefly covered here. 

In developing a practical engineering tool for reasoning with partially-specified information, it 
would be desirable to incorporate both the power of abstraction inherent in qualitative methods, 
and the elegance of semi-quantitative methods such as interval analysis [10]. The Qualitative 
Engineering System (QES), developed as a part of this research, features a coherent framework, 
which integrates both qualitative and semi-quantitative reasoning techniques. 

The level of uncertainty present in an engineering project is not static. In the early, conceptual 
stages, there is more uncertainty than in the final stages. A flexible reasoning framework is 
needed which is capable of using new information, as it becomes available, and updating 
previous conclusions. QES uses the powerful notion of constraints as a means of expressing 
engineering problems. 

2.1 Constraints 
Much of an engineer’s knowledge is best expressed in terms of what is, or conversely, what is 
not allowed. Functional requirements, material limitations, labour considerations, environmental 
characteristics and the laws of physics can all be expressed in the language of constraints. Many 
of the computational tools currently used in engineering demand a rigid dichotomy between 
input and output. Furthermore, the input format is often inflexible, requiring that input data be 
completely specified before computation can proceed. In contrast, QES is able to accept as input 
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only the information that is known at a particular time. Information, both qualitative and 
quantitative, can be added any stage of a project. 

2.2 Program Structure 
QES is effectively a quantity database [1], which is implemented as a constraint network. The 
database contains expressions and relations, where the expressions represent the nodes of the 
constraint network and the relations represent the constraints. The relations may be either 
arithmetic in nature, or may represent inequalities (ordinal relations). Expressions are capable of 
representing qualitative information, such as whether a parameter is less than, greater than, or 
equal to zero. Expressions also can store semi-quantitative information, which is expressed in 
the form of intervals. A number of techniques, both qualitative and quantitative, are used to 
reason with the quantity database. These techniques include label propagation using both 
intervals and signs, interval arithmetic, graph search, and constraint inference. 

This section discusses the main components of the QES representation: intervals, expressions, 
variables, constants, equations, inequalities and systems of equations. In QES, constraints are 
represented as equations and inequalities. Both equations and inequalities are composed of 
expressions, which consist of variables and constants. Expressions evaluate to quantities. The 
interval representation is used to express quantities to varying degrees of precision. QES was 
implemented in the programming language C++, an object-oriented language. In the object-
oriented approach, data and the procedures, which use this data, are encapsulated as entities 
called objects. In the following discussion, the components of QES are formulated as objects. 

2.3 Intervals 
Interval methods are well-developed techniques, which enable one to reason on the range of 
values of quantities. Intervals are flexible enough to represent vague qualitative values as well 
as precise numeric values. For this reason, the interval representation was chosen as to represent 
quantities in QES. In QES an interval is represented by a data structure which contains two 
members, the upper and lower bounds (Figure 1). The interval structure includes the procedures 
add, multiply, negate, and reciprocal.  

interval   
data 
members 

name type 

 negativeBound bound 
 positiveBound bound 
methods name arguments 
 add interval 
 multiply interval 
 negate  
 reciprocal  
 isLess interval 
 isGreater interval 
 isEqual interval 

Figure 1: Interval data structure. 

2.4 Bounds 
A bound is a structure which consists of three fields: the value, which is either a floating-point 
number or one of the symbolic constants -∞, +∞, or NaN (Not a Number); the inclusion 
field, which is TRUE if the bound includes the value, and FALSE otherwise; and the type 
member, which indicates whether the bound is at the lower or upper extent of the interval. Using 
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this representation, QES can reason with open, closed, or half-open intervals. As shown in 
Figure 2, the bound structure also encapsulates procedures which define bound operators 
(add,multiply,negate,reciprocal). Since operators are defined on the bounds, the 
implementation of the interval operators is simplified. For example, the interval add procedure 
takes the following convenient form in C++: 

add(Interval toInterval)
{

lowerBound.Add(toInterval.lowerBound)
upperBound.Add(toInterval.upperBound)

}
bound   
data members name type 
 value number, ±∞, NaN 
 inclusion TRUE, FALSE 
 type UPPER, LOWER 
methods name arguments 
 add bound 
 multiply bound 
 negate  
 reciprocal  
 isLess bound 
 isGreater bound 
 isEqual bound 

Figure 2: Bound data structure. 

Additional processing is required for the multiply and reciprocal functions. For these 
operators the ordinal relations isLess, isGreater, and isEqual are used to order the 
bounds correctly. 

expression   
data members name type 
 domain list of intervals 
 constraint interval 
 type UNARY, BINARY 
 operator NEGATE, RECIPROCAL, 
 ADD, MULTIPLY, SUBTRACT, 

DIVIDE 
 leftChild expression 
 rightChild expression 
 parents list of expressions 
 relations list of relationLinks 
methods name arguments 
 constrain   
 relativeConstrain relation, interval, width 
 add expression 
 multiply expression 
 subtract expression 
 divide expression 
 negate  
 reciprocal  

Figure 3: Expression data structure. 
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2.5 Expressions 
Just as algebraic expressions may take on a number of seemingly different forms, so may 
expressions in QES. Expressions represent a fundamental component of QES, as several other 
components of the system derive their behaviour from expressions. The expression data 
structure is shown schematically in Figure 3. The definition of the expression is recursive in 
nature, as the data structure contains a reference to itself. For illustration, consider the simple 
algebraic expression A + (B × C). This expression may be represented as a binary tree, as shown 
in Figure 4. The node labeled ‘×’ has two children, the variables B and C. The node labeled ‘+’ 
also has two children, the variable A and the expression B × C. Since variables may be 
considered simple expressions, variables and expressions are essentially the same in QES. 
Representing expressions as trees proves to be a convenient construct for many of the 
techniques, which are used to reason with the quantity database. 
 

 
Figure 4: Graphical representation of expressions 

Two of the main components of the expression data structure, shown in Figure 3, are the 
constraint, and the domain. The constraint is a single interval, while the domain is 
a set of intervals. By default, the constraint interval holds the value [-∞, +∞], which expresses a 
complete ignorance of the value of the expression. As more information about various quantities 
and relations is entered into the system, the constraint intervals become narrower. The domain 
set is interpreted slightly differently for variables than for expressions. In QES the domain of a 
variable is analogous to the quantity space representation in other qualitative reasoning 
frameworks, such as Kuipers’ QSIM [6]. Kuipers defined the quantity space as a finite, ordered 
set of landmark values: 
 l1 < l2 < ... < lk , 

which can be represented as the set of alternating closed and open intervals: 

 {[-∞, -∞], (-∞, l1), [l1, l1], (l1, l2), [l2, l2], ... , [lk, lk], (lk, +∞), [+∞, +∞]}. 

In QES the landmarks are replaced by valid assignments to the value field of the bound 
structure. For example, the simple quantity space {-, 0, +} may be described by the domain set 
{[-∞, 0), [0, 0], (0, +∞]} in QES. Expressions are also used to represent numeric constants in the 
quantity database. The numeric constant zero is a default member of the database. The domain 
of the constant zero contains the single closed interval, which identified with the real number 
zero, {[0, 0]}. 

An expression may have two, one or no children. A binary expression, such as A + B, has two 
children, while a unary expression such as -X has only one child. In the expression structure 
shown in Figure 3, the type field indicates whether the expression is unary or binary. The 
operator member indicates what type of operator is applied to the child expressions. The 
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available unary operators are negate and reciprocal, while the binary operators are add, 
subtract, multiply and divide. The leftChild and rightChild fields point to the child 
expressions. The rightChild field is unused for unary expressions, while both are unused 
when the expression represents a variable. The variables are the ‘leaves’ of the expression tree, 
while each expression, which has no parent, is a ‘root’. The child data members act as the 
hierarchical or arithmetic links between expressions. These links are bi-directional, as each child 
has a corresponding link with their ‘parent’. The parents data field holds a list of pointers to 
the parents of the expression. The network of expressions cannot properly be called a tree, since 
an expression may have multiple parents, for example, A + B × A. Having noted this, the tree 
analogy is still a convenient descriptive construct which reflects the hierarchical nature of the 
interconnections between expressions.  

The expression tree representation is similar to what Forbus terms a ‘tree of functional 
dependencies’, which represents the relationship between qualitative proportionalities. In the 
tree of functional dependencies, quantities are linked by qualitative proportionalities, 
independent quantities are at the leaves, and the dependent quantity is at the root. When the 
expression tree is used for qualitative analysis, the relationships between expressions feature a 
similar dependence, however, for other operations such as interval propagation, the links are 
essentially bi-directional. 

2.6 Relations 
Along with arithmetic links, relational links represent the means by which constraints may 
propagate through the quantity database. Relational links (called relationLinks in QES) serve 
two purposes: they constrain expressions to form equations and inequalities, and they enable 
search techniques to be used to infer additional information about ordinal relationships. 
Inequalities are an important means of capturing fundamental qualitative distinctions, without 
sacrificing the expressive capabilities of algebraic expressions. Relation links represent the 
ordinal relation between two expressions. The relationLink data structure, shown in Figure 6, 
contains three fields: one for each expression and another for the ordinal relation.  

relation   
data members name type 
 value =, <, >, ≤, ≥, ≠, ? 

Figure 5: Relation data structure. 

Ordinal relations are represented by the relation data structure, presented in Figure 5. Relations 
can take on one of seven values: =, <, >, ≤, ≥, ≠, and the unknown relation, represented by the 
symbol ?.  

relationLink   
data members name type 
 leftExpression expression 
 rightExpression expression 
 ordinalRelation relation 

Figure 6: Relation link structure. 
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Figure 7: Graphical representation of an equation. 

As an example of  relation links, consider the equation A + (B × C) = 0. This equation is 
depicted in Figure 7, where the relation link is shown as the dotted arc between the number zero 
and the expression node labeled ‘+’. 

2.7 Systems of Equations 
When there is more than one equation present in the system, a data structure is used to maintain 
a list of the applicable equations. The main components of the equationSystem structure are 
shown in Figure 8. The equationSystem structure is required in the constraint satisfaction 
procedure. This procedure is explained in detail in the next section. 

equationSystem   
data members name type 
 expressions list of expressions 
 solutions list of interval sets 
 arguments list of variable names 

Figure 8: Equation system structure. 

3 Qualitative Analysis 
In QES, the domains of qualitative variables consist of a finite set of intervals. The most 
common set represents the domain of signs {[-∞, 0), [0, 0], (0, +∞]}, which may be abbreviated 
by {-, 0, +}. The domain of signs will be used to look at how QES solves constraint equations 
which are expressed as qualitative variables. The tree structure of expressions is exploited in the 
solution procedure, which uses constraint-satisfaction methods. 

Each of the nodes of the constraint network may be considered a constraint. This representation 
of a constraint network is different to that given by Mackworth [8]. In Mackworth’s network, 
the variables in the constraint-satisfaction problem are the nodes. Loops represent unary 
constraints on a variable and directed arcs indicate binary constraints. In solving constraints 
consisting of equations, this representation is unsuitable, because equations can consist of more 
than two variables. The  simple example given earlier, A + (B × C) = 0, involves three variables: 
A, B, and C. For this reason, the alternate representation of Freuder [3] is used. In this system, 
nodes represent constraints, while arcs are used to link constraints having common variables. 
QES uses a constraint synthesis process to build up successively higher levels of consistency in 
the constraint network. 

The structure of the expression tree provides a convenient framework in which to construct and 
solve constraints. Constraints are built up from variables in an incremental fashion, following 
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the expression tree from leaf to root. The following simple example will be used to illustrate the 
constraint satisfaction process: 

 F1 + F2 = 0         (1) 

 F1 - F3 = 0.         (2) 

The problem is to determine which assignments to the qualitative variables F1, F2 and F3 satisfy 
the two constraints (1) and (2). We begin building the expression tree by entering three nodes 
into the constraint network; one for each variable. This network is shown in Figure 9. Each 
variable is initially unconstrained, so the constraint interval of each is [-∞, +∞]. The contents of 
the domain are shown below each expression.  

           

Figure 9: Initial constraint network.  

Table 1: Qualitative addition [X] + [Y]. 

+  [X] 

  + 0 - ? 

 + + + ? ? 

[Y] 0 + 0 - ? 

 - ? - - ? 

 ? ? ? ? ? 

 

If we add the additional constraint F2 > 0, the values - and 0 can be removed from the domain of 
F2. The expression F1 + F2 will be constructed first. Addition is a constraint, which is satisfied if 
the values assigned to the arguments are consistent with the result shown in the qualitative 
addition table, Table 1. Note that in Table 1, the character ‘?’ represents a complete lack of 
information about the result. Multiplication, subtraction, division, negation and reciprocal 
functions can all be defined as constraints, similar to addition. To find the variable assignments, 
which satisfy the addition constraint, the Cartesian product of the domains of the child 
expressions is generated, and the corresponding value of the sum is determined according to 
Table 1. 
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Figure 10: Constraint network with expression links added. 
In Figure 10, all possible combinations of the domains of F1 and F2 are shown in the table under 
the node for expression F1 + F2. The sum of the two values is shown in the left column of the 
table. A similar table is generated for the expression F1 - F3. The left-hand column of each table 
contains the elements of the domain set for the constraint expression, while the right-hand 
column holds the values of the arguments of the expression. 

The next step in solving the system of constraints is to enforce the equality constraint, which 
will constrict the domains of the two expressions F1 + F2 and F1 - F3. As discussed earlier, 
relation links represent ordinal relations between expressions. Two relational links are added to 
the constraint network, as shown in Figure 11, linking the two expressions to the constant 
expression zero. The constraint interval of a constant expression is always equal to the domain, 
which is [0, 0] in this case. The interval [0, 0] is intersected with the constraint interval of the 
expressions F1 + F2 and F1 - F3. Since the constraint interval of each is initially [-∞, +∞], their 
new values are [0, 0]. To enforce the constraint at the two expressions, the constraint interval is 
further intersected with each element of their domains. When intersection results in the empty 
set, the domain element is deleted. 

The updated domains are shown in Figure 11, which shows that F1 + F2 has one legal 
instantiation while F1 - F3 has three. At this point, node consistency has been achieved at the 
two expression nodes F1 + F2 and F1 - F3.  Note that a relational link also exists between the 
variable F2 and the constant zero. For clarity, this link is not shown in Figure 11. 
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Figure 11: Constraint network after node consistency procedure. 

The two expressions F1 + F2 and F1 + F3 now contain partial solutions to the problem. These 
partial instantiations must be combined to find the complete solution. The simple approach is to 
find all combinations of the domains of the two expressions, which correspond to consistent 
assignments of variables. A more efficient method is employed by QES, which uses the concept 
of arc consistency. In QES arc consistency is enforced on pairs of equations. The simple arc 
consistency AC-1 [8], is used here. QES maintains a list of all equations in the system using the 
equationSystem data structure (Figure 8). Each time an equation is created, it is made consistent 
with each of the existing equations. If elements in the domain of an expression are deleted when 
arc consistency enforced between two expressions, the procedure is repeated until no further 
deletions are necessary. In the example problem, the expression F1 + F2 is first added to the 
equationSystem structure. Since it is the first equation to be added, no deletions are performed. 
The second expression is then added, and the two equations are made arc consistent. The 
uppermost box in Figure 12 represents the equationSystem structure with its links to each of the 
equations. 

Looking at expression F1 - F3, one of the instantiations involves the assignment F1 = 0 and 
another involves F1 = +. The domains corresponding to these two assignments are deleted, 
because the only valid assignment for F1 in the expression F1 + F2 is F1 = -. Because deletions 
have occurred, the two expressions are checked for consistency again. Since no further deletions 
are possible, the arc consistency procedure is halted. The complete solution to the problem is 
found by simply merging together the domains of the two binary expressions. This results in the 
single legal instantiation: 

 F1 = - 

 F2 = + 

 F3 = -. 

Although this problem has one solution, this is not generally the case when systems of 
qualitative constraints are concerned. If the additional constraint on F2 (F2 > 0) had not been 
added, there would be three legal instantiations instead of one. 



Electronic Journal of Structural Engineering, 3 (2003) 

 

 2003 EJSE International. All rights reserved.                                     Website: http://www.ejse.org 

53eeJJSSEE  
International 

 

Figure 12: Final consistency network. 

3.1 Example from Structural Analysis 
An example of qualitative analysis from the field of structural mechanics is given in this section. 
This example illustrates some of the practical implications of qualitative analysis, as well as 
some refinements that may be made. 

 

Figure 13: Pin-jointed structure. 
The pin-jointed plane structure model shown in Figure 13 will be studied using qualitative 
analysis techniques. In the figure, the boxed numbers are the element labels and the other 
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numbers are the node labels. The parameters of this model are the lengths (L1, L2, L3, L4) and 
axial stiffnesses (EA1, EA2, EA3, EA4 ) of each of the four members, as well as the nodal 
displacements at the upper left node (∆X2, ∆Y2), and the upper right node (∆X3, ∆Y3). The 
horizontal displacements ∆X2 and ∆X3 are considered positive if to the right, and the vertical 
displacements ∆Y2 and ∆Y3 are positive if upward. A horizontal force, which acts to the right, is 
applied at the upper left node. One of the uses for such a model would be to estimate the 
deflected shape of the structure. This is the objective of the qualitative analysis. 

The qualitative equations, which relate the nodal displacements to the material properties and 
geometry of the structure, are given as follows: 

 [ ]E A

L
FX X

2 2

2
2 3 0∆ ∆− − =        (3) 

 
E A

L Y
1 1

1
2 0∆ =          (4) 

 [ ] [ ]E A

L

E A

LX X X Y
2 2

2
3 2

4 4

4
3 3 0∆ ∆ ∆ ∆− + + =       (5) 

 [ ]E A

L

E A

LY X Y
3 3

3
3

4 4

4
3 3 0∆ ∆ ∆+ + =        (6) 

These qualitative equations are very similar to the usual quantitative equations. The difference is 
that positive numeric constants have been omitted. Positive constants may be eliminated from 
products, because the positive sign value acts as the identity for multiplication in the domain of 
signs. 

The input for QES, which is used to solve this problem, is shown in Figure 14. The QES 
program accepts input in a format that is quite similar in form to the problem specification that 
has been given here. The variables in the problem are defined as dx2, dx3, dy2, and dy2, 
which have their obvious counterparts in the notation used here. The output produced by QES is 
shown in Figure 15. The analysis produces four solutions to the problem, the first of which is 
the correct solution: 

∆X2 = + ∆Y2 = 0 

∆X3 = + ∆Y3 = -. 
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Figure 14. QES input for pin-jointed structure. 
The result of this analysis is a typical result in qualitative analysis: multiple solutions are 
generated but the ‘correct’ solution to the problem is always contained in the set of solutions. 
The other solutions are not, strictly speaking, incorrect, because they are correct solutions to the 
qualitative model. A qualitative model is usually a generalization of an associated quantitative 
model. The process of generalizing a quantitative model allows solutions, which do not satisfy 
the quantitative equations. One of the prime sources of weakness in qualitative predictions 
derives from the weakness of the qualitative addition function. Looking at Equation 3, the 
assignment ∆X2 = -, ∆X3 = - causes the term (∆X2 - ∆X3) to evaluate to ?. Since the sign ? 
represents the interval [-∞, +∞], this combination of assignments satisfies Equation 3, even 
though such values would not satisfy the corresponding qualitative equation. As mentioned 
previously, the qualitative addition function introduces uncertainty, which tends to propagate 
through systems of qualitative equations. 

One way of strengthening the conclusions drawn by qualitative analysis is to make some use of 
ordinal relations between qualitative variables [2]. Ordinal relations may be used to reduce the 
uncertainty caused by the qualitative addition operator. Whenever qualitative addition results in 
the sign ?, three new cases may be generated to reflect different possible ordinal relations 
between the arguments involved in the addition operation (Table 2). 
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Figure 15. QES output for pin-jointed structure. 

Table 2: Qualitative addition with ordinal relations. 

+  [X] 

  + 0 - 

 
+

 

+

 

+
 

-   |X| > |Y| 
0   |X| = |Y| 
+   |X| < |Y| 

[Y] 0 + 0 - 
 

-

 
-   |X| < |Y| 
0   |X| = |Y| 
+   |X| > |Y| 

-

 

-

 

The advantage in using ordinal relations is that the relations provide additional information that 
may be used to filter inconsistent variable assignments. The ordinal relations are assertions 
about the relationship between two variables. This assertion may cause a contradiction at some 
stage of the solution process, which allows us to delete elements from the partial solution. 

In QES, the user has the option of including ordinal relations in the solution procedure. The 
structural model shown in Figure 13 was analyzed using information about ordinal relations. 
The result of this new analysis shows that instead of four possible solutions, there is only one 
valid solution, which corresponds to the expected behaviour for such a structure. In addition to 
information about the values of the variables, a solution obtained using ordinal relations 
provides insight into the relationship between the magnitudes of variables. The analysis yields 
the following additional information: 

|∆X3| > |∆Y3| 

|∆X2| > |∆X3| 

In the previous problem, qualitative analysis lead to a fairly clean, informative solution, 
considering the minimal amount of specific information that was furnished as input. It is 
important to note that, in general, a qualitative analysis produces more than one solution. 
Increasing the number of variables in a problem leads to a rapid increase in the number of 
combinations, which must be considered, and also, an increase in the number of solutions. The 
following problem illustrates this concept. 
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Figure 16 shows the graphical representation of a model of a structure. The model contains three 
members, each member i with associated length Li, axial stiffness EAi, and bending stiffness EIi. 
As in the previous structural analysis example, a lateral force F directed towards the right acts at 
the upper left joint. The qualitative equations which may be used to derive the deflections from 
the loading and member properties given here: 
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where again the qualitative equations have been obtained from the quantitative equations by 
deleting constant numeric terms from products. In this problem, the variables are the four 
translational degrees of freedom ∆X2, ∆Y2, ∆X3, and ∆Y3, and the two rotational degrees of 
freedom θ2 and θ 3, where the numeral ‘two’ in the subscript denotes the upper left joint and the 
numeral ‘three’ the upper right joint. 

        
Figure 16: Structural frame model. 

An analysis of the system of Equations 7 through 12 using QES resulted in a total of 189 
different solutions. This result shows that increasing the number of qualitative variables in the 
problem leads to considerably weaker qualitative predictions. In this case, the added complexity 
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of the equations certainly has a detrimental impact on the analysis. In particular, the equations in 
this example include more complex sums than in the previous example. Even when ordinal 
relations are considered in the analysis, the number of solutions increases to 266, in contrast 
with the previous problem where the number decreased. The use of ordinal relations increases 
the number of combinations, which must be considered, but the additional information simply 
does not cause enough of the assertions to be refuted. Although the 189 solutions resulting from 
simple qualitative analysis is less than the total number of possible combinations of six 
variables, each having three values (36 = 729), we gain little practical insight into the problem. 
Even though more sophisticated improvements than the use of ordinal relations may be applied 
to qualitative analysis, it is worthwhile to consider the application of pure qualitative analysis to 
engineering practice. 

In the previous two examples from structural analysis, very little information was specified 
about the various quantities in the problems. In most problems in engineering, partial 
knowledge about quantities takes the form of partial numerical values. This observation 
suggests that, for an engineering application at least, it is more beneficial to pursue a 
formulation involving partial numeric information, rather than to seek refinements to the pure 
qualitative representation. This was the direction taken with the QES program. The implications 
of reasoning with partial numeric information are discussed in the next section. 

4 Semi-Quantitative Analysis 
In QES, partial quantitative information is incorporated using the interval representation. 
Integers are a simple, compact and flexible means of representing uncertainty or partially 
specified numeric information. Since intervals may also be used to represent qualitative 
information, it is possible to develop a unified framework for representing and reasoning with 
qualitative and semi-quantitative knowledge. This was the approach used in the QES program, 
which is meant to support engineering decision-making at different stages of a project: from the 
initial stages, where qualitative information is more prevalent, to the later stages, which are 
characterized by primarily quantitative information. 

4.1 Numeric Constraint-Satisfaction 
The QES program is able to accept constraints in a number of forms, both qualitative and 
quantitative. Systems of numeric constraints are formulated as numeric constraint-satisfaction 
problems. The bounds consistency techniques developed by Lhomme [7], were implemented in 
QES to solve numeric constraint-satisfaction problems. The details of this implementation 
within the QES framework will be discussed here. 

Consistency techniques are applied to numeric constraint-satisfaction problems by associating a 
dynamic domain with each variable and by propagating this domain through the constraints.  
The domains of variables are represented by intervals, so that as constraints are propagated from 
one variable to another, the bounds of the intervals are updated dynamically. This procedure can 
be examined more closely using the following example. Consider the system of constraints: 

 C1: Y = X + 1   C2: Y = 2 × X 

Let the initial domains for the variables X and Y be 

 DX = [-∞, +∞]   DY = [-∞, +∞]. 

In the constraint network representation of QES, the constraints and variables may be described 
graphically as shown in Figure 17. The constraint network contains six expressions: X, Y, 1, 2, X 
+ 1, and 2 × X. In the figure, solid arcs represent arithmetic links, while broken arcs symbolize 
ordinal relational links.  
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In the constraint network, changes propagate along relational and arithmetic links. The variable 
X has an arithmetic link to the expressions X + 1 and 2 × X recorded in its parents field, while 
the numeric constants 1 and 2 have links to X + 1 and 2 × X, respectively. The expressions X + 1 
and 2 × X both maintain a relation link to the variable Y. Suppose the domain DX is updated to 
[0, 10]. The following sequence of events transpires: 

� The change in DX propagates from X to X + 1 through a parent link of X. 

� The constraint interval of X + 1 is updated to [1, 11], using the current values of its children. 

� The change in X + 1 is propagated through a relation link to Y. 

� Variable Y is updated to [1, 11]. 

� The change in Y causes 2 × X to be updated to [1, 11], because 2 × X shares a relation link 
with Y. 

� X is recalculated using the new value of 2 × X and the right child, the numeric constant 2. 
The constraint interval of X is updated to [0.5, 5.5] 

� The change in X propagates to X + 1 by way of the arithmetic link. 
 
The domain changes propagate cyclically through the constraint network, and asymptotic 
convergence toward the solution (X = 1, Y = 2) occurs. 

             

Figure 17: Constraint network representation for numeric constraint problem. 

 
Figure 18: QES input for numeric constraint problem. 
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The input for QES for this constraint-satisfaction problem is displayed in Figure 18. As shown, 
interval constraints are represented by inequality constraints, so that the assignment X = [0, 10] 
is entered as two constraints; X ≥ 0 and X ≤ 10. The QES program uses the technique of arc 
B(w)-consistency [7] to solve numeric constraint-satisfaction problems. The solution progresses 
according to the sequence discussed above, as shown in Figure 19. The consistency algorithm 
terminates after about 20 cycles through the network, using specified imprecision w of 1.0×10-6.  
As shown the final values for the intervals of X and Y are: 

 X = [0.999998, 1.000001] 

 Y = [1.999998, 2.000001] 

Numeric constraint satisfaction:
Modify X to [0.5,5.5]
Modify (X+1) to [1.5,6.5]
Modify Y to [1.5,6.5]
Modify 2*X to [1.5,6.5]
Modify X to [0.75,3.25]
Modify (X+1) to [1.75,4.25]
Modify Y to [1.75,4.25]
Modify 2*X to [1.75,4.25]
Modify X to [0.875,2.125]
...
Modify X to [0.999998,1.000001]
Modify (X+1) to [1.999998,2.000001]
Modify Y to [1.999998,2.000001]
Modify 2*X to [1.999998,2.000001]
Normal termination

Figure 19: Solution sequence for numeric constraint problem. 

4.2 Constraint Propagation 
In the QES constraint network, three distinct types of constraint propagation are used: 

� From an expression to a parent through an arithmetic relation 

� From an expression to a child through an arithmetic relation 

� From one expression to another through an ordinal relation 

Table 3: Constraint propagation to parents 

+ [ X , X ] + [Y , Y ] = [( X  + Y ), ( X  + Y )] 

- [ X , X ] - [Y , Y ] = [( X  - Y ), ( X  - Y )] 

× [ X , X ] × [Y , Y ] = [min( X × Y , X  × Y , X  × Y , X  × Y ),  

   max( X × Y , X  × Y , X  × Y , X  × Y )] 

/ [ X , X ] / [Y , Y ]  = (-∞, +∞)  if (Y  < 0) and (Y  > 0) 

  = [min( X  / Y , X  / Y , X  / Y , X  / Y ), 

   max( X  / Y , X  / Y , X  / Y , X  / Y )] 

4.3 Propagation to parents 
A change in one of the children of an expression requires the expression to be recalculated. 
Propagation in this sense is straightforward, given the convenient representation in QES of 
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expressions as trees. The details of this type of propagation follow directly from interval 
arithmetic [10]. In the following discussion, the notation of Moore is used for interval 
arithmetic; an interval is denoted by a capital letter, say X, where X = [ X , X ]. Given the set of 
basic constraints available in the QES system, Table 3 summarizes the details of the arithmetic. 
Note that Table 3 covers only closed intervals. Open and half-open intervals are handled in a 
similar way.  

4.4 Propagation to children 

Given a binary expression Z = X � Y, where the symbol ‘�’ indicates an operator, equality 
requires that the arguments X and Y be updated when Z is modified. Note that a distinction 
must be made between the right and left arguments in a binary expression, since, in general, X � 
Y × Y � X. Table 4 lists the arithmetic which must be performed to update the children of an 
expression. In Table 4, X denotes the left hand operand and Y the right operand. 

Table 4: Constraint propagation to children. 
 Expression Left Right 

+ Z = X + Y X = Z - Y Y = Z - X 
- Z = X - Y X = Z + Y Y = X - Z 
× Z = X × Y X = Z / Y Y = Z / X 
/ Z = X / Y X = Z × Y Y = X / Z 

4.5 Propagation through ordinal relations 
The propagation of constraints through relation links is useful for both qualitative and 
quantitative analysis. This technique becomes even more useful when additional relational 
constraints may be inferred from existing ones, a procedure called constraint inference. 
Constraint inference will be described in a following section. Relational constraints, which take 
the form X � Y, where X and Y are expressions, are detailed in Table 5. The equality constraint is 
identical with the intersection operation on intervals. A constraint operation that does not meet 
the condition listed in Table 5 results in an assignment of the empty set (∅ ) to each variable 
involved in the constraint. This result indicates that an inconsistency exists in the constraint 
network. This information is indicated to the user of the system. 

Table 5: Constraint propagation through ordinal relations. 
 Relation Condition Procedure 
≤ X ≤ Y X  < Y  if X  > Y  then X  = Y   
   if Y  < X  then Y  = X   
≥ X ≥ Y X  > Y   if Y  > X  then Y  = X   
   if X  < Y  then X  = Y   

= X = Y X  < Y  and Y  < X  if X  > Y  then X  = Y   
   else Y  = X   
   if X  < Y  then X  = Y   
   else Y  = X   

A noteworthy property of propagation over relation links is that modifications to interval 
bounds always result in an interval of decreased width. This means that the quantitative 
precision of a variable can never decrease. This property has significant impact on the 
convergence of numeric consistency algorithms, because intervals shrink monotonically as the 
algorithm progresses. 
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4.6  Soundness of Interval Methods 
By using established techniques for dealing with intervals, numeric consistency techniques are 
able to provide the important guarantee that the correct result will be bounded by the domains of 
each variable. This is a guarantee, which other methods such as Monte Carlo simulation and 
hill-climbing techniques cannot provide.  

One of the strengths of numeric constraint satisfaction algorithms is they are able to solve 
interval equations even when a closed-form formula cannot be obtained. A number of numerical 
simulation techniques may also be applied to solve these types of equations, including Monte 
Carlo simulation. In Monte Carlo simulation, complex equations are solved by picking at 
random a value for each variable, which lies within the range of acceptable values for the 
particular variable. Each term in the equation is evaluated on these particular values, giving one 
possible value for each term. By iterating random choices, a range of possible values of the 
terms is found. In this way complex terms can be evaluated even though the value of the 
variables are not known with certainty. Another method, which may be used to evaluate such 
expressions, is to use hill-climbing techniques, which seek the maximum and minimum values 
of each quantity. Neither Monte Carlo simulation nor hill climbing is a sound inferential 
technique [1]. They generally return a subset of the true range, and thus arbitrarily exclude 
legitimate possibilities. Experience with hill-climbers has found them to be slow and unreliable 
[9]. 

The assurance that the correct result is bounded by the domains of variables comes from a basic 
property of interval arithmetic [10]. Let y = f(x) define a function where x is within an interval 
X, and where F(X) is also an interval which has as a lower bound the minimum value of any 
f(x), and upper bound the maximum value of any f(x). This property is stated as: 

 ∀  x ∈  X, f(x) ∈  F(X). 

This result is significant in the context of the soundness of interval analysis techniques. While 
any other floating-point calculation provides simply an estimate of the correct result of a 
computation, interval methods guarantee bounds for the correct result. 

5 Constraint Inference 
A number of additional techniques, both qualitative and quantitative, are used to QES to 
complement constraint propagation. Most of these techniques fall under the category of 
constraint inference methods, which have been used in systems such as Quantity Lattice [11]. 
Constraint inference is a way of deriving new constraints from existing ones. Three types of 
constraint inference used in QES are relational arithmetic, constant elimination arithmetic, and 
graph search. 

5.1 Relational Arithmetic 
Interval arithmetic sometimes leads to results, which are weaker than would be expected. One 
such limitation of interval arithmetic is the selection problem. Given the relation X > Y, and the 
assignments X = (0, 1], Y = [0, 1), we should be able to infer that (X - Y) = (0, 1], since X > Y. In 
general, interval arithmetic does not even allow one to determine that X - X = 0. Using interval 
arithmetic, if X = [1, 2] then X - X = [-1, 1]. Only by knowing that both intervals refer to the 
same quantity can we infer that the result is [0, 0]. Another limitation of interval arithmetic is 
that sometimes it cannot increase our knowledge at all. If we are given two quantities X and Y, 
and all we know is that X = Y + 5 and Y = [-∞, +∞], interval arithmetic leads to the result X = [-
∞, +∞]. Although we know that X > Y, interval arithmetic is not able to capture this fact. An 
arithmetic technique called relational arithmetic may be used to compensate for both these 
deficiencies. Relational arithmetic maintains constraints on the qualitative relationship of an 
arithmetic expression to its arguments. The axioms of relational arithmetic are given in Table 6. 
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5.2 Constant Elimination Arithmetic 
Another type of arithmetic which may be used to reason about relationships between two 
arithmetic expressions is constant elimination arithmetic [11]. This type of arithmetic provides 
inference rules for a simple form of algebraic simplification. Constant elimination axioms allow 
us to infer that if A = B + X, C = D + X, and B > D, then A > C. Axioms for constant elimination 
are shown in Table 7. 

Table 6: Relational arithmetic axioms. 

+ X � 0 ⇒ (X + Y) � Y 
 Y � 0 ⇒ (X + Y) � X 
- X � Y ⇒ (X - Y) � 0 
× X > 0 & Y > 0 ⇒ (X � 1 ⇒ (X × Y) � Y) & 
  (Y � 1 ⇒ (X × Y) � X) 
 X > 0 & Y < 0 ⇒ (X � 1 ⇒ Y � (X × Y) & 
  (Y � -1  ⇒ (X × Y) � -X) 
 X < 0 & Y > 0 ⇒ (X � -1 ⇒ (X × Y) � -Y) & 
  (Y � 1 ⇒ X � (X × Y)) 
 X < 0 & Y < 0 ⇒ (X � -1 ⇒ -Y � (X × Y)) & 
  (Y � -1 ⇒ -X � (X ×Y)) 
/ X > 0 & Y > 0 ⇒ X � Y ⇒ (X / Y) � 1 
 X > 0 & Y < 0 ⇒ X � -Y ⇒ -1 � (X / Y) 
 X < 0 & Y > 0 ⇒ X � -Y ⇒ (X / Y) � -1 
 X < 0 & Y < 0 ⇒ X � Y ⇒ 1 � (X / Y) 

For � ∈  { <, ≤, >, ≥, =, ≠ } 
 

Table 7: Constant elimination axioms. 
+ X � Y ⇒ (X + Z) � (Y + Z) 
- X � Y ⇒ (X - Z) � (Y - Z) 
 X � Y ⇒ (Z - Y) � (Z - X) 
× X ≥ 0 & X � Y ⇒ (X × Z) � (Y × Z) 
 X ≤ 0 & X � Y ⇒ (Y × Z) � (X × Z) 
/ X ≥ 0 & X � Y ⇒ (X / Z) � (Y / Z) 
 X ≤ 0 & X � Y ⇒ (Y / Z) � (X / Z) 

For � ∈  { <, ≤, >, ≥, =, ≠ } 

5.3 Graph Search 
In order to invoke the axioms discussed above, information about ordinal relations between 
expressions is required. In some cases it is possible to infer new ordinal relations from a given 
set of ordinal relations on expressions using a technique called graph search. Graph search is 
conveniently implemented in a constraint network. Given the relations A ≤ D and D = E, it is 
possible to deduce that A ≤ E. The transitivity table (Table 8) enumerates the relationships 
between two inequalities which share a common expression. Entering the transitivity table at the 
intersection of the row labeled ≤ and the column labeled =, we find the relation ≤. In a constraint 
network, a simple breadth-first search [i.e. 5] may be used to find a path between two 
expressions. In the constraint graph, we wish to find the relationship between the expressions A 
and C, even though they are not directly connected by a relation link.  

The search starts at the expression A and proceeds until the expression C is reached. As each 
expression is visited, the relationship of that particular expression with the variable A is 
recorded. In the figure, the notation [n: rel]  is used to indicate that the relation rel is written at 
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the expression node at the nth step of the algorithm. For example, since the sign ‘≤’ was written 
at node D in step 1, this information along with the relation ‘=’ on the arc linking nodes D and 
E, is used with the transitivity table to determine that ‘≤’ must be entered at expression E.  

Table 8: Transitivity table for ordinal relations. 

 < ≤ > ≥ = ≠ 
< < < ? ? < ? 
≤ < ≤ ? ? ≤ ? 
> ? ? > > > ? 
≥ ? ? > ≥ ≥ ? 
= < ≤ > ≥ = ≠ 
≠ ? ? ? ? ≠ ? 

 

 

Figure 20: Constraint network for graph search example.  

In some cases, more than one path may exist between two expressions in a constraint network. 
If this occurs, the results of each path may be combined to produce a ‘tighter’ result. In 
Figure20, two paths lead from expression A to expression C. On the third step of the algorithm, 
the sign ‘≤’ is written at the node E. Traversing the path A-B-E we find that A ≥ E. Combining 
the relations ‘≤’ and ‘≥’ we may deduce that A = E. If the graph search is able to determine a 
constraining relation between two expressions, the relation may be cached by adding a new 
relation link between the two expressions. A subsequent query to the constraint network can use 
this information to quickly determine the relationship between two expressions. 

Constraint inference furnishes techniques, which complement the constraint-satisfaction 
methods discussed earlier. Systems, which rely only on constraint influence, have a number of 
limitations however. One of the problems with constraint inference is that it is difficult to 
control and it often falls into infinite loops. The constraint propagation techniques discussed in 
connection with constraint satisfaction algorithms are easier to control than constraint inference. 
In addition, as new constraints are inferred, it may be difficult to ensure that they will be useful 
in answering queries to the network.  

6 Conclusions 
This paper has described a computer software application, QES, which may be used to evaluate 
conceptual and preliminary engineering designs. The application employs a number of 
qualitative and semi-quantitative techniques to handle physical systems, which are characterized 
by a high level of uncertainty. QES exploits the constraint network paradigm to perform both 
qualitative and quantitative reasoning within an integrated framework. Qualitative reasoning, 
quantitative interval arithmetic, arithmetic reasoning and graph search are complementary 
techniques which are used to extract a considerable amount of information from uncertain or 
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incompletely specified input data. These techniques show considerable advantages over other, 
more commonly used approaches for handling uncertainty in engineering practice. 

 An important feature of qualitative and semi-quantitative methods is that they allow the 
engineer the reason with a high level of abstraction. Qualitative equations are capable of 
representing a class of physical systems rather than one specific system. In the structural 
example, the corresponding quantitative equations would represent a very specific system, with 
one set of member lengths and section properties. On the other hand, the qualitative equations 
represent a large number of physical structures, with a range of materials, section properties, 
and member geometry. 

Qualitative and semi-quantitative methods are useful for evaluating conceptual and preliminary 
designs, because by reasoning with an abstract model, the engineer may perform a sound 
preliminary evaluation of a physical system without committing to details. All system 
parameters can be represented using qualitative variables or interval variables that are capable 
of covering a wide range of possible system configurations. The overall integrity of the 
proposed system can be confirmed at an early stage in the design, so that sound conceptual 
design alternatives are retained while unsound alternatives are eliminated. 

A wide range of tools is available which are able to perform detailed numerical analysis. These 
tools generally require input that is specific and complete. The user must commit to a large 
number of detailed assumptions about the physical system. At the earliest stages of design, the 
validity of these detailed assumptions is questionable. A considerable amount of time may be 
required to generate the assumptions and create the detailed model of the system. 

Qualitative and semi-quantitative methods have distinct advantages over other approaches for 
dealing with uncertainty in engineering systems, such as probability methods, Monte Carlo 
simulation, hill-climbing techniques and expert systems. Numerical simulation techniques based 
on probability, such as Monte Carlo methods, and hill-climbing techniques, which seek the 
maximum and minimum values of each quantity, are not sound inferential techniques. and thus 
may exclude legitimate solutions. They generally return a subset of the true range, and thus 
arbitrarily exclude legitimate possibilities. The techniques discussed in this paper are logically 
sound. The interval analysis methods employed are able to guarantee bounds on the correct 
solution.  

Expert systems represent another approach to coping with uncertainty in engineering practice. 
These systems have been applied successfully in engineering domains, partly because they are 
able to reason with valuable experiential and heuristic knowledge. Most expert systems suffer, 
however, because of an inability to reason using fundamental domain knowledge. On the other 
hand, qualitative reasoning uses a detailed domain model, an explicit representation of the first 
principles of the domain that underlie heuristic knowledge.  

Purely qualitative reasoning methods developed in artificial intelligence research were applied 
to a practical problem in the domain of structural engineering. It was found that the conclusions 
that may be drawn from such methods could be quite powerful when the number of variables in 
the problem is limited. Unfortunately the conclusions that may be drawn become rapidly weaker 
as the number of unknowns in the problem is increased. Although a limited number of problems 
were tested, the findings are not out of line with previous research. A number of attempts have 
been made by artificial intelligence researchers to resolve the ambiguity of predictions made 
using qualitative analysis. The approach used in this research was to augment qualitative 
analysis with partial quantitative information. Semi-quantitative techniques show considerable 
promise in the practice of engineering for their ability to model design abstraction while 
providing bounds for the behaviour of physical systems.  
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6.1 Further Research 
In order to fully evaluate the techniques presented in this paper, the techniques must be used in 
real engineering applications. The goal of developing the QES software was to provide an 
accessible tool, which could be used, for the analysis of conceptual and preliminary engineering 
designs. Further research is required to ascertain which types of reasoning, qualitative or 
quantitative, are best suited various types of engineering problems. 
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