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ABSTRACT 
A complete methodology for the non-linear macroscopic analysis of unreinforced masonry (URM) shear 
walls under biaxial stress state is presented, using the finite element method. The methodology focuses on 
the definition / specification of a general anisotropic (orthotropic) failure surface of masonry under biaxial 
stress, using a cubic tensor polynomial, as well as on the numerical solution of this non-linear problem. The 
characteristics of the polynomial used, ensure the closed shape of the failure surface which is expressed in a 
unique mathematical form for all possible combinations of plane stress, making it easier to include it into 
existing software for the analysis of masonry structures. The validity of the method, using the derived failure 
surface, is demonstrated by comparing the results from the study of the non-linear behaviour of URM wall 
panels, under uniform compressive and shear loading, against results derived by other investigators. 
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1 Introduction 
Analytical and experimental studies on the behaviour of masonry walls to in-plane static loads 
have been the focus of activity of a number of investigators for many years. Masonry exhibits 
distinct directional properties, due to the influence of mortar joints acting as planes of weakness. 
Depending upon the orientation of the joints to the stress directions, failure can occur in the 
joints alone, or simultaneously in the joints and blocks. The great number of the influencing 
factors, such as dimension and anisotropy of the bricks, joint width and arrangement of bed and 
head joints, material properties of both brick and mortar, and quality of workmanship, make the 
simulation of plain brick masonry extremely difficult. 

The failure of masonry under uniaxial and biaxial stress states has been studied extensively in 
the past. These failures all represent particular points on the general failure surface. The 
development of a general yield criterion for masonry is difficult, because of the difficulties in 
developing a representative biaxial test and the large number of tests involved. 

In the absence of a suitable model to represent its behaviour, in the past masonry was assumed 
to be an isotropic elastic continuum; consequently, the influence of the mortar joints acting as 
planes of weakness, could not be addressed. The development of improved models of material 
behaviour was made possible by the increased sophistication of numerical methods of stress 
analysis. Indeed, it is only recently that analytical procedures, which account for the non-linear 
behaviour of masonry under static loads, have been developed. These analytical procedures 
could be summarized in the following two levels of refinement for masonry models: 

� Macro-modelling (masonry as an one-phase material): According to this procedure [1, 
2], no distinction between the individual units and joints is made, and masonry is 
considered as a homogeneous, isotropic or anisotropic continuum. While this procedure 
may be preferred for the analysis of large masonry structures, it is not suitable for the 
detailed stress analysis of a small panel, due to the fact that it is difficult to capture all its 
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failure mechanisms. The influence of the mortar joints acting as planes of weakness cannot 
be addressed. 

� Micro-modelling (masonry as a multy-phase material): According to this procedure [3, 
4, 5, 6, 7], the units, the mortar, and the unit/mortar interface, are modeled separately. While 
this leads to more accurate results, the level of refinement means that any analysis will be 
computationally intensive, and so will limit its application to small laboratory specimens 
and structural details. A.D. Tzamtzis [8] and Sutcliffe et al. [9], have recently proposed 
simplified micro-modelling procedures to overcome the problem. According to these 
procedures, which are intermediate approaches, the properties of the mortar and the 
unit/mortar interface (masonry as a two-phase material) are lumped into a common element, 
while expanded elements are used to represent the brick units. This approach leads to the 
reduction in computational intensiveness, and yields a model, which is applicable to a wider 
range of structures. 

In the present work, a complete methodology for the non-linear analysis of anisotropic masonry 
shear walls under biaxial stress state is presented, regarding masonry as an one-phase material. 
One of the advantages of the proposed material model is that average properties, which include 
the influence of both brick and joint, have been used. This means that a relatively coarse finite 
element mesh can be used with any element typically encompassing several bricks and joints. 
This has considerable computational advantages when analysing large wall panels.  

The basic assumptions and the associated mathematical expressions of the theory of plasticity 
are first outlined, giving special attention to their formulation for the case of anisotropic 
masonry. The significance of the use of a regular yield surface for the description of yield has 
been manifested since 1950, and introduced by Hill in his book “The Mathematical Theory of 
Plasticity” [10]. It is to be noted that the use of a failure surface that consists of more than one 
type of surface could demand additional effort in the analysis process of the masonry structure. 
According to Zienkiewicz et al. [11], the computation of singular points (“corners”) on failure 
surfaces may be avoided by a suitable choice of a continuous surface, which can usually 
represent the true condition. 

The main aim of this paper is the introduction of a regular yield surface; that is, a surface 
defined by a single equation of the form ( ) 0=σƒ  [12], to define failure under biaxial stress for 
masonry. This has been accomplished using a cubic tensor polynomial the characteristics of 
which ensures the closed shape of the failure surface and can represent, with a good degree of 
accuracy, the real masonry behaviour (experimental data) under failure conditions. It is to be 
shown that the geometry of the yield surface tends to have a significant influence not only in the 
formulation, but also in the numerical solution of the non-linear problem. 

An additional problem in present-day-practice is that the non-linear analysis of the behaviour of 
masonry is usually performed with the use of ready-made software packages that have been 
developed mainly for the analysis of concrete structures [13, 14]. The main disadvantage in 
using these ready-made programs is that their architecture is not amenable to modifications and, 
therefore, they cannot take into account important features appropriate for the case of masonry. 

To overcome this problem, a novel computer code, in FORTRAN programming language, has 
been developed for the structural design and analysis of URM shear walls. The code can be 
applied for the analysis of elasto-plastic anisotropic URM walls under plane stress. During the 
development procedure, special attention has been given at the graphic imaging of the analysis 
results. The program possesses the capability of automatic mesh generation, and produces the 
load – displacement diagram, giving a coloured graphic image of the yield pattern within the 
structure, for every increment of load. 
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2 Basic mathematical aspects of the non-linear analysis 
In order to formulate a theoretical description capable to model elasto-plastic material 
deformation, three requirements have to be met: 

� An explicit relationship between stress and strain that will describe the material’s behavior 
under elastic conditions must be expressed 

� A yield criterion that will define the stress level at which plastic flow commences must be 
postulated, and 

� A relationship between stress and strain must be developed for post-yield behavior; i.e., 
when the deformation is made up of both elastic and plastic components. 

The relationship between stress and strain, before the onset of plastic yielding, is given by the 
following standard linear elastic expression: 

ε=σ D            (1) 

In this expression σ and ε are the stress and strain components, respectively, and D is the 
elasticity matrix. 

Masonry walls exhibit distinct directional properties due to the influence of mortar joints acting 
as planes of weakness. In particular, the material of masonry shows a different modulus of 
elasticity ( )xE  in the x direction (direction parallel to the bed joints of masonry) and a different 
modulus of elasticity ( )yE  in the y direction (perpendicular to the bed joints). In the case of 
plane stress, the elasticity matrix is defined by 
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in which xyν , yxν  are the Poisson’s ratios in the xy and yx plane respectively; and xyG  is the 
shear modulus in the xy plane. It is worth noticing that in the case of plane stress in an 
anisotropic material the following equation holds 

xyyyxx EE ν=ν          (3) 

In this work, masonry is assumed to be a homogeneous and anisotropic material. 

2.1 The yield criterion 
The yield criterion defines the stress level at which plastic deformation begins and takes the 
form of the equation: 

( ) 0ƒ =σ           (4) 

where ƒ is a function. 

2.2 Plastic flow rule 
Von Mises first suggested the basic constitutive relation that defines the plastic strain 
increments in relation to the yield surface. Various other researchers [15, 16] have proposed 
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heuristic methods for the validation of Von Mises relationship. These methods have led to the 
current state-of-the-art hypothesis, which states that: 

If { } pεδ  denotes the increment of plastic strain, then: 

{ } { }σ∂
∂λ=εδ ƒ

p           (5) 

where λ  is a determinable constant (plastic multiplier). 
 

p
1dε

{ } pd ε

Yield surface, ( ) 0=σƒ

p
2dε

11 , εσ

22,εσ

 
Figure 1: Geometrical representation of the normality rule in 2D Stress Space. 

 
This rule is widely known as the normality principle because the relation (5) can be interpreted 
as requiring the normality of the plastic strain increment vector to the yield surface in the hyper-
space of ν stress dimensions. In Figure 1, this normality rule is shown, in the case of a two 
dimensional space. 

2.3 Stress-strain relations 
During an infinitesimal increment of stress, changes of strain are assumed to be partly elastic 
and partly plastic as 

{ } { } { } pe εδ+εδ=εδ  (6) 
The elastic strain increments are related to the stress increments via a symmetric matrix of 
constants [D] known as the elasticity matrix: 

{ } [ ] { }σδ=εδ −1
e D  (7) 

Expression (6) can be readily rewritten as 

{ } [ ] { } { } λ
σ∂

∂+σδ=εδ − ƒD 1  (8) 

When plastic yield is occurring the stresses are on the yield surface given by (4). By 
differentiating this we have 

...ƒƒ0 y
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x
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or 

{ } { }σδ








σ∂
∂=

Tƒ0  (9) 

or 

{ }σδα= T0  (10) 
where: 

{ } 






σ∂
∂

=α
ƒ  (11) 

The vector α  is termed flow vector. It should be mentioned that vector { }σδ of the stress 
increment is perpendicular to the flow vector α  since their inner product equals zero (10). 
Equation (8) can therefore take the following form: 

{ } [ ] { } αλ+σδ=εδ −1D  (12) 
Left-handed multiplying both sides of equation (12) by DTα  we obtain: 

{ } { } αλα+σδα=εδα DD TTT  (13) 
The first term of the right-hand of Eq. (13) is zero, according to Eq. (10). Therefore, Eq. (13) 
becomes: 

{ } αλα=εδα DD TT   
Solving for plastic multiplier λ , we obtain: 

{ }
αα
εδα=λ

D
D
T

T
 (14) 

Substituting Eq. (14) into Eq. (12), we obtain: 

{ } { } { }
αα
εδαα+σδ=εδ −

D
DD
T

T
1   

Solving for { }σδ , we obtain: 
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or 

{ } { }εδ=σδ epD  (15) 
where: 

αα
αα−=

D
DDDD

T

T

ep  (16) 

is the elasto-plastic matrix. 

3 The method of initial stress for the solution of the elasto-plastic 

problem 
Zienkiewicz, Valliapan and King [11] proposed in 1969 the method of initial stress that can 
solve an elasto-plastic problem based on a series of successive approximations. In the first step 
of the computation, during a load increment, a purely elastic problem is solved determining an 
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increment of strain ε′∆  and the relevant increment of stress σ′∆  at every point of construction. 
The non-linearity of the problem implies however that for the increment of strain found, the 
stress increment will in general not be correct. If σ∆  is the real increment of stress for the given 
strain, then the situation can only be maintained by a set of body forces equilibrating the initial 
stress system ( )σ′∆−σ∆ . 

At the second step of the computation we can remove all previous body forces by allowing the 
structure (with unchanged elastic properties) to have a new deformation. This way, additional 
new strain, and the corresponding stress increments, will be caused. However, these are most 
likely to exceed those permissible by the non-linear relationship and redistribution of the 
equilibrating body forces has to be repeated. 

If the process converges within a load increment, the full non-linear compatibility and 
equilibrium conditions will be satisfied, just as they are in an incremental elasticity solution. As 
all applications show, this convergence is very fast and three or four cycles of redistribution 
(iterations) are sufficient in any load increment. 

In order to follow the flow rules of plasticity, we must apply a series of load increments. If, 
however, a single load increment is used, it will be found that an approximate lower bound is 
achieved, satisfying equilibrium and yield criteria but not necessarily following the current 
strain development. 

For the elasto-plastic case the steps during a typical load increment can be summarized as 
follows: 

Step 1. Apply load increment and determine elastic increments of stress { } 1σ′∆  and strain 
{ } 1ε′∆  which correspond. 

Step 2. Add { } 1σ′∆  to stresses existing at start of increment { }0σ  to obtain { }σ′ . Check whether 
{ }σ′ƒ <0. If above satisfied, only elastic strain changes occur and the process is stopped, 

if not proceed to 3. 

Step 3. If { }σ′ƒ ≥0 and also { }0σƒ =0 (i.e. element was in yield at start of increment), compute 
{ } 1σ∆  by equation (15). 

{ } [ ] { } 1ep1 D ε′∆=σ∆  

where [ ]epD  is computed from equation (16) using stresses { }σ′ . 

Evaluate stress which has to be supported by body forces 

{ } { } { } 111 σ∆−σ′∆=σ ′′∆  

Store current stress { } { } { } 1σ ′′∆−σ′=σ  

And current strain { } { } { } 1ε′∆+ε′=ε  

Step 4. If { }σ′ƒ ≥0 and { }0σƒ <0 find the intermediate stress value at which yield begins and 
compute increment { } 1σ∆  by equation (15) starting from that point. Then proceed as in 
third step. 

Step 5. Compute nodal forces corresponding to the equilibrating body forces. These are given 
for any finite element by 

{ } [ ] { } ( )∫ σ′∆= voldBP 1
T  
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Step 6. Resolve using original elastic properties and the load system { }P  to find { } 2σ′∆  and 
{ } 2ε′∆ . 

Step 7. Repeat steps 2 to 6. 

The cycling is terminated when the nodal forces of fifth step reach sufficiently small values. If 
this is not achieved in a predetermined number of cycles (20 in our case) collapse condition is 
deemed to have been achieved and the process is stopped. The computational procedure is 
illustrated graphically in a two-dimensional stress space in Figure 2. 

 

{ }∆ ′σ 1

( )ƒ =σ 0 

σ1

σ2

{ }σ
0

{ }∆ ′′σ 1

{ }∆σ 1

{ }∆ ′σ 2

{ }∆σ 2

{ }∆ ′′σ 2

 
Figure 2: Graphical Interpretation of the Initial Stress Method. 

 
4 Yield surface geometry effect in non-linear solution 
In this paragraph a description is made on the effect the yield surface geometry has in the 
formulation and the numerical solution of the elasto-plastic problem. 

4.1 “Corners” in a yield surface 
Sometimes the yield surface is not defined by only a single continuous (and convex) function, 
but by a series of functions: 

n21 ƒ...,ƒ,ƒ  

According to Koiter [12], a surface of this kind is called singular. Such a surface is the yield 
surface of Tresca and the yield surface for masonry, in three mutually intersected cones, 
proposed by Dhanasekar, Page, and Kleeman [22]. 

For most of the bounding surface, only a single condition such as 0ƒ m =  can define the yield 
surface, and the previously written flow rules apply. 

At a singular point (“corner”) of the yield surface we may have, however, the condition that 

0ƒ...ƒ mh ===  

For such a singular point, the use of the following equation has been proposed by Koiter [12], 
for the estimation of the increment of plastic strain, instead of equation 5: 
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where iλ  are positive constants (Figure 3). 

 

( ) 0ƒ2 =σ

11,εσ

22 ,εσ
{ } pd ε

( ) 0ƒ1 =σ

 
Figure: 3 Corners in a yield surface. Graphical interpretation of Koiter’s criterion. 

 
According to Zienkiewicz, Valliapan, and King [11], the use of singular areas imposes 
important problems to the elasto-plastic analysis process. The authors propose to avoid 
calculating the singular points in a yield surface, by making a suitable choice of continuous 
surfaces, which can usually represent the true condition with a good degree of accuracy. 

4.2 Development of a realistic failure criterion for masonry under biaxial stress 
The failure theories for isotropic materials are not applicable for masonry under biaxial stresses 
because they are derived on the basis of the invariant state of stress concept where the stress 
orientation has no effect on the strength. In this section, failure criteria are proposed as a 
generalized form for masonry under biaxial stresses, taking into consideration its anisotropic 
nature as a composite material. The mortar bed joints, because of their continuous nature, divide 
the media into layers of equal thickness and thus give masonry the appearance of a laminated 
composite material. For the expression of an analytical failure model of masonry, therefore, a 
polynomial that is available already for composite materials is proposed. This failure surface in 
the stress space, can be described by the equation [17, 18, 19]: 

( ) 01FFFƒ kjiijkjiijii =−⋅⋅⋅+σσσ+σσ+σ=σ�       (18) 
In this equation σ

�

 (� = 1, 2,..., 6) are the components of stresses and Fi, Fij, Fijk (i, j, k = 1, 2,..., 
6) are coefficients to be properly determined. 

If one restricts the analysis to a plane stress state and considers that a cubic formulation is 
reasonably accurate representation of the failure surface, then Equation (18) reduces to: 
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(19) 
The following assumptions have been made [20, 21]: 

•  Symmetry of the material is assumed by the identity of “symmetric” coefficients, for i≠j≠
k≠i, that is F F F F F F

ijk ikj jik kij kji jki
= = = = = , and F F

ij ji
= . 

•  The material under a given shear loading, possesses a common shear strength  (S=S′), for 
both positive or negative direction of shear loading. Consequently, assumming that there 
is no dependence on the shear loading direction, the terms with odd exponents of σ

6
, can 

be eliminated. 

•  The redundant terms Fiii (for i = 1, 2 and 6) are omitted. 

Using the notations ( )τσσ ,, yx  instead of ( )621 ,, σσσ , equation 18 takes the form: 
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(20) 
Eliminating all third order terms in Eq. 20, a simplified yield criterion can be derived: 

( ) 01F2FFFFF,, yx12
2

66
2
y22

2
x11y2x1yx =−σσ+τ+σ+σ+σ+σ=τσσƒ    (21) 

This latter simple form of the yield criterion has already been used by other investigators [1, 
22], to define the failure of brick masonry under biaxial stress state. 

According to Syrmakezis and Asteris [21], the general yield criterion (Eq. 20) through its non-
symmetric form, fit the non-symmetrically dispersed experimental data better than the 
simplified model (Eq. 21). 

Using the above yield surfaces, the expression of flow vector is defined by 
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for the case of the general yield criterion, and by 
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for the case of the simplified yield criterion. 

In order to determine the coefficients of the proposed polynomials (Eqs 20, 21), an evaluation of 
the mechanical characteristics of masonry is performed using the experimental data of Page 
[23], through a least squares approach. The regular yield surface (Figure 4a) for the case of the 
general yield criterion (Eq. 20), can then be defined as [2, 21]: 

14689.028398.0003135.0

009585.030.025.632.1573.087.927.2
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2
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22
y

2
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+σσ+σσ−τ+σ+σ+σ+σ
   (24) 

In addition, for the simplified yield criterion (Eq. 21), the regular yield surface (Figure 4b) can 
be defined as: 

1454.025.632.1573.087.927.2 yx
22

y
2
xyx =σσ−τ+σ+σ+σ+σ     (25) 

The validity of the general yield criterion is demonstrated by comparing the derived analytical 
yield surface of Eq. 24 with the existing experimental results of Page [23]. More than 70 
experimental data have been depicted in (Figure 5). In the same figure, analytical curves in 
principal stress terms are also depicted for the yield surface of eq. 24. The good agreement 
between the analytical and experimental data is apparent for this general yield surface with a 
non-symmetric curve. 
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(a) General yield criterion (b) Simplified yield criterion 

Figure: 4 Yield surface of masonry in normal stress terms:  
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(a) θ=22.5° (b) θ=45° 

Figure: 5 Yield curve of masonry in principal stress terms using the proposed general yield 
criterion 

 

General model 
Simplified model  

 

Figure: 6 Yield curve of masonry in principal stress terms (θ=45°). 

In Figure 6, the simplified model (dotted line) is compared with the general model (continuous 
line), for the case of an angle θ  (angle between the maximum principal stress direction and the 
direction of the x-axis) equal to 45°. It is to be noted that the general failure criterion through its 
non-elliptical (non-symmetric) form, can approach the non-elliptical dispersed experimental 
data of Page [23] better than the simplified model. 

 

5 Computer code 
In order to implement the proposed method of analysis, a specific finite element computer 
program for the 2D non-linear analysis of a masonry plane wall, under monotonic static loading, 
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has been developed. During the development procedure, we have made use of the ready-made 
databanks of Owen & Hinton PLAST computer code [24]. 

It must be mentioned that many other researchers used Owen & Hinton’s code, in order to 
develop new software for the non-linear analysis of masonry. The most representative of these, 
is a non-linear analysis computer code developed by Adreaus [1]. The main disadvantages of 
the Owen & Hinton software, is the isotropic consideration of the materials and the use of 
isotropic yield criteria. 

The software used in the present work, overcome the above-mentioned disadvantages of 
PLAST, and is appropriate to model the anisotropic behaviour of masonry, allowing the use of 
the regular yield surfaces developed (Eqs. 13 and 14). This specific iterative plane stress finite 
element program is based on four-noded isoparametric quadrilateral elements and is used to 
simulate the incremental loading and progressive failure of masonry under in-plane loads. The 
effectiveness of the program is demonstrated by comparing the computed behaviour with the 
analytical results of Andreaus [1]. 

During the development phase, special attention has been given in producing a visual 
representation of the analysis procedure and of the response results (Figure 7). In particular, the 
user is able to follow the individual stages of the analysis, as-it-progresses (i.e., for each load 
increment), by observing: 

a) the flow-chart diagram produced on the screen; which gives information on the individual 
operation performed within the program, the number of iterations needed for convergence 
within each load increment, and the computer run time required, 

b) the load-displacement diagram, and 

c) the coloured graphic images of the yield process, produced for each individual element 
within the structure, according to the kind of stress under which yield takes place (i.e., yield 
under biaxial compression, tension or heterosemous stress). 

This visual representation of the analysis procedure is particularly useful to the user, not only 
for the instant information it provides as the software runs, but also for the verification of the 
results produced. 
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Figure 7: Load-displacement diagram and coloured image of the yield pattern within the 

structure, for every increment of load. 
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6 Numerical example 
Using the computer program developed, we studied the non-linear behaviour of a URM shear 
wall with openings (Figure 8) under uniform compressive and shear loading, and with the 
following assumptions: 

•  The wall is perfectly fixed at the ground level and is acted upon by both horizontal and 
vertical loads, which are proportionally increased up to failure, according to the load factor 
λ. The loads are uniformly distributed at the wall top; the reference load amplitude in both 
directions is assumed to equal 0.1 N/mm2 and the load factor increment, equal to 0.1. 

•  The masonry wall has been discertized by means of four-node isoparametric quadrilateral 
elements, whose length is 1.00 m. 

•  Both isotropic and anisotropic behaviour has been assumed for the masonry material, with 
Young’s modulus E=5700 N/mm2 and Poisson’s ratio ν =0.19, for the isotropic case study, 
and moduli of elasticity xE =4500 N/mm2 and yE =7500 N/mm2 and Poisson’s 
ratios xyν =0.19 and yxν =0.32 respectively, for the anisotropic case study. 

•  Both the simplified and the general yield criterion developed, have been used for the 
analysis. 

 

Fig. 8 Unreinforced masonry shear wall with openings under both horizontal and vertical loads. 

 

Using the method described, the diagram of the load factor λ versus displacements at the top of 
the masonry wall is computed and compared, in Figure 9, with the corresponding analytical 
results taken from Andreaus [1]. It is clearly shown that there is a good agreement between the 
results of the present non-linear analysis, using the simplified yield criterion of Eq. 23, and the 
results derived from Andreaus [1]. This was expected, however, due to the fact that the same 
assumptions have been made for the analysis. 
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                 Present analysis 
 
                 Andreaus [1] 

 
Figure 9: Load factor lamda (λ)-displacement diagram. 

 

 

A1. Isotropic analysis
       General yield criterion 
A2. Anisotropic analysis 
       General yield criterion 
B1. Isotropic analysis 
       Simplified yield criterion
B2. Anisotropic analysis 
       Simplified yield criterion

A1

A2

B2
B1

 
Figure 10: Load factor lamda (λ-displacement diagram. 

Figure 10 shows the diagram of the load factor λ versus displacement, using both the simplified 
and the general yield criterion proposed, and assuming the masonry material to be either 
isotropic or anisotropic. It is clear that non-linear behaviour of masonry is affected by the yield 
criterion used for the analysis. Although both criteria adopted have the same mechanical 
masonry characteristics (same mono-axial compressive and tensile strength as well as the same 
strength in pure shear), a strong variation of the load-displacement curves appears (curves A1 
and B1).  
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  : yield under biaxial tension : yield under biaxial compression  
  : yield under heterosemous 

stress 
: non yield   

        
 

Figure 11 Successive representations of yield pattern (λ=0.4, 1.4, 2.4, 3.4). 
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  : yield under heterosemous stress : non yield   
        

 
Figure 12: Successive representations of yield pattern (λ=0.3 – 1.0). 
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It is also clear from Figure 10, that non-linear behaviour of masonry is affected by the 
anisotropy of the masonry material. It must be noted that the consideration of the anisotropic 
behaviour of masonry leads to a greater ultimate load and to a less ultimate displacement 
(curves A2 and B2); thus, to a more brittle behaviour of masonry. 

With the computer software developed, apart from the load-displacement diagram, graphic 
images of the yield process can be produced for every increment of load (Figure 11). These 
images are coloured according to the kind of stress under which yield takes place for every 
particular element (i.e., yield under biaxial compressive, tensile or heterosemous stress). These 
graphic images are especially useful not only because of the visual information they give, but 
also because of the validation they provide. As an example, in Figure 12, and for a load factor of 
λ=0.7, the bottom left hand corner element yields first under biaxial tension; whereas, for a load 
factor of λ=0.8, the element yields under heterosemous stress. 

7 Conclusions 
The present work applies a new methodology for the non-linear 2D finite element analysis of 
anisotropic masonry under monotonic loading. The methodology focuses on the definition / 
specification of a general yield surface for the case of anisotropic masonry under biaxial stress 
state, as well as on the numerical solution of this non-linear problem. In particular, in order to 
define the yield surface a cubic tensor polynomial has been adopted, and the initial stress 
method has been applied for the solution of the elasto-plastic problem. The proposed failure 
surface is expressed in a unique mathematical form of all possible combinations of plane stress, 
to make it easier to include it into existing software for the analysis of masonry. 

The main advantage of the method is that the formulation of the plasticity equations through a 
regular yield surface, leads to the elimination of the problem that occurs by the use of a singular 
surface. Results from the study of the non-linear behaviour of URM wall panels, under uniform 
compressive and shear loading, clearly state that the non-linear behaviour of masonry is strongly 
affected by the yield criterion used, as well as by the anisotropy of its material. 

It is believed that the analytical method presented, describing the masonry failure surface in a 
simple manner, should be an effective tool for future investigations of the behaviour of masonry 
structures. 
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APPENDIX   
The following notations have been used in this paper: 

Symbols 

D  = Elasticity matrix; 

epD  = Elasto-plastic matrix; 

E  = Young’s modulus for isotropic assumption of the material behaviour; 

xE , yE  = module of elasticity in the x and y-direction respectively; 

iF  = strength tensor second rank; 

ijF  = strength tensor fourth rank; 

ijkF  = strength tensor sixth rank; 

xyG  = shear modulus in the x, y-plane; 

α  = flow vector; 

θ  = angle between maximum principal stress direction and direction of x-axis; 

λ  = plastic multiplier as well as load factor; 

ν  = Poisson’s ratio for isotropic assumption of the material behaviour; 

xyν , yxν  = Poisson’s ratios in the x, y and y, x-plane respectively; 

yx ,σσ  = normal plane stress along x-axis and y-axis respectively; 

21, σσ  = maximum and minimum principal stresses, respectively; and 

τ  = shear stress measured in the x, y-plane. 

Indexes 
e = elastic; 

p = plastic; and 

ep = Elastoplastic. 

Colours 

 = yield under biaxial tension; 

 = yield under heterosemous stress; 

 = yield under biaxial compression; and 

 = non yield. 

 


