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1 INTRODUCTION 

High performance concrete (HPC) and ultra-high 

performance concrete (UHPC) are widely used in 

construction industry. The intrinsic brittle nature of 

HSC/ HPC/ UHPC represents a limitation for its use, 

which can overcome by addition of discrete steel fi-

bers in the concrete matrix [9, 12, 14, 26- 29]. The 

addition of steel fibers in HPC/ HSC enhances the 

mechanical properties of concrete at normal and ele-

vated temperatures, and significantly improves the 

ductility and toughness of concrete [14, 17, 22, 23, 

26, 28, 29, 31]. HPC contains supplementary ce-

mentitious materials (SCM), which enhances the 

strength and improves the durability of the matrix 

and also has financial and environmental benefits [9, 

12, 29, 31]. HPFRC/ HPHyFRC/ UHPFRC is be-

coming a new superior material and has wide range 

of applications such as pavements, industrial floors, 

hydraulic and marine structures, infrastructures, ret-

rofitting of RC structures and slope stabilization 

works. 

    The 28-day compressive strength of concrete is a 

common index of concrete strength, which is con-

sidered as a prime data in the analysis and design of 

concrete structures. The strength of concrete is relat-

ed to the mix proportions and mix preparation tech-

niques. Because of complex mixture proportions, 

and lack of theoretical relationships between the mix 

proportions and measured properties of HPC/ HSC/ 

HPFRC, properties are often described using statisti-

cal models (empirical equations) [9, 20, 27, 28, 30, 

31, 32].  

    High performance steel fiber reinforced concrete 

(HPSFRC) is such a highly complex material that 

modeling its behavior is a difficult task. Due to non-

linear relationship between concrete mix proportions 

and properties, statistical methods have failed to ac-

curately predict the properties of mixes. Furthermore 

choosing suitable regression equation involves tech-

niques and is not an easy thing. Concrete strength is 

influenced by many factors and a mapping model 

considering many factors to the 28-day compressive 

strength can be created using neural networks (NNs) 

[19, 33]. Ni H. Gaung and Wang Ji-Zong [25] have 
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developed a model to predict 28-day compressive 

strength of concrete by using multi-layer feed for-

ward neural networks. Yeh [35] developed an ANN 

model to estimate strength of HPC and found that 

the model was more accurate than that of regression 

model. Kim et al. [19] developed a back propagation 

neural network model to estimate compressive 

strength of concrete mix proportions of two compa-

nies. Ghaboussi et al. [11] modeled the behavior of 

concrete under a state of plane stress using monoton-

ic biaxial compressive loading with a back propaga-

tion neural networks (NNs). In civil engineering, 

neural networks have been applied to the detection 

of structural damage and structural system identifi-

cation [8, 10, 11, 21]. Moncef Nehdi et al. [24] have 

developed ANN model to study the performance of 

self-compacting concrete. Cheng Yeh [7] used BP-

NN models for 28 day strength and workability and 

used GA for optimization of HPC. 

    The objective of this paper is to investigate the 

performance of HPSFRC with w/cm varying from 

0.4- 0.25 at 10% silica fume replacement and steel 

fiber volume fraction varying from 0- 1.5%, and to 

provide a methodology by incorporating most of the 

fundamental aspects of NNs to predict the compres-

sive strength of HPSFRC. The multi-layer feed for-

ward neural network is one of the most commonly 

used artificial neural network models and applica-

tions are based on the back propagation paradigm 

[15, 16, 33]. Training and testing patterns of NNs 

were prepared using the data set containing mix pro-

portions obtained from experimental results and dif-

ferent sources. The proposed back propagation neu-

ral network model has been validated with series of 

experiments and compared with the MLR model. It 

was shown that BP-NN model can efficiently be 

used as a new predictive tool by the concrete mix 

designers and technologists to solve the complex 

non-linear mapping to estimate the strength of the 

concrete mix proportions. 

2 MATERIALS AND METHODS 

2.1 Materials and Mixture proportions 

Ordinary Portland cement- 53 grade with a 28-day 

compressive strength of 54.5 MPa and specific grav-

ity of 3.15, and condensed silica fume as SCM hav-

ing specific surface area of 23000 m2/kg and specific 

gravity of 2.7, were used. The chemical analysis of 

silica fume is given in Table 1. 

Table 1. Chemical Analysis of Silica fume 

 
Silicon 

dioxide, 

SiO2  

 Mois-

ture  

 content 

 

Loss of Ig-

nition 

@ 975 o C 

 

Carbon  

 

Fineness 

(by residue 

on 45µ)  

 

88.7 % 0.7 % 1.8 % 0.9 % 2 % 

 

    Fine aggregate of locally available river sand 

passing through 4.75mm IS sieve, conforming to 

grading zone-II of IS: 383-1978 was used. Coarse 

aggregate of crushed blue granite stones with 

12.5mm maximum size was used. Sulphonated 

naphthalene formaldehyde condensate having spe-

cific gravity of 1.20 as HRWR admixture conform-

ing to ASTM C494 was used.        

    Fibers used in this investigation are crimped steel 

fibers of length = 36 mm and diameter = 0.45 mm, 

with an aspect ratio of 80 and ultimate tensile 

strength, fu  = 910 MPa and PP fibers of length= 20 

mm with an aspect ratio of 600.  

    Mixtures were proportioned using guidelines and 

specifications given in ACI 211.4R–93 [1], and rec-

ommended guidelines of ACI 544.3R-1993 [2]. 

Mixture proportions used in this investigation are 

listed in Table 2. For each water- cementitious mate-

rials ratio (w/cm), one HPC mix and 3 steel fibrous 

concrete mixes having fiber volume fraction, Vf = 

0.5, 1.0 and 1.5 % by volume (39, 78 and 117.5 

kg/m3) and 3 PP fibrous concrete mixes with Vf = 

0.25, 0.5 and 1% were prepared. Super-plasticizer 

with dosage range of 1.75 to 2.5% by weight of ce-

mentitious materials has been used. 16 series of high 

performance steel fiber reinforced concrete (HPS-

FRC) mixes and 8 series of HP-PP fiber reinforced 

concrete (HPSFRC) mixes were used in this investi-

gation. For each mix at least three 150 mm diameter 

cylinders and three 100 x 100 x 500 mm prisms 

were produced. 
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Table 2. Data of mix proportions of HPFRC for Strength 

Analysis (Kg/ m3)  

 

Mix  
w/c

m 

 

cm, 

kg 

 

FA, 

kg 
CA, kg SF, kg 

 

W, kg 

 

 

SP 

(%) 

 

 

Steel 

fiber 

Vf (%) 

M1-10-

0 
0.4 438 645 1088 43.8 175 1.75 0 

M1-10-

0.5 
0.4 438 641 1079 43.8 175 1.75 0.5 

M1-10-

1 
 0.4 438 636 1071 43.8 175 1.75 

1.0 

M1-10-

1.5 
0.4 438 632 1062 43.8 175 1.75 1.5 

M2-10-

0 
0.35 486 639 1088 48.6 170 2 0 

M2-10-

.5 
0.35 486 635 1079 48.6 170 2 0.5 

M2-10-

1 
0.35 486 630 1071 48.6 170 2 1.0 

M2-10-

1.5 
0.35 486 626 1062 48.6 170 2 1.5 

M3-10-

0 
0.3 550 601 1088 55 165 2.5 0 

M3-10-

0.5 
0.3 550 597 1079 55 165 2.5 0.5 

M3-10-

1 
0.3 550 592 1071 55 165 2.5 1.0 

M3-10-

1.5 
0.3 550 588 1062 55 165 2.5 1.5 

M4-10-

0 
0.25 640 542 1088 64 160 3 0 

M4-10-

0.5 
0.25 640 538 1079 64 160 3 0.5 

M4-10-

1 
0.25 640 533 1071 64 160 3 1.0 

M4-10-

1.5 
0.25 640 529 1062 64 160 3 1.5 

 

In mix designation M1 to M4, silica fume replacement is 10 

percent, after hyphen denotes fiber volume fraction (%) 

SP (%) -Superplasticizer in percent by weight of binder materi-

al 

Vf (%) denote Steel fiber volume fraction in percent in total 

volume of concrete 

f’cf = cylinder compressive strength of HPSFRC, (MPa)  

frf = flexural strength of HPSFRC (MPa) 

 

2.2 Testing for strength 

Compressive strength tests were performed accord-

ing to ASTM C 39-92 [3] standards using 150 mm 

diameter cylinders loaded uniaxially. The tests were 

done in a servo- controlled compression testing ma-

chine by applying load at the rate of 14 MPa/min. 

Minimum of three specimens were tested to compute 

the average compressive strength. 

Flexural strength (Modulus of rupture) tests were 

conducted as per the specification of ASTM C 78- 

92 [4] using 100 x 100 x 500 mm beams under third- 

point loading on a simply supported span of 400 

mm. The tests were conducted in a 100 kN closed 

loop hydraulically operated UTM at a deformation 

rate of 0.1 mm/min.  

3 ANALYSIS OF TEST RESULTS AND 
DISCUSSIONS 

3.1 Mechanical properties 

. Average compressive strength values for high per-

formance concrete (HPC) and steel fiber reinforced 

concrete with w/cm ratio = 0.40- 0.25, obtained in 

the ranges from 52.7 to 74.9 MPa and 54.8 to 80.4 

MPa, respectively, are given in Table 3. The moder-

ate improvement in compressive strength of 11 % 

was observed for the high performance steel fiber re-

inforced concrete; for PP fiber reinforced concrete, 

the improvement obtained is 5.5%. The variation of 

the compressive strength, f’cf, as obtained for con-

crete cylindrical specimens on the effect of steel fi-

ber content with aspect ratio = 80, and the strength 

ratios between high performance steel fiber rein-

forced concrete (HPSFRC) and HPC, (f’cf/f’c) are 

presented in Table 3. These ratios can be utilized for 

the development of the generalized expression irre-

spective of the influence of varying w/cm ratios and 

specimen parameters, and the expression can be 

used for the prediction of 28-day compressive 

strength of any type of specimens. The effect of fi-

ber content as fiber volume fraction on compression 

strength of HPSFRC in w/cm = 0.35 is shown in Fig. 

1. Similar trend was obtained for other fiber rein-

forced concrete mixes. An empirical expression for 

predicting the compressive strength,(f’cf) of HPS  
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Table 3. Mechanical properties and other results of HPSFRC 

 

Mix  w/cm 

Steel  

fiber 

Vf (%) 

Experimental values 

(MPa) frf/f'cf 

 

frf/f'cf0.5 

 

 

f'cf/f'c 

 

f'rf/f'r 

 f'cf               frf 

M1-10-0 0.4 0 52.56 6.21 0.118 0.86 1.00 1.000 

M1-10-0.5 0.4 0.5 54.77 7.15 0.131 0.97 1.04 1.151 

M1-10-1  0.4 1.0 56.01 7.73 0.138 1.03 1.07 1.245 

M1-10-1.5 0.4 1.5 57.40 8.19 0.143 1.08 1.09 1.319 

M2-10-0 0.35 0 55.85 6.75 0.121 0.90 1.00 1.000 

M2-10-.5 0.35 0.5 59.65 8.06 0.135 1.04 1.07 1.194 

M2-10-1 0.35 1.0 61.05 8.54 0.140 1.09 1.09 1.265 

M2-10-1.5 0.35 1.5 61.44 9.15 0.149 1.17 1.10 1.356 

M3-10-0 0.3 0 63.86 7.40 0.116 0.93 1.00 1.000 

M3-10-0.5 0.3 0.5 67.12 8.76 0.131 1.07 1.05 1.184 

M3-10-1 0.3 1.0 68.91 9.32 0.135 1.12 1.08 1.259 

M3-10-1.5 0.3 1.5 69.67 10.13 0.145 1.21 1.09 1.369 

M4-10-0 0.25 0 74.87 8.02 0.107 0.93 1.00 1.000 

M4-10-0.5 0.25 0.5 77.42 9.58 0.124 1.09 1.03 1.195 

M4-10-1 0.25 1.0 79.96 10.36 0.130 1.16 1.07 1.292 

M4-10-1.5 0.25 1.5 80.41 11.01 0.137 1.23 1.07 1.373 

 
f’cf = 150 Ø x 300 mm cylinder compressive strength of HPSFRC, (MPa) 

frf = flexural strength of HPSFRC (MPa) 

frf / f’cf = ratio of flexural strength to cylinder compressive strength of HPSFRCs (MPa) 

f’cf / fcf = ratio of compressive strength of HPSFRC to compressive strength of HPC (MPa)  

frf/ fr = ratio of flexural strength of HPSFRC to flexural strength of HPC (MPa)

 

FRC as a function of fiber volume fraction, Vf (%) 

for w/cm ratio = 0.35 using regression analysis has 

been obtained with R2= 0.86, is shown in Fig. 1(a). 

Similar trend lines have been observed for other fi-

ber reinforced concretes. 

Flexural strength or modulus of rupture, frf obtained 

for HPSFRC (with w/cm ratio = 0.40- 0.25) in the 

range of 6.21 to 11.01 MPa, and the strength ratios 

between HPSFRC and HPC, (frf/ fr) and improve-

ment in strength for varying Vf (%) are given in Ta-

ble 3. The maximum increase in flexural tensile 

strength due to the addition of steel fibers (Vf = 

1.5%) in HPC was found to be about 37.5%, which 

indicates significant improvement in strength. An 

empirical expression for the flexural strength (frf) of 

HPSFRC as a function of Vf (%) for w/cm ratio = 

0.35 using regression analysis has been obtained 

with R2= 0.92, is shown in Fig. 1(b). The maximum 

increase in flexural tensile strength due to the addi-

tion of PP fibers (Vf = 1%) in HPC was found to be 

about 26.5%, which indicates moderate improve-

ment in strength. 

 
Figure 1 (a). Effect of fiber volume fraction on compressive 
strength of HPSFRC             

 
Figure 1 (b). Effect of fiber volume fraction on flexural 
strength of HPSFRC             
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Figure 2. Compressive strength ratios of HPSFRC Vs Fiber 

volume fraction, Vf (%) 
 

3.2 Relationship between compressive strength 
ratio and fiber volume fraction (%) 

Fig. 2 shows compressive strength ratios, (f’cf /f’c) as 

a function of the steel fiber volume fraction, Vf (%). 

The strength ratio (dimensionless) of axial compres-

sive strengths of HPFRC has a linear relationship 

with the fiber volume fraction, Vf (%). Based on the 

experimental data, an  empirical equation for pre-

dicting the compressive strength ratios (f’cf /f’c) of 

HPSFRC as a function of  fiber volume fraction ,Vf 

(%) for w/cm ratios ranging from 0.25 to 0.40, using 

regression analysis by least-square method has been 

obtained with R2= 0. 84  (refer Fig. 2) as:                                                              

  fccf Vff 067.01'' +=            …(1) 

The coefficient of determination, R2 = 0.84, which 

indicates that 84 % of the variation in strength is ex-

plained by the reinforcement parameter, taking in to 

account the sample size and number of independent 

variable.  

Where, f’c = compressive strength of HPC, MPa 

           f’cf = compressive strength of HPSFRC, MPa 

and 

            Vf = fiber volume fraction, %.  

The values of correlation coefficient (R) and the in-

tegral absolute error (IAE) have been obtained as 

0.92 and 0.97, respectively. Equation (1), if expand-

ed for f’cf (the compressive strength of HPSFRC), 

the second term with coefficient (= 0.067* f’c * Vf ) 

represents the contribution of matrix strength-fiber 

interaction explicitly, which depends on the fiber 

bond and pullout characteristics of fibers in matrix. 

3.3 Relationship between flexural strength ratio 
and fiber volume fraction (%) 

The strength ratio (dimensionless) of flexural 

strengths of HPSFRC, (frf/fr) has a linear relationship 

with the fiber volume fraction, Vf (%). Based on the 

experimental data, an empirical equation for predict-

ing the flexural strength ratios (frf/fr), using regres-

sion analysis by least-square method has been ob-

tained with R2 = 0. 93 (refer Fig. 3) as: 

   frrf Vff 253.01+=                          …(2)                                                                                                  

Where, fr = flexural strength of HPC, MPa 

           frf = flexural strength of HPSFRC, MPa 

            Vf = fiber volume fraction, %.  

The values of correlation coefficient (R) and the in-

tegral absolute error (IAE) have been obtained as 

0.964 and 2.06, respectively.   

 
Figure 3. Flexural strength ratios of HPSFRC Vs Fiber volume 

fraction, Vf (%) 

3.4 Relationship between flexural strength and 
compressive strength 

The flexural tension and compressive strength ratio 

is one of the main indicators to reflect the brittleness 

of concrete. For concrete, the greater the tension and 

compression ratio is, the smaller the brittleness, and 

the greater the toughness and ductility. In this inves-

tigation, the flexural tensile and compression ratio of 

HPSFRC varies from 0.118 to 0.149. 
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Based on the experimental data, a nonlinear equation 

for predicting the flexural strength using regression 

analysis by least-square method has been obtained 

 
Figure 4. Flexural strength Vs Compressive strength of HPS-

FRC 

 

with R2 = 0. 685 (refer Fig. 4) as: 

        
939.0

'165.0 cfrf ff =                            …(3)  

Where, frf = flexural strength of HPSFRC, MPa 

           f’cf = compressive strength of HPSFRC, MPa 

The values of coefficient of correlation (R) and the 

integral absolute error (IAE) have been obtained as 

0.83 and 6.91, respectively. 

4 ARCHITECTURE OF NEURAL NETWORK 

The artificial neuron (AN) is an approximately simu-

lated model of a biological neuron. These ANs are 

used to develop an artificial neural net (ANN) with 

many inter-connections among different neurons. 

Each neuron receives weighted inputs from other 

neurons and communicates its outputs to other neu-

ron by activation function. ANN is a family of mas-

sively parallel architecture that is capable of carrying 

out parallel computations to solve different problems 

involving complex systems.  

    A neural network consists of a number of non-

linear computational processing elements (PEs), ar-

ranged in several layers including an input layer, one 

or more hidden layers and output layer(s). A PE ac-

cepts the input signals and produces one/two out-

put(s), which is a nonlinear function of the weighted 

sum of inputs. Most neural network applications are 

based on the back propagation paradigm which is a 

gradient descent learning algorithm performed by a 

delta rule to minimize the error function [7, 15, 33]. 

In this supervised learning, it back propagates the er-

ror signals from the output layer to all the hidden 

layers, so that their weights can be adjusted accord-

ingly. Back propagation is a generalization of the 

least square procedure for multilayered feed forward 

networks with hidden layers. Network is provided 

with sets of training data, in which network learns 

by adjusting the connection weights so as to be able 

to predict the output target for a given set of input 

samples. Upon successful completion of the training 

process, a well-trained neural network obtained, 

should be able to predict the untrained set of input 

data with an acceptable degree of accuracy. 

5 ARTIFICIAL NEURAL NETWORK (ANN) 
MODEL FOR STRENGTH OF HPSFRC 

HPSFRC is a new and highly complex material and 

thus an attempt to model its behaviors is a great 

challenging task. The properties of concrete are in-

fluenced by a lot of factors. Moreover, a mix is al-

most never described with all of the important de-

tails indicated and thus a strength prediction from 

the available data is a highly uncertain task [18]. An 

attempt was made to predict the 28-day compressive 

strength of HPSFRC mixtures developed by the Au-

thors and earlier researchers. In this NN, feed for-

ward-back propagation algorithm has been used to 

train and validate the NN model. In this approach 

the compressive strength of HPSFRC is a function 

of the following eight input features. For the purpose 

of analysis, the input elements were transformed into 

the normalized form and used in the neural network. 

 

1. w/cm ratio 

2. Cement (kg) 

3. Silica fume (kg) 

      4. Fine aggregate (kg) 

      5. Coarse aggregate (kg) 

      6. Super plasticizer (kg) 

y = 0.1685x0.939

R² = 0.685
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      7. Fiber volume fraction (kg) 

 

    The basic methodology for developing a success-

ful ANN model is to train a neural network for rela-

tionship between the influencing factors of concrete 

mixtures and its mechanical properties. The most 

commonly used NN model is the multilayered per- 

 

 
Figure 5. Architecture of Neural Network Model (NN Pattern: 

8-8-5-1) 

 

 

 

ceptron (MLP) as it has a supervised training pro-

cess [13, 18, 24]. The goal of MLP is to capture and 

represent complex input/ output relationships using 

the data sets. In this study, the 28-day compressive 

strength of HPSFRC was modeled using multilayer 

feed forward-back propagation (popular algorithm) 

neural network, which is commonly used in material 

modeling. A BP-NN consists of an input layer, hid-

den layers and an output layer is shown in Fig. 5. 

The input layer receives the external input neurons, 

which contains possible influencing factors (varia-

bles) and transforms signals to the hidden layers. 

The hidden layers contain a large number of pro-

cessing elements (PE). By using activation function, 

they transform signals to the output layer. The net-

work outputs are compared with the known targets 

and propagate error back to the networks using delta 

rule (learning mechanism) that performs a gradient 

descent on the error space, to adjust weights and bi-

ases as optional. Training process of neural networks 

is summarized as follows:  

1. Assign the initial connection weights Wji, and 

threshold values θj, if biases considered.   

2 calculate the input values of a hidden layer netpj.  

The input of each node which is the activation value 

for the jth neuron is defined as:     

 netpj = 
i

 Wji X pi + θj     ---(4) 

3. The output of a hidden layer is derived from net 

as:  

            Opj = ƒj(net pj)                                  ---(5)     ---(5)                              

where, Wji = connection weight that connects ith 

node in the input(preceding) layer  to the jth node in 

hidden (current) layer, Xpi = input  parameter in ith 

node, Opj= output of hidden layer, θj is the threshold 

value assigned to neuron j which is absent in this 

model. 

4. The non-linear sigmoid function is commonly 

used as an activation function in back-propagation 

neural networks is expressed by          

            ƒ (net) = 1/(1 + e – λ net )                         ---(6) 

where ƒ(.) = activation function, which has to be dif-

ferentiable, generally taken as a sigmoid function, λ 

= constant which guides the shape of the sigmoid 

function. 

5. Calculate input value of an output layer k, netpk 

using output value of hidden layer,j Opj, connection 

weights Wkj and biases  θk between hidden j and out-

put layer k. Then output value of output layer Opj, is 

derived from      

            netpk  = 
j

 Wkj  Opj+ θk                                      ----(7) 

            Opk = ƒk(netpk)                                       ---(8)                                                                                                                                                                                                                    

6. Updating of weight vectors 

The error function between the calculated output, 

Opk and target value, Tk of an output layer may be 

expressed as      

        E = 
2

1

=1k

 (Opk – Tk)
2                                ---(9)             ---(9)                                                                                                                                The standard back propagation uses the gradient descent learning algorithm with a constant step length by which the error in the output neuron is back 

propagated to the hidden layer neurons and then to 

the input layer neurons modifying the connection 

weights and biases by a delta rule to train the net-

work.    
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 From input to hidden neurons    

        

Table 4.  Ranges of components of data sets for HPFRC 

ΔWji  = -μ ∂E /∂Wji    and  E=∂E /∂Wji          ---(10)                          

 

 Wji (t+1) =Wji (t) + ΔWji                        ---(11)              ---(11) 

From hidden to output neurons 

            ΔWkj  = -μ ∂E / ∂Wkj    and E=∂E /∂Wkj ;  

 E = -(Tk –Opk) ƒk (netpk) Opj            ---(12)          

            Wkj (t+1) = Wkj (t) + ΔWkj                     ---(13)                 ---(13)   

where, μ = learning rate parameter which is a posi-

tive constant, t = learning cycle. 

Repeat steps 1 to 6 until global error goes below a 

target error. 

6 COLLECTION OF DATA 

The authors have collected experimental data from 

40 different sources by an extensive study, which 

was used to check the reliability of the strength 

model. Data sets of concrete mixtures were assem-

bled to have a fairly representative group governing 

all of the major parameters that influence the 

strength of HPC/ HPSFRC. In all about 250 mix-

tures from the above investigations were evaluated. 

During evaluation, some of the concrete samples 

were deleted from the data due to the large size ag-

gregates, special curing conditions, etc. A database 

of 219 records each containing the eight independent 

variables was made. These were 183 pairs of vectors 

in the training set and 36 pairs of vectors in the vali-

dating set. The ranges of components of data sets 

collected are given in Table 4. 

 

 

 
7 PROCESSING AND POST PROCESSING 
OF DATA 

Input vector components have the different quantita-

tive limits, so that normalization of data is needed. 

Different linear translations that can be used to nor-

malize the input vector components to the values 

ranging from 0 to 1. One of the translations used in 

this paper is given in equation (14) as:      

          bXaX ioi −=                                     …(14) 

                                       

where, a = 
minmax

1

XX −
                        

            b = 
minmax

min

XX

X

−
                       

where   Xio  and Xi are the iih
  components of the in-

put vector before and after normalization, respec-

tively, and Xmax  and Xmin  are the maximum and 

minimum values of all the components of the input 

vectors  before normalization. The components of 

the output vector required to be translated from val-

ues between 0 and 1 by the equation (12). 

Yi = Yio (Ymax - Ymin) + Ymin                    ---(15)     

Where, Yio and Yi are the  iih
  components of the out 

put vector before and after translation, respectively 

and  Ymax and Ymin are the maximum and minimum 

values of all the components of the output vectors, 

respectively. 

Components      Minimum Maximum   Average     

Water/cm.              0.21 0.45 0.33 

Cement (kg) 372.2 608.0 467.24 

Silica fume (kg) 0 115.4 37.22 

Fine aggregate 344 870 663.69 

Coarse aggregate 881 1243 1060.11 

Water (kg) 109.5 210.0 162.58 

Superplasticizer (kg) 0.0 29.09 9.90 

Fiber (kg) 0.0 120 47.41 

Fiber volume fraction 0.0 0.015 0.0054 

Strength (MPa) 42.35 100 65.16 
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8 IMPLIMENTATION PROCESS 

8.1 Training and testing of Back Propagation-
Neural Networks 

. In order to produce a good quality HPC/ HPSFRC, 

and to satisfy the requirements of strength, workabil-

ity, durability and serviceability, mix proportions 

play vital roles. The compressive strength test is car-

ried out at 28th day, and therefore, it is tedious to 

predict the early strength of mixes at construction 

sites which will delay the progress of the works. In 

this study, the NN pattern used is 8-8-5-1 (refer Fig. 

5). The neural networks for predicting the 28-day 

compressive strength of mixes was trained with data 

sets of 183 samples for verifying the robustness of 

the models. During training the NNs, the weights 

were updated till the error was less than the target 

error. The neural networks developed (refer Fig. 5) 

in the investigation has seven nodes in the input lay-

er and 1 node in the output layer; number of hidden 

layers = 2. To simplify the learning process, input 

and output elements were normalized between 0 and 

1 to be compatible with the limits of activation func-

tion, which is generally taken as sigmoid function. 

The network parameters considered in this approach 

are: Learning rate = 0.60; Momentum factor =0.7 

(optimizing).  Fig. 6 shows the normalized error 

verses no. of epochs in training the NNs, and Fig. 7 

Figure 7. Normalized predicted value versus Row number of data. 

 

Figure 6. Learning curve - Normalized error Versus No. of Epoch. 
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shows the normalized predicted values versus row 

no. of data. Fig. 8 shows the correlation between 

predicted strengths and normalized actual strengths 

in training the data sets. It is clearly seen from Fig. 8 

that all the data sets are almost on the zero variation 

line, which indicates the better prediction capability 

and reliability of the NN models. Table 5 shows the 

relation of convergence in training the neural net-

works and validation of data sets.  

       

 

        
 

 

 
X axis: True value after scaling; Y axis: predicted value after scaling 

                                                  (a). Training of data set                          (b). Validation - 3% error range          

Figure 8. Correlation between predicted and normalized actual strength

 

  After training the neural networks, the test data sets 

of authors and earlier researchers were used to eval-

uate the confidence in the performance of trained 

networks. The target error in training the NN was 

fixed as 0.001. The test data sets of 36 mixes used to 

validate the BP-NN model is given in Table 5. Vali-

dating results of the HPSFRC mixes obtained by NN 

model is summarized in Table 6. The error percent-

age of the predicted strength compared to the actual 

strength is also shown in Table 6. The trained NN 

model is validated for 36 data sets of authors and 

earlier researchers for 2, 3, and 5% error. Figs. 8 & 9 

show the correlation between predicted strengths 

and normalized actual strengths for validating ex-

amples at 2, 3, and 5% error range. From the analy-

sis of the data, it was noted that 100 % of data is 

within the testing errors and therefore, the NN model 

is predicting the strengths with reliability, and the 

significance of the model is very good. 

 
                                    (a). Validation- 2% error range                 (b). Validation - 5% error range          

Figure 9. Correlation between predicted and normalized actual strengths 

X axis: True value after scaling; Y axis: predicted value after scaling 
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Table 5. Convergence in training the ANNs 

 
Parameter No. 

of  

epoch

s 

Error 

range 

Training of data 

Target error: 0.001 

Validation of 

 data 

Average 

 Error 

Max. 

Error 

Max. error 

Compressive 

Strength 

22811 5% 0.000152 0.00244 0.00447 

12881 3% 0.000172 0.00266 0.00165 

27000 2% 0.000121 0.00203 0.00188 

 
Figure 10. Relative sensitivity of 8 input data. 

 

 

9 COMPARISON BETWEEN NN MODELING 
AND EXPERIMENTAL DATA 

To testify the effectiveness of the trained neural 

networks, the predicted 28-day compressive strength 

based on the 16 mix proportion parameters were 

compared with the experimental test results. The re-

sults showed that the BP-NN model developed can 

be used with a very good degree of reliability to pre-

dict the compressive strength of concrete mixes. The 

absolute percent error for the predicted strengths 

compared to the tested values using this model is 

within 2%. Therefore, the proposed back propaga-

tion-neural network model proves better, that 

demonstrates the effectiveness and reliability in pre-

dicting the strength of HPSFRC mixes. On examin-

ing the validity of the proposed model, there exists a 

good correlation between the predicted values and 

the experimental values of different researchers, is 

shown in Fig. 9. The sensitivity analysis was also 

carried out to evaluate the sensitivity of the input 

PE, in which supplementary cementitious materials 

(silica fume) is having higher sensitivity (relative    

sensitivity) compared with other elements as shown 

in Fig. 10. 

Figure 11. Correlation between actual 28-day compressive strengths and the predicted strengths by the MLR
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 10 MODELING OF STRENGTH MLR MODEL 

Multiple linear regression (MLR) estimates the coef-

ficients of the linear equation, involving more than 

one independent variable that best predict the value 

of the dependent variable. MLR model was devel-

oped by analyzing the experimental data sets con-

taining 8 parameters by using XLSTAT software. 

MLR model (Eq. 16) developed for 28-day com-

pressive strength HPSFRC with coefficient of de-

termination (R2) = 0.78, is expressed as: 

( )

)16()883.0

04047.03302.022383.0

21215.000768.00047.0

05054.0/9915.641771.104

−=

+−−

+−−

+−=

R

FiberSPW

SFCAFA

Ccmwy

 

where, y = estimated compressive strength or de-

pendent variable and n = no. of independent parame-

ters or variables  and corresponding 8 regression co-

efficients.  

Fig. 10 shows the correlation of predicted values 

with the experimental values (compressive 

strengths) of the authors and earlier researchers [22, 

Table 6. Validation of data: Comparison of experimental values with the predicted values by BP-NN models 

Author/ 

Researcher 

w/cm C 

(kg) 

SF 

(kg) 

Steel fiber 

(kg) 

Actual Com-

pressive 

strength, MPa 

Predicted values 

Within 

5 % 

range 

Within 

3 % 

range 

Within 

2% 

range 

Authors 0.4 394.2 43.8 0 52.56 All the 

Values 

All the  

values 

All the  

values 0.4 394.2 43.8 39 54.77 

0.4 394.2 43.8 78 56.01 

0.4 394.2 43.8 117.5 57.4 

0.35 437.4 48.6 0 55.85 

0.35 437.4 48.6 39 59.65 

0.35 437.4 48.6 78 61.05 

0.35 437.4 48.6 117.5 61.44 

0.3 495 55 0 63.86 

0.3 495 55 39 67.12 

0.3 495 55 78 68.91 

0.3 495 55 117.5 69.67 

0.25 576 64 0 74.87 

0.25 576 64 39 77.42 

0.25 576 64 78 79.96 

0.25 576 64 117.5 80.41 

Mahmoud Nili and Af-

roughsabet 

0.36 450 0 39 58.44 All the 

Values 

All the  

values 

All the  

values 0.36 450 0 78 60.21 

0.36 414 36 0 63.34 

0.36 414 36 39 66.87 

0.36 414 36 78 69.97 

Wei-Ting Lin 

et al. 

0.35 558 0 39 57.66 All the 

Values 

All the  

values 

All the  

values 0.35 558 0 78 60.18 

0.35 558 0 118 59.43 

0.35 530.1 27.9 0 61.99 

0.35 530.1 27.9 39 62.71 

0.35 530.1 27.9 75 63.03 

0.35 530.1 27.9 118 63.62 

0.35 502.2 55.8 0 67.24 

0.35 502.2 55.8 39 68.21 

0.35 502.2 55.8 78 72.32 

Mansur et al. 0.3 495 55 0 81.6 All the 

Values 

All the 

values 

no 

0.3 495 55 78.5 86.73 yes 

Poon and Shui 0.29 500 0 0 69 All the 

Values 

All the 

values 

All the  

values 0.29 500 0 78 71.4 

0.29 450 50 0 82.8 

0.29 450 50 78 83.7 
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23, 26, 34]. It is seen from the graph (Fig. 11) that 

the higher variability for the data points of the Man-

sur et al. (1999) [22] and Poon and Shui (2004) [26], 

indicates the satisfactory performance of the MLR 

model. Table 7 shows the experimental values and 

the absolute variations based on the predicted values 

by the multiple linear regression model (Eq. 16). 

The applicability of the statistical model was veri-

fied with the test data of authors and earlier re-

searchers. It was observed that 100% of the estimat-

ed values lie within ± 19.4 % of the actual values. 

The average absolute error (AAE) obtained is 6.18 

% and the correlation coefficient, R = 0.84. It was 

found that the performance of MLR model in pre-

dicting the compressive strength of HPSFRC mixes 

is satisfactory. On comparison with statistical model, 

the BP-NN models are predicting the strengths with 

higher accuracy and reliability, and also the trained 

model is much useful in mix proportion design. 

 

Table 7. Comparison between the experimental results 

and predicted values by MLR model 

 
    Mix des-

ignation 

Steel 

fiber 

content. 

Vf, (%) 

    28-day compressive  

    Strength, MPa 

Absolute 

variation 

   (%) Experimental Predicted 

M1-10-0 0 52.56 54.08 2.81 

M1-10-0.5 0.5 54.77 55.75 1.75 

M1-10-1 1.0 56.01 57.41 2.44 

M1-10-1.5 1.5 57.40 59.10 2.87 

M2-10-0 0 55.85 61.10 8.60 

M2-10-.5 0.5 59.65 62.77 4.97 

M2-10-1 1.0 61.05 64.43 5.25 

M2-10-1.5 1.5 61.44 66.12 7.08 

M3-10-0 0 63.86 68.60 6.91 

M3-10-0.5 0.5 67.12 70.26 4.47 

M3-10-1 1.0 68.91 71.93 4.19 

M3-10-1.5 1.5 69.67 73.61 5.36 

M4-10-0 0 74.87 77.99 4.00 

M4-10-0.5 0.5 77.42 79.66 2.81 

M4-10-1 1.0 79.96 81.32 1.67 

M4-10-1.5 1.5 80.41 83.01 3.13 

 

11 CONCLUSIONS 

Based on the experimental and numerical 

investigation on HPSFRC with w/cm ratios ranging 

from 0.40 to 0.25, the following conclusions are 

drawn.     

•  Addition of steel fibers in HPC mixes increases 

the compressive strength moderately and modulus of 

rupture significantly. The maximum improvement in 

compressive and flexural strengths for HPSFRC 

obtained are 10.6 % and 38 %, respectively at fiber 

volume fraction, Vf = 1.5% compared to HPC and 

for PPFRC improvement in compressive and flexural 

strengths are marginal and moderate, respectively. 

•  Empirical equations developed for the prediction 

of compressive strength and flexural strength as a 

function of steel fiber volume fraction, and the IAE 

values computed are 0.99 and 2.06, respectively. 

• Relation between flexural strength and 

compressive strength of HPSFRC has been 

developed with correlation coefficient, r = 0.83.  

• BP-NN models can be constructed based on the 

influencing factors of strength, to predict the 28-day 

compressive strength of concrete mixes.  

• The optimum network configuration was selected 

from the analyses for various network parameters.    

• The strength models based on ANNs attained good 

prediction accuracy. The accuracy of the model can 

be improved by increasing the number of training 

records for various mix design parameters. 

• On predicting the 28-day compressive strength of 

HPSFRC by MLR model, the average absolute error 

(AAE) obtained for the experimental data is 6.18%. 

It is observed that the performance of MLR model in 

predicting the strengths of HPSFRC mixes is satis-

factory.  

• BP-NN model was validated with the results of 

different researchers and authors at 2, 3, and 5% er-

ror range, in which 100% of data is within the range, 

indicates the good prediction capabilities and relia-

bility of the models.   
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• Neural network models are convenient and easy 

for numerical experiment to review the effects of 

variables involved in the mix proportions, and its 

applications to predict the concrete strength is prac-

tical. 

NOTATION 

The following symbols were used in this paper 

Wji = initial connection weights 

netpj = input values of a hidden layer 

λ = constant 

ƒ (.) = activation function, which has to be differen-

tiable  

Opj = output of a hidden layer 

netpk = input values of an output layer  

Opk = calculated value of an output layer  

Tk = target value of an output layer 

E = global error between the calculated output and 

target value 

μ = learning rate parameter 

IAE= Integral absolute error 

AAE= Average absolute error 
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