
Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

43eeJJSSEE
International

A Computer Application to Study Engineering
Projects at the Early Stages of Development

M. H. Gedig

M.A.Sc Structural Engineer AGRA Coast Inc.
1515 KingswayPort Coquitlam, B.C., Canada V3C 1S2

and

Dr. S. F. Stiemer
Dr.-Ing, P.Eng. Professor, Department of Civil Engineering

 University of British Columbia 2324 Main Mall Vancouver, B.C., Canada V6T 1Z4

ABSTRACT
This paper describes a computer software application, the Qualitative Engineering System (QES), which the
engineer can use to perform qualitative and semi-quantitative analysis of preliminary engineering designs.
In engineering practice, many situations arise in which the engineer wishes to perform a logical, objective
comparison between conceptual or preliminary design options. Although there exist many applications
which can be used to perform detailed numerical analysis to justify detailed final designs, relatively few
useful programs are available to validate designs at the preliminary stages. The early stages of design are
characterized by higher levels of uncertainty than the latter stages. Established qualitative and semi-
quantitative reasoning techniques may be used to detail with uncertainty and incomplete information in a
sound, logical manner. The QES application utilizes a unified framework, which is used to implement a
number of qualitative and semi-quantitative reasoning techniques. This paper gives an explanation of
qualitative and semi-quantitative analysis in the context of the QES application. In addition, the paper gives
some practical examples of how the QES program can be used in the engineering environment.

KEYWORDS
Computer application, design uncertainty, conceptual design, decision evaluation, qualitative reasoning,
semi-quantitative reasoning, interval technique.

1 Introduction
An accurate evaluation of conceptual design alternatives holds many potential benefits for the
engineering practice. Unworkable designs can be eliminated early, and more resources can be
dedicated to the concepts, which are most practical and efficient. It is accepted that the earlier a
decision is made in a project the greater the financial implications of the decision. Often a large
amount of capital and time is expended at the latter stages of a project in order to make an
unworkable design workable. A better understanding of the feasibility of a conceptual design
allows the engineer to be more competitive, because the inherent risk of working in new
territory can be decreased.

A fundamental problem in evaluating conceptual design alternatives is the relatively high level
of uncertainty present in design concepts. Many of the currently available analytical tools are
not effective in coping with the type of uncertainty, which exists in design concepts. Numerical
analysis tools are indispensable in the practice of engineering today. The finite element method,
for example, is a widely used systematic approach to predicting the behaviour of systems in a
wide range of applications, including thermal analysis, structural analysis, mechanical analysis
and electromagnetics. In most of the available numerical analysis packages, input must be
specified in a rigid, structured format. If these tools are used in the conceptual stages, many of
the required input fields must be estimated, and there is usually no systematic way of

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

44eeJJSSEE
International

determining how the accuracy of the program output relates to uncertainty in the input
parameters.

Probability methods are useful in evaluating the level of risk in a completed design. At the
conceptual design stages however, these methods are cumbersome and suspect because of the
large amount of input required. Much of the input used for describing the probability
distribution functions for various design parameters would have to be estimated at the early
stages of a design. The time and effort required preparing the input, and the value of the results
given the uncertainty in the output both detract from the worth of probability methods in such an
application.

Expert systems have been successfully used in the past for reasoning with information that is
characterized by a high level of uncertainty. The problem with expert systems is that they are
notoriously “brittle” - they are domain specific and tend to be of limited use outside their narrow
range of expertise. Expert systems do not generally reason with established physical principles,
which apply over a number of domains. There is a great deal of incentive in engineering to
develop new, innovative, and cost-effective solutions to problems. Innovation often involves
interdisciplinary approaches to problem solving which are incompatible with the domain-
specific nature of expert systems.

An alternative approach to evaluating conceptual designs is to use the techniques of qualitative
and semi-quantitative analysis. The systematic study of qualitative techniques developed out of
artificial intelligence research in the early eighties. Qualitative and semi-quantitative techniques
may be used to perform sound reasoning about physical systems, which are characterized by a
high degree of uncertainty.

2 The QES Program
The goal of this research is to develop a tool to evaluate conceptual designs using proven,
logical, and sound reasoning techniques. The tool must be able to cope with a high level of
uncertainty, and flexible enough to accept more information and adapt to the changing level of
uncertainty as a project progresses. In order to fulfil the goals of this research, the QES program
was developed. The program uses a number of qualitative and semi-quantitative analysis
techniques. These techniques were described in detail in a previous paper and will be only
briefly covered here.

In developing a practical engineering tool for reasoning with partially-specified information, it
would be desirable to incorporate both the power of abstraction inherent in qualitative methods,
and the elegance of semi-quantitative methods such as interval analysis [10]. The Qualitative
Engineering System (QES), developed as a part of this research, features a coherent framework,
which integrates both qualitative and semi-quantitative reasoning techniques.

The level of uncertainty present in an engineering project is not static. In the early, conceptual
stages, there is more uncertainty than in the final stages. A flexible reasoning framework is
needed which is capable of using new information, as it becomes available, and updating
previous conclusions. QES uses the powerful notion of constraints as a means of expressing
engineering problems.

2.1 Constraints
Much of an engineer’s knowledge is best expressed in terms of what is, or conversely, what is
not allowed. Functional requirements, material limitations, labour considerations, environmental
characteristics and the laws of physics can all be expressed in the language of constraints. Many
of the computational tools currently used in engineering demand a rigid dichotomy between
input and output. Furthermore, the input format is often inflexible, requiring that input data be
completely specified before computation can proceed. In contrast, QES is able to accept as input

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

45eeJJSSEE
International

only the information that is known at a particular time. Information, both qualitative and
quantitative, can be added any stage of a project.

2.2 Program Structure
QES is effectively a quantity database [1], which is implemented as a constraint network. The
database contains expressions and relations, where the expressions represent the nodes of the
constraint network and the relations represent the constraints. The relations may be either
arithmetic in nature, or may represent inequalities (ordinal relations). Expressions are capable of
representing qualitative information, such as whether a parameter is less than, greater than, or
equal to zero. Expressions also can store semi-quantitative information, which is expressed in
the form of intervals. A number of techniques, both qualitative and quantitative, are used to
reason with the quantity database. These techniques include label propagation using both
intervals and signs, interval arithmetic, graph search, and constraint inference.

This section discusses the main components of the QES representation: intervals, expressions,
variables, constants, equations, inequalities and systems of equations. In QES, constraints are
represented as equations and inequalities. Both equations and inequalities are composed of
expressions, which consist of variables and constants. Expressions evaluate to quantities. The
interval representation is used to express quantities to varying degrees of precision. QES was
implemented in the programming language C++, an object-oriented language. In the object-
oriented approach, data and the procedures, which use this data, are encapsulated as entities
called objects. In the following discussion, the components of QES are formulated as objects.

2.3 Intervals
Interval methods are well-developed techniques, which enable one to reason on the range of
values of quantities. Intervals are flexible enough to represent vague qualitative values as well
as precise numeric values. For this reason, the interval representation was chosen as to represent
quantities in QES. In QES an interval is represented by a data structure which contains two
members, the upper and lower bounds (Figure 1). The interval structure includes the procedures
add, multiply, negate, and reciprocal.

interval
data
members

name type

 negativeBound bound
 positiveBound bound
methods name arguments
 add interval
 multiply interval
 negate
 reciprocal
 isLess interval
 isGreater interval
 isEqual interval

Figure 1: Interval data structure.

2.4 Bounds
A bound is a structure which consists of three fields: the value, which is either a floating-point
number or one of the symbolic constants -∞, +∞, or NaN (Not a Number); the inclusion
field, which is TRUE if the bound includes the value, and FALSE otherwise; and the type
member, which indicates whether the bound is at the lower or upper extent of the interval. Using

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

46eeJJSSEE
International

this representation, QES can reason with open, closed, or half-open intervals. As shown in
Figure 2, the bound structure also encapsulates procedures which define bound operators
(add,multiply,negate,reciprocal). Since operators are defined on the bounds, the
implementation of the interval operators is simplified. For example, the interval add procedure
takes the following convenient form in C++:

add(Interval toInterval)
{

lowerBound.Add(toInterval.lowerBound)
upperBound.Add(toInterval.upperBound)

}
bound
data members name type
 value number, ±∞, NaN
 inclusion TRUE, FALSE
 type UPPER, LOWER
methods name arguments
 add bound
 multiply bound
 negate
 reciprocal
 isLess bound
 isGreater bound
 isEqual bound

Figure 2: Bound data structure.

Additional processing is required for the multiply and reciprocal functions. For these
operators the ordinal relations isLess, isGreater, and isEqual are used to order the
bounds correctly.

expression
data members name type
 domain list of intervals
 constraint interval
 type UNARY, BINARY
 operator NEGATE, RECIPROCAL,
 ADD, MULTIPLY, SUBTRACT,

DIVIDE
 leftChild expression
 rightChild expression
 parents list of expressions
 relations list of relationLinks
methods name arguments
 constrain
 relativeConstrain relation, interval, width
 add expression
 multiply expression
 subtract expression
 divide expression
 negate
 reciprocal

Figure 3: Expression data structure.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

47eeJJSSEE
International

2.5 Expressions
Just as algebraic expressions may take on a number of seemingly different forms, so may
expressions in QES. Expressions represent a fundamental component of QES, as several other
components of the system derive their behaviour from expressions. The expression data
structure is shown schematically in Figure 3. The definition of the expression is recursive in
nature, as the data structure contains a reference to itself. For illustration, consider the simple
algebraic expression A + (B × C). This expression may be represented as a binary tree, as shown
in Figure 4. The node labeled ‘×’ has two children, the variables B and C. The node labeled ‘+’
also has two children, the variable A and the expression B × C. Since variables may be
considered simple expressions, variables and expressions are essentially the same in QES.
Representing expressions as trees proves to be a convenient construct for many of the
techniques, which are used to reason with the quantity database.

Figure 4: Graphical representation of expressions

Two of the main components of the expression data structure, shown in Figure 3, are the
constraint, and the domain. The constraint is a single interval, while the domain is
a set of intervals. By default, the constraint interval holds the value [-∞, +∞], which expresses a
complete ignorance of the value of the expression. As more information about various quantities
and relations is entered into the system, the constraint intervals become narrower. The domain
set is interpreted slightly differently for variables than for expressions. In QES the domain of a
variable is analogous to the quantity space representation in other qualitative reasoning
frameworks, such as Kuipers’ QSIM [6]. Kuipers defined the quantity space as a finite, ordered
set of landmark values:
 l1 < l2 < ... < lk ,

which can be represented as the set of alternating closed and open intervals:

 {[-∞, -∞], (-∞, l1), [l1, l1], (l1, l2), [l2, l2], ... , [lk, lk], (lk, +∞), [+∞, +∞]}.

In QES the landmarks are replaced by valid assignments to the value field of the bound
structure. For example, the simple quantity space {-, 0, +} may be described by the domain set
{[-∞, 0), [0, 0], (0, +∞]} in QES. Expressions are also used to represent numeric constants in the
quantity database. The numeric constant zero is a default member of the database. The domain
of the constant zero contains the single closed interval, which identified with the real number
zero, {[0, 0]}.

An expression may have two, one or no children. A binary expression, such as A + B, has two
children, while a unary expression such as -X has only one child. In the expression structure
shown in Figure 3, the type field indicates whether the expression is unary or binary. The
operator member indicates what type of operator is applied to the child expressions. The

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

48eeJJSSEE
International

available unary operators are negate and reciprocal, while the binary operators are add,
subtract, multiply and divide. The leftChild and rightChild fields point to the child
expressions. The rightChild field is unused for unary expressions, while both are unused
when the expression represents a variable. The variables are the ‘leaves’ of the expression tree,
while each expression, which has no parent, is a ‘root’. The child data members act as the
hierarchical or arithmetic links between expressions. These links are bi-directional, as each child
has a corresponding link with their ‘parent’. The parents data field holds a list of pointers to
the parents of the expression. The network of expressions cannot properly be called a tree, since
an expression may have multiple parents, for example, A + B × A. Having noted this, the tree
analogy is still a convenient descriptive construct which reflects the hierarchical nature of the
interconnections between expressions.

The expression tree representation is similar to what Forbus terms a ‘tree of functional
dependencies’, which represents the relationship between qualitative proportionalities. In the
tree of functional dependencies, quantities are linked by qualitative proportionalities,
independent quantities are at the leaves, and the dependent quantity is at the root. When the
expression tree is used for qualitative analysis, the relationships between expressions feature a
similar dependence, however, for other operations such as interval propagation, the links are
essentially bi-directional.

2.6 Relations
Along with arithmetic links, relational links represent the means by which constraints may
propagate through the quantity database. Relational links (called relationLinks in QES) serve
two purposes: they constrain expressions to form equations and inequalities, and they enable
search techniques to be used to infer additional information about ordinal relationships.
Inequalities are an important means of capturing fundamental qualitative distinctions, without
sacrificing the expressive capabilities of algebraic expressions. Relation links represent the
ordinal relation between two expressions. The relationLink data structure, shown in Figure 6,
contains three fields: one for each expression and another for the ordinal relation.

relation
data members name type
 value =, <, >, ≤, ≥, ≠, ?

Figure 5: Relation data structure.

Ordinal relations are represented by the relation data structure, presented in Figure 5. Relations
can take on one of seven values: =, <, >, ≤, ≥, ≠, and the unknown relation, represented by the
symbol ?.

relationLink
data members name type
 leftExpression expression
 rightExpression expression
 ordinalRelation relation

Figure 6: Relation link structure.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

49eeJJSSEE
International

Figure 7: Graphical representation of an equation.

As an example of relation links, consider the equation A + (B × C) = 0. This equation is
depicted in Figure 7, where the relation link is shown as the dotted arc between the number zero
and the expression node labeled ‘+’.

2.7 Systems of Equations
When there is more than one equation present in the system, a data structure is used to maintain
a list of the applicable equations. The main components of the equationSystem structure are
shown in Figure 8. The equationSystem structure is required in the constraint satisfaction
procedure. This procedure is explained in detail in the next section.

equationSystem
data members name type
 expressions list of expressions
 solutions list of interval sets
 arguments list of variable names

Figure 8: Equation system structure.

3 Qualitative Analysis
In QES, the domains of qualitative variables consist of a finite set of intervals. The most
common set represents the domain of signs {[-∞, 0), [0, 0], (0, +∞]}, which may be abbreviated
by {-, 0, +}. The domain of signs will be used to look at how QES solves constraint equations
which are expressed as qualitative variables. The tree structure of expressions is exploited in the
solution procedure, which uses constraint-satisfaction methods.

Each of the nodes of the constraint network may be considered a constraint. This representation
of a constraint network is different to that given by Mackworth [8]. In Mackworth’s network,
the variables in the constraint-satisfaction problem are the nodes. Loops represent unary
constraints on a variable and directed arcs indicate binary constraints. In solving constraints
consisting of equations, this representation is unsuitable, because equations can consist of more
than two variables. The simple example given earlier, A + (B × C) = 0, involves three variables:
A, B, and C. For this reason, the alternate representation of Freuder [3] is used. In this system,
nodes represent constraints, while arcs are used to link constraints having common variables.
QES uses a constraint synthesis process to build up successively higher levels of consistency in
the constraint network.

The structure of the expression tree provides a convenient framework in which to construct and
solve constraints. Constraints are built up from variables in an incremental fashion, following

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

50eeJJSSEE
International

the expression tree from leaf to root. The following simple example will be used to illustrate the
constraint satisfaction process:

 F1 + F2 = 0 (1)

 F1 - F3 = 0. (2)

The problem is to determine which assignments to the qualitative variables F1, F2 and F3 satisfy
the two constraints (1) and (2). We begin building the expression tree by entering three nodes
into the constraint network; one for each variable. This network is shown in Figure 9. Each
variable is initially unconstrained, so the constraint interval of each is [-∞, +∞]. The contents of
the domain are shown below each expression.

Figure 9: Initial constraint network.

Table 1: Qualitative addition [X] + [Y].

+ [X]

 + 0 - ?

 + + + ? ?

[Y] 0 + 0 - ?

 - ? - - ?

 ? ? ? ? ?

If we add the additional constraint F2 > 0, the values - and 0 can be removed from the domain of
F2. The expression F1 + F2 will be constructed first. Addition is a constraint, which is satisfied if
the values assigned to the arguments are consistent with the result shown in the qualitative
addition table, Table 1. Note that in Table 1, the character ‘?’ represents a complete lack of
information about the result. Multiplication, subtraction, division, negation and reciprocal
functions can all be defined as constraints, similar to addition. To find the variable assignments,
which satisfy the addition constraint, the Cartesian product of the domains of the child
expressions is generated, and the corresponding value of the sum is determined according to
Table 1.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

51eeJJSSEE
International

Figure 10: Constraint network with expression links added.
In Figure 10, all possible combinations of the domains of F1 and F2 are shown in the table under
the node for expression F1 + F2. The sum of the two values is shown in the left column of the
table. A similar table is generated for the expression F1 - F3. The left-hand column of each table
contains the elements of the domain set for the constraint expression, while the right-hand
column holds the values of the arguments of the expression.

The next step in solving the system of constraints is to enforce the equality constraint, which
will constrict the domains of the two expressions F1 + F2 and F1 - F3. As discussed earlier,
relation links represent ordinal relations between expressions. Two relational links are added to
the constraint network, as shown in Figure 11, linking the two expressions to the constant
expression zero. The constraint interval of a constant expression is always equal to the domain,
which is [0, 0] in this case. The interval [0, 0] is intersected with the constraint interval of the
expressions F1 + F2 and F1 - F3. Since the constraint interval of each is initially [-∞, +∞], their
new values are [0, 0]. To enforce the constraint at the two expressions, the constraint interval is
further intersected with each element of their domains. When intersection results in the empty
set, the domain element is deleted.

The updated domains are shown in Figure 11, which shows that F1 + F2 has one legal
instantiation while F1 - F3 has three. At this point, node consistency has been achieved at the
two expression nodes F1 + F2 and F1 - F3. Note that a relational link also exists between the
variable F2 and the constant zero. For clarity, this link is not shown in Figure 11.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

52eeJJSSEE
International

Figure 11: Constraint network after node consistency procedure.

The two expressions F1 + F2 and F1 + F3 now contain partial solutions to the problem. These
partial instantiations must be combined to find the complete solution. The simple approach is to
find all combinations of the domains of the two expressions, which correspond to consistent
assignments of variables. A more efficient method is employed by QES, which uses the concept
of arc consistency. In QES arc consistency is enforced on pairs of equations. The simple arc
consistency AC-1 [8], is used here. QES maintains a list of all equations in the system using the
equationSystem data structure (Figure 8). Each time an equation is created, it is made consistent
with each of the existing equations. If elements in the domain of an expression are deleted when
arc consistency enforced between two expressions, the procedure is repeated until no further
deletions are necessary. In the example problem, the expression F1 + F2 is first added to the
equationSystem structure. Since it is the first equation to be added, no deletions are performed.
The second expression is then added, and the two equations are made arc consistent. The
uppermost box in Figure 12 represents the equationSystem structure with its links to each of the
equations.

Looking at expression F1 - F3, one of the instantiations involves the assignment F1 = 0 and
another involves F1 = +. The domains corresponding to these two assignments are deleted,
because the only valid assignment for F1 in the expression F1 + F2 is F1 = -. Because deletions
have occurred, the two expressions are checked for consistency again. Since no further deletions
are possible, the arc consistency procedure is halted. The complete solution to the problem is
found by simply merging together the domains of the two binary expressions. This results in the
single legal instantiation:

 F1 = -

 F2 = +

 F3 = -.

Although this problem has one solution, this is not generally the case when systems of
qualitative constraints are concerned. If the additional constraint on F2 (F2 > 0) had not been
added, there would be three legal instantiations instead of one.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

53eeJJSSEE
International

Figure 12: Final consistency network.

3.1 Example from Structural Analysis
An example of qualitative analysis from the field of structural mechanics is given in this section.
This example illustrates some of the practical implications of qualitative analysis, as well as
some refinements that may be made.

Figure 13: Pin-jointed structure.
The pin-jointed plane structure model shown in Figure 13 will be studied using qualitative
analysis techniques. In the figure, the boxed numbers are the element labels and the other

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

54eeJJSSEE
International

numbers are the node labels. The parameters of this model are the lengths (L1, L2, L3, L4) and
axial stiffnesses (EA1, EA2, EA3, EA4) of each of the four members, as well as the nodal
displacements at the upper left node (∆X2, ∆Y2), and the upper right node (∆X3, ∆Y3). The
horizontal displacements ∆X2 and ∆X3 are considered positive if to the right, and the vertical
displacements ∆Y2 and ∆Y3 are positive if upward. A horizontal force, which acts to the right, is
applied at the upper left node. One of the uses for such a model would be to estimate the
deflected shape of the structure. This is the objective of the qualitative analysis.

The qualitative equations, which relate the nodal displacements to the material properties and
geometry of the structure, are given as follows:

 []E A

L
FX X

2 2

2
2 3 0∆ ∆− − = (3)

E A

L Y
1 1

1
2 0∆ = (4)

 [] []E A

L

E A

LX X X Y
2 2

2
3 2

4 4

4
3 3 0∆ ∆ ∆ ∆− + + = (5)

 []E A

L

E A

LY X Y
3 3

3
3

4 4

4
3 3 0∆ ∆ ∆+ + = (6)

These qualitative equations are very similar to the usual quantitative equations. The difference is
that positive numeric constants have been omitted. Positive constants may be eliminated from
products, because the positive sign value acts as the identity for multiplication in the domain of
signs.

The input for QES, which is used to solve this problem, is shown in Figure 14. The QES
program accepts input in a format that is quite similar in form to the problem specification that
has been given here. The variables in the problem are defined as dx2, dx3, dy2, and dy2,
which have their obvious counterparts in the notation used here. The output produced by QES is
shown in Figure 15. The analysis produces four solutions to the problem, the first of which is
the correct solution:

∆X2 = + ∆Y2 = 0

∆X3 = + ∆Y3 = -.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

55eeJJSSEE
International

Figure 14. QES input for pin-jointed structure.
The result of this analysis is a typical result in qualitative analysis: multiple solutions are
generated but the ‘correct’ solution to the problem is always contained in the set of solutions.
The other solutions are not, strictly speaking, incorrect, because they are correct solutions to the
qualitative model. A qualitative model is usually a generalization of an associated quantitative
model. The process of generalizing a quantitative model allows solutions, which do not satisfy
the quantitative equations. One of the prime sources of weakness in qualitative predictions
derives from the weakness of the qualitative addition function. Looking at Equation 3, the
assignment ∆X2 = -, ∆X3 = - causes the term (∆X2 - ∆X3) to evaluate to ?. Since the sign ?
represents the interval [-∞, +∞], this combination of assignments satisfies Equation 3, even
though such values would not satisfy the corresponding qualitative equation. As mentioned
previously, the qualitative addition function introduces uncertainty, which tends to propagate
through systems of qualitative equations.

One way of strengthening the conclusions drawn by qualitative analysis is to make some use of
ordinal relations between qualitative variables [2]. Ordinal relations may be used to reduce the
uncertainty caused by the qualitative addition operator. Whenever qualitative addition results in
the sign ?, three new cases may be generated to reflect different possible ordinal relations
between the arguments involved in the addition operation (Table 2).

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

56eeJJSSEE
International

Figure 15. QES output for pin-jointed structure.

Table 2: Qualitative addition with ordinal relations.

+ [X]

 + 0 -

+

+

+

- |X| > |Y|
0 |X| = |Y|
+ |X| < |Y|

[Y] 0 + 0 -

-

- |X| < |Y|
0 |X| = |Y|
+ |X| > |Y|

-

-

The advantage in using ordinal relations is that the relations provide additional information that
may be used to filter inconsistent variable assignments. The ordinal relations are assertions
about the relationship between two variables. This assertion may cause a contradiction at some
stage of the solution process, which allows us to delete elements from the partial solution.

In QES, the user has the option of including ordinal relations in the solution procedure. The
structural model shown in Figure 13 was analyzed using information about ordinal relations.
The result of this new analysis shows that instead of four possible solutions, there is only one
valid solution, which corresponds to the expected behaviour for such a structure. In addition to
information about the values of the variables, a solution obtained using ordinal relations
provides insight into the relationship between the magnitudes of variables. The analysis yields
the following additional information:

|∆X3| > |∆Y3|

|∆X2| > |∆X3|

In the previous problem, qualitative analysis lead to a fairly clean, informative solution,
considering the minimal amount of specific information that was furnished as input. It is
important to note that, in general, a qualitative analysis produces more than one solution.
Increasing the number of variables in a problem leads to a rapid increase in the number of
combinations, which must be considered, and also, an increase in the number of solutions. The
following problem illustrates this concept.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

57eeJJSSEE
International

Figure 16 shows the graphical representation of a model of a structure. The model contains three
members, each member i with associated length Li, axial stiffness EAi, and bending stiffness EIi.
As in the previous structural analysis example, a lateral force F directed towards the right acts at
the upper left joint. The qualitative equations which may be used to derive the deflections from
the loading and member properties given here:

[] 032
2

22
2

1

2
2
1

11 =−∆−∆+







−

∆
F

L
AE

LL
IE

XX
X θ (7)

() 01
32

2

3
32

2
2
2

22
2

1

11 =







−−

∆
−∆−∆+∆ θθ

LLL
IE

L
AE Y

YYY (8)

() 01
3223

22

22

1

2
2

1

11 =







++∆−∆+







 ∆
− θθθ YY

X

LL
IE

LL
IE

 (9)

[] 03
3

3
2
3

33
23

2

22 =







−

∆
+∆−∆ θ

LL
IE

L
AE X

XX (10)

() 01
3

3

33
3223

2
2
2

22 =∆+







++∆−∆ YYY L

AE
LL

IE θθ (11)

() 01
3

3
3

3

33
3223

22

22 =






 ∆
−−








++∆−∆

LL
IE

LL
IE X

YY θθθ , (12)

where again the qualitative equations have been obtained from the quantitative equations by
deleting constant numeric terms from products. In this problem, the variables are the four
translational degrees of freedom ∆X2, ∆Y2, ∆X3, and ∆Y3, and the two rotational degrees of
freedom θ2 and θ 3, where the numeral ‘two’ in the subscript denotes the upper left joint and the
numeral ‘three’ the upper right joint.

Figure 16: Structural frame model.

An analysis of the system of Equations 7 through 12 using QES resulted in a total of 189
different solutions. This result shows that increasing the number of qualitative variables in the
problem leads to considerably weaker qualitative predictions. In this case, the added complexity

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

58eeJJSSEE
International

of the equations certainly has a detrimental impact on the analysis. In particular, the equations in
this example include more complex sums than in the previous example. Even when ordinal
relations are considered in the analysis, the number of solutions increases to 266, in contrast
with the previous problem where the number decreased. The use of ordinal relations increases
the number of combinations, which must be considered, but the additional information simply
does not cause enough of the assertions to be refuted. Although the 189 solutions resulting from
simple qualitative analysis is less than the total number of possible combinations of six
variables, each having three values (36 = 729), we gain little practical insight into the problem.
Even though more sophisticated improvements than the use of ordinal relations may be applied
to qualitative analysis, it is worthwhile to consider the application of pure qualitative analysis to
engineering practice.

In the previous two examples from structural analysis, very little information was specified
about the various quantities in the problems. In most problems in engineering, partial
knowledge about quantities takes the form of partial numerical values. This observation
suggests that, for an engineering application at least, it is more beneficial to pursue a
formulation involving partial numeric information, rather than to seek refinements to the pure
qualitative representation. This was the direction taken with the QES program. The implications
of reasoning with partial numeric information are discussed in the next section.

4 Semi-Quantitative Analysis
In QES, partial quantitative information is incorporated using the interval representation.
Integers are a simple, compact and flexible means of representing uncertainty or partially
specified numeric information. Since intervals may also be used to represent qualitative
information, it is possible to develop a unified framework for representing and reasoning with
qualitative and semi-quantitative knowledge. This was the approach used in the QES program,
which is meant to support engineering decision-making at different stages of a project: from the
initial stages, where qualitative information is more prevalent, to the later stages, which are
characterized by primarily quantitative information.

4.1 Numeric Constraint-Satisfaction
The QES program is able to accept constraints in a number of forms, both qualitative and
quantitative. Systems of numeric constraints are formulated as numeric constraint-satisfaction
problems. The bounds consistency techniques developed by Lhomme [7], were implemented in
QES to solve numeric constraint-satisfaction problems. The details of this implementation
within the QES framework will be discussed here.

Consistency techniques are applied to numeric constraint-satisfaction problems by associating a
dynamic domain with each variable and by propagating this domain through the constraints.
The domains of variables are represented by intervals, so that as constraints are propagated from
one variable to another, the bounds of the intervals are updated dynamically. This procedure can
be examined more closely using the following example. Consider the system of constraints:

 C1: Y = X + 1 C2: Y = 2 × X

Let the initial domains for the variables X and Y be

 DX = [-∞, +∞] DY = [-∞, +∞].

In the constraint network representation of QES, the constraints and variables may be described
graphically as shown in Figure 17. The constraint network contains six expressions: X, Y, 1, 2, X
+ 1, and 2 × X. In the figure, solid arcs represent arithmetic links, while broken arcs symbolize
ordinal relational links.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

59eeJJSSEE
International

In the constraint network, changes propagate along relational and arithmetic links. The variable
X has an arithmetic link to the expressions X + 1 and 2 × X recorded in its parents field, while
the numeric constants 1 and 2 have links to X + 1 and 2 × X, respectively. The expressions X + 1
and 2 × X both maintain a relation link to the variable Y. Suppose the domain DX is updated to
[0, 10]. The following sequence of events transpires:

� The change in DX propagates from X to X + 1 through a parent link of X.

� The constraint interval of X + 1 is updated to [1, 11], using the current values of its children.

� The change in X + 1 is propagated through a relation link to Y.

� Variable Y is updated to [1, 11].

� The change in Y causes 2 × X to be updated to [1, 11], because 2 × X shares a relation link
with Y.

� X is recalculated using the new value of 2 × X and the right child, the numeric constant 2.
The constraint interval of X is updated to [0.5, 5.5]

� The change in X propagates to X + 1 by way of the arithmetic link.

The domain changes propagate cyclically through the constraint network, and asymptotic
convergence toward the solution (X = 1, Y = 2) occurs.

Figure 17: Constraint network representation for numeric constraint problem.

Figure 18: QES input for numeric constraint problem.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

60eeJJSSEE
International

The input for QES for this constraint-satisfaction problem is displayed in Figure 18. As shown,
interval constraints are represented by inequality constraints, so that the assignment X = [0, 10]
is entered as two constraints; X ≥ 0 and X ≤ 10. The QES program uses the technique of arc
B(w)-consistency [7] to solve numeric constraint-satisfaction problems. The solution progresses
according to the sequence discussed above, as shown in Figure 19. The consistency algorithm
terminates after about 20 cycles through the network, using specified imprecision w of 1.0×10-6.
As shown the final values for the intervals of X and Y are:

 X = [0.999998, 1.000001]

 Y = [1.999998, 2.000001]

Numeric constraint satisfaction:
Modify X to [0.5,5.5]
Modify (X+1) to [1.5,6.5]
Modify Y to [1.5,6.5]
Modify 2*X to [1.5,6.5]
Modify X to [0.75,3.25]
Modify (X+1) to [1.75,4.25]
Modify Y to [1.75,4.25]
Modify 2*X to [1.75,4.25]
Modify X to [0.875,2.125]
...
Modify X to [0.999998,1.000001]
Modify (X+1) to [1.999998,2.000001]
Modify Y to [1.999998,2.000001]
Modify 2*X to [1.999998,2.000001]
Normal termination

Figure 19: Solution sequence for numeric constraint problem.

4.2 Constraint Propagation
In the QES constraint network, three distinct types of constraint propagation are used:

� From an expression to a parent through an arithmetic relation

� From an expression to a child through an arithmetic relation

� From one expression to another through an ordinal relation

Table 3: Constraint propagation to parents

+ [X , X] + [Y , Y] = [(X + Y), (X + Y)]

- [X , X] - [Y , Y] = [(X - Y), (X - Y)]

× [X , X] × [Y , Y] = [min(X × Y , X × Y , X × Y , X × Y),

 max(X × Y , X × Y , X × Y , X × Y)]

/ [X , X] / [Y , Y] = (-∞, +∞) if (Y < 0) and (Y > 0)

 = [min(X / Y , X / Y , X / Y , X / Y),

 max(X / Y , X / Y , X / Y , X / Y)]

4.3 Propagation to parents
A change in one of the children of an expression requires the expression to be recalculated.
Propagation in this sense is straightforward, given the convenient representation in QES of

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

61eeJJSSEE
International

expressions as trees. The details of this type of propagation follow directly from interval
arithmetic [10]. In the following discussion, the notation of Moore is used for interval
arithmetic; an interval is denoted by a capital letter, say X, where X = [X , X]. Given the set of
basic constraints available in the QES system, Table 3 summarizes the details of the arithmetic.
Note that Table 3 covers only closed intervals. Open and half-open intervals are handled in a
similar way.

4.4 Propagation to children

Given a binary expression Z = X � Y, where the symbol ‘�’ indicates an operator, equality
requires that the arguments X and Y be updated when Z is modified. Note that a distinction
must be made between the right and left arguments in a binary expression, since, in general, X �
Y × Y � X. Table 4 lists the arithmetic which must be performed to update the children of an
expression. In Table 4, X denotes the left hand operand and Y the right operand.

Table 4: Constraint propagation to children.
 Expression Left Right

+ Z = X + Y X = Z - Y Y = Z - X
- Z = X - Y X = Z + Y Y = X - Z
× Z = X × Y X = Z / Y Y = Z / X
/ Z = X / Y X = Z × Y Y = X / Z

4.5 Propagation through ordinal relations
The propagation of constraints through relation links is useful for both qualitative and
quantitative analysis. This technique becomes even more useful when additional relational
constraints may be inferred from existing ones, a procedure called constraint inference.
Constraint inference will be described in a following section. Relational constraints, which take
the form X � Y, where X and Y are expressions, are detailed in Table 5. The equality constraint is
identical with the intersection operation on intervals. A constraint operation that does not meet
the condition listed in Table 5 results in an assignment of the empty set (∅) to each variable
involved in the constraint. This result indicates that an inconsistency exists in the constraint
network. This information is indicated to the user of the system.

Table 5: Constraint propagation through ordinal relations.
 Relation Condition Procedure
≤ X ≤ Y X < Y if X > Y then X = Y
 if Y < X then Y = X
≥ X ≥ Y X > Y if Y > X then Y = X
 if X < Y then X = Y

= X = Y X < Y and Y < X if X > Y then X = Y
 else Y = X
 if X < Y then X = Y
 else Y = X

A noteworthy property of propagation over relation links is that modifications to interval
bounds always result in an interval of decreased width. This means that the quantitative
precision of a variable can never decrease. This property has significant impact on the
convergence of numeric consistency algorithms, because intervals shrink monotonically as the
algorithm progresses.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

62eeJJSSEE
International

4.6 Soundness of Interval Methods
By using established techniques for dealing with intervals, numeric consistency techniques are
able to provide the important guarantee that the correct result will be bounded by the domains of
each variable. This is a guarantee, which other methods such as Monte Carlo simulation and
hill-climbing techniques cannot provide.

One of the strengths of numeric constraint satisfaction algorithms is they are able to solve
interval equations even when a closed-form formula cannot be obtained. A number of numerical
simulation techniques may also be applied to solve these types of equations, including Monte
Carlo simulation. In Monte Carlo simulation, complex equations are solved by picking at
random a value for each variable, which lies within the range of acceptable values for the
particular variable. Each term in the equation is evaluated on these particular values, giving one
possible value for each term. By iterating random choices, a range of possible values of the
terms is found. In this way complex terms can be evaluated even though the value of the
variables are not known with certainty. Another method, which may be used to evaluate such
expressions, is to use hill-climbing techniques, which seek the maximum and minimum values
of each quantity. Neither Monte Carlo simulation nor hill climbing is a sound inferential
technique [1]. They generally return a subset of the true range, and thus arbitrarily exclude
legitimate possibilities. Experience with hill-climbers has found them to be slow and unreliable
[9].

The assurance that the correct result is bounded by the domains of variables comes from a basic
property of interval arithmetic [10]. Let y = f(x) define a function where x is within an interval
X, and where F(X) is also an interval which has as a lower bound the minimum value of any
f(x), and upper bound the maximum value of any f(x). This property is stated as:

 ∀ x ∈ X, f(x) ∈ F(X).

This result is significant in the context of the soundness of interval analysis techniques. While
any other floating-point calculation provides simply an estimate of the correct result of a
computation, interval methods guarantee bounds for the correct result.

5 Constraint Inference
A number of additional techniques, both qualitative and quantitative, are used to QES to
complement constraint propagation. Most of these techniques fall under the category of
constraint inference methods, which have been used in systems such as Quantity Lattice [11].
Constraint inference is a way of deriving new constraints from existing ones. Three types of
constraint inference used in QES are relational arithmetic, constant elimination arithmetic, and
graph search.

5.1 Relational Arithmetic
Interval arithmetic sometimes leads to results, which are weaker than would be expected. One
such limitation of interval arithmetic is the selection problem. Given the relation X > Y, and the
assignments X = (0, 1], Y = [0, 1), we should be able to infer that (X - Y) = (0, 1], since X > Y. In
general, interval arithmetic does not even allow one to determine that X - X = 0. Using interval
arithmetic, if X = [1, 2] then X - X = [-1, 1]. Only by knowing that both intervals refer to the
same quantity can we infer that the result is [0, 0]. Another limitation of interval arithmetic is
that sometimes it cannot increase our knowledge at all. If we are given two quantities X and Y,
and all we know is that X = Y + 5 and Y = [-∞, +∞], interval arithmetic leads to the result X = [-
∞, +∞]. Although we know that X > Y, interval arithmetic is not able to capture this fact. An
arithmetic technique called relational arithmetic may be used to compensate for both these
deficiencies. Relational arithmetic maintains constraints on the qualitative relationship of an
arithmetic expression to its arguments. The axioms of relational arithmetic are given in Table 6.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

63eeJJSSEE
International

5.2 Constant Elimination Arithmetic
Another type of arithmetic which may be used to reason about relationships between two
arithmetic expressions is constant elimination arithmetic [11]. This type of arithmetic provides
inference rules for a simple form of algebraic simplification. Constant elimination axioms allow
us to infer that if A = B + X, C = D + X, and B > D, then A > C. Axioms for constant elimination
are shown in Table 7.

Table 6: Relational arithmetic axioms.

+ X � 0 ⇒ (X + Y) � Y
 Y � 0 ⇒ (X + Y) � X
- X � Y ⇒ (X - Y) � 0
× X > 0 & Y > 0 ⇒ (X � 1 ⇒ (X × Y) � Y) &
 (Y � 1 ⇒ (X × Y) � X)
 X > 0 & Y < 0 ⇒ (X � 1 ⇒ Y � (X × Y) &
 (Y � -1 ⇒ (X × Y) � -X)
 X < 0 & Y > 0 ⇒ (X � -1 ⇒ (X × Y) � -Y) &
 (Y � 1 ⇒ X � (X × Y))
 X < 0 & Y < 0 ⇒ (X � -1 ⇒ -Y � (X × Y)) &
 (Y � -1 ⇒ -X � (X ×Y))
/ X > 0 & Y > 0 ⇒ X � Y ⇒ (X / Y) � 1
 X > 0 & Y < 0 ⇒ X � -Y ⇒ -1 � (X / Y)
 X < 0 & Y > 0 ⇒ X � -Y ⇒ (X / Y) � -1
 X < 0 & Y < 0 ⇒ X � Y ⇒ 1 � (X / Y)

For � ∈ { <, ≤, >, ≥, =, ≠ }

Table 7: Constant elimination axioms.
+ X � Y ⇒ (X + Z) � (Y + Z)
- X � Y ⇒ (X - Z) � (Y - Z)
 X � Y ⇒ (Z - Y) � (Z - X)
× X ≥ 0 & X � Y ⇒ (X × Z) � (Y × Z)
 X ≤ 0 & X � Y ⇒ (Y × Z) � (X × Z)
/ X ≥ 0 & X � Y ⇒ (X / Z) � (Y / Z)
 X ≤ 0 & X � Y ⇒ (Y / Z) � (X / Z)

For � ∈ { <, ≤, >, ≥, =, ≠ }

5.3 Graph Search
In order to invoke the axioms discussed above, information about ordinal relations between
expressions is required. In some cases it is possible to infer new ordinal relations from a given
set of ordinal relations on expressions using a technique called graph search. Graph search is
conveniently implemented in a constraint network. Given the relations A ≤ D and D = E, it is
possible to deduce that A ≤ E. The transitivity table (Table 8) enumerates the relationships
between two inequalities which share a common expression. Entering the transitivity table at the
intersection of the row labeled ≤ and the column labeled =, we find the relation ≤. In a constraint
network, a simple breadth-first search [i.e. 5] may be used to find a path between two
expressions. In the constraint graph, we wish to find the relationship between the expressions A
and C, even though they are not directly connected by a relation link.

The search starts at the expression A and proceeds until the expression C is reached. As each
expression is visited, the relationship of that particular expression with the variable A is
recorded. In the figure, the notation [n: rel] is used to indicate that the relation rel is written at

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

64eeJJSSEE
International

the expression node at the nth step of the algorithm. For example, since the sign ‘≤’ was written
at node D in step 1, this information along with the relation ‘=’ on the arc linking nodes D and
E, is used with the transitivity table to determine that ‘≤’ must be entered at expression E.

Table 8: Transitivity table for ordinal relations.

 < ≤ > ≥ = ≠
< < < ? ? < ?
≤ < ≤ ? ? ≤ ?
> ? ? > > > ?
≥ ? ? > ≥ ≥ ?
= < ≤ > ≥ = ≠
≠ ? ? ? ? ≠ ?

Figure 20: Constraint network for graph search example.

In some cases, more than one path may exist between two expressions in a constraint network.
If this occurs, the results of each path may be combined to produce a ‘tighter’ result. In
Figure20, two paths lead from expression A to expression C. On the third step of the algorithm,
the sign ‘≤’ is written at the node E. Traversing the path A-B-E we find that A ≥ E. Combining
the relations ‘≤’ and ‘≥’ we may deduce that A = E. If the graph search is able to determine a
constraining relation between two expressions, the relation may be cached by adding a new
relation link between the two expressions. A subsequent query to the constraint network can use
this information to quickly determine the relationship between two expressions.

Constraint inference furnishes techniques, which complement the constraint-satisfaction
methods discussed earlier. Systems, which rely only on constraint influence, have a number of
limitations however. One of the problems with constraint inference is that it is difficult to
control and it often falls into infinite loops. The constraint propagation techniques discussed in
connection with constraint satisfaction algorithms are easier to control than constraint inference.
In addition, as new constraints are inferred, it may be difficult to ensure that they will be useful
in answering queries to the network.

6 Conclusions
This paper has described a computer software application, QES, which may be used to evaluate
conceptual and preliminary engineering designs. The application employs a number of
qualitative and semi-quantitative techniques to handle physical systems, which are characterized
by a high level of uncertainty. QES exploits the constraint network paradigm to perform both
qualitative and quantitative reasoning within an integrated framework. Qualitative reasoning,
quantitative interval arithmetic, arithmetic reasoning and graph search are complementary
techniques which are used to extract a considerable amount of information from uncertain or

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

65eeJJSSEE
International

incompletely specified input data. These techniques show considerable advantages over other,
more commonly used approaches for handling uncertainty in engineering practice.

 An important feature of qualitative and semi-quantitative methods is that they allow the
engineer the reason with a high level of abstraction. Qualitative equations are capable of
representing a class of physical systems rather than one specific system. In the structural
example, the corresponding quantitative equations would represent a very specific system, with
one set of member lengths and section properties. On the other hand, the qualitative equations
represent a large number of physical structures, with a range of materials, section properties,
and member geometry.

Qualitative and semi-quantitative methods are useful for evaluating conceptual and preliminary
designs, because by reasoning with an abstract model, the engineer may perform a sound
preliminary evaluation of a physical system without committing to details. All system
parameters can be represented using qualitative variables or interval variables that are capable
of covering a wide range of possible system configurations. The overall integrity of the
proposed system can be confirmed at an early stage in the design, so that sound conceptual
design alternatives are retained while unsound alternatives are eliminated.

A wide range of tools is available which are able to perform detailed numerical analysis. These
tools generally require input that is specific and complete. The user must commit to a large
number of detailed assumptions about the physical system. At the earliest stages of design, the
validity of these detailed assumptions is questionable. A considerable amount of time may be
required to generate the assumptions and create the detailed model of the system.

Qualitative and semi-quantitative methods have distinct advantages over other approaches for
dealing with uncertainty in engineering systems, such as probability methods, Monte Carlo
simulation, hill-climbing techniques and expert systems. Numerical simulation techniques based
on probability, such as Monte Carlo methods, and hill-climbing techniques, which seek the
maximum and minimum values of each quantity, are not sound inferential techniques. and thus
may exclude legitimate solutions. They generally return a subset of the true range, and thus
arbitrarily exclude legitimate possibilities. The techniques discussed in this paper are logically
sound. The interval analysis methods employed are able to guarantee bounds on the correct
solution.

Expert systems represent another approach to coping with uncertainty in engineering practice.
These systems have been applied successfully in engineering domains, partly because they are
able to reason with valuable experiential and heuristic knowledge. Most expert systems suffer,
however, because of an inability to reason using fundamental domain knowledge. On the other
hand, qualitative reasoning uses a detailed domain model, an explicit representation of the first
principles of the domain that underlie heuristic knowledge.

Purely qualitative reasoning methods developed in artificial intelligence research were applied
to a practical problem in the domain of structural engineering. It was found that the conclusions
that may be drawn from such methods could be quite powerful when the number of variables in
the problem is limited. Unfortunately the conclusions that may be drawn become rapidly weaker
as the number of unknowns in the problem is increased. Although a limited number of problems
were tested, the findings are not out of line with previous research. A number of attempts have
been made by artificial intelligence researchers to resolve the ambiguity of predictions made
using qualitative analysis. The approach used in this research was to augment qualitative
analysis with partial quantitative information. Semi-quantitative techniques show considerable
promise in the practice of engineering for their ability to model design abstraction while
providing bounds for the behaviour of physical systems.

Electronic Journal of Structural Engineering, 3 (2003)

 2003 EJSE International. All rights reserved. Website: http://www.ejse.org

66eeJJSSEE
International

6.1 Further Research
In order to fully evaluate the techniques presented in this paper, the techniques must be used in
real engineering applications. The goal of developing the QES software was to provide an
accessible tool, which could be used, for the analysis of conceptual and preliminary engineering
designs. Further research is required to ascertain which types of reasoning, qualitative or
quantitative, are best suited various types of engineering problems.

7 References
1. Davis, E. (1987) Constraint propagation with interval labels. Artificial Intelligence 32:281-

331.

2. Forbus, K.D. (1984) Qualitative process theory. Artificial Intelligence 24:85-168.

3. Freuder, E.C. (1978) Synthesizing constraint expressions. Communications of the ACM,
21:958-966.

4. Gedig, M.H. (1995) A Framework for Qualitative and Semi-Quantitative Analysis in
Engineering Design and Evaluation. Masters Thesis, University of British Columbia.

5. Knuth, D.E. (1968) The Art of Computer Programming. Addison-Wesley, Reading, MA.

6. Kuipers, B.J. (1994) Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. MIT Press, Cambridge, MA.

7. Lhomme, O. (1993) Consistency techniques for numeric CSPs. In Proc. Thirteenth Joint
Conference on Artificial Intelligence, IJCAII 1993, Morgan Kaufmann, San Mateo, CA.
232-238.

8. Mackworth, A.K. (1977) Consistency in networks of relations. Artificial Intelligence 8:99-
118.

9. McDermott, D.V. and Davis, E. (1984) Planning routes through uncertain territory.
Artificial Intelligence 22:107-156.

10. Moore, R.E. (1966) Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ.

11. Simmons, R. (1986) Commonsense arithmetic reasoning. Proc. Fifth National Conference
on Artificial Intelligence 118-124.

