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ABSTRACT 
This paper deals with the development of reliable and efficient computational tools to analyze and find 
optimum shapes of box girder bridges in curved planform in which the strain energy or the weight of the 
structure is minimized subject to certain constrains. The finite strip method is used to determine the stresses 
and displacements based on Mindlin-Reissner shell theory. An automated analysis and optimization 
procedure is adopted which integrates finite strip analysis, parametric cubic spline geometry definition, 
automatic mesh generation, sensitivity analysis and mathematical programming methods. It is concluded 
that the finite strip method offers an accurate and inexpensive tool for the optimization of box girder bridges 
having regular prismatic-type geometry with diaphragm ends and in curved planform. 
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1 Introduction 
In structural design it is necessary to obtain an appropriate geometric shape for the structure so 
that it can carry the imposed loads safely and economically. This may be achieved by the use of 
Structural Shape Optimization (SSO) procedures in which the shape or the thickness of the 
components of the structure is varied to achieve a specific objective satisfying certain 
constraints. Such procedures are iterative and involve several re-analyses before an optimum 
solution can be achieved. SSO tools can be developed by the efficient integration of structural 
shape definition procedures, automatic mesh generation, structural analysis, sensitivity analysis 
and mathematical programming methods. 

1.1 Literature survey 
Single or multi cell box cross sections often appear in single or multispan medium- and long-
span bridges. Maisel [1] conducted a detailed survey of the box girder bridges built worldwide 
until 1970. The usual types of bridges were not economical for long spans because of the rapid 
increase in the ratio of dead load to total design load as the span lengths increased. The box 
girder concrete bridge was developed as a solution to this problem.  

In practice several methods with various degrees of rigor are available for analysis. These range 
from the elementary or engineer’s beam theory to complex-shell finite element analyses; other 
methods of analysis utilize folded-plate [2] and [3] methods. Razaqpur and Li [4] developed a 
straight multicell box girder finite element with exact shape functions based on this extended 
version of Vlasov’s thin walled beam and than they combine Vlasov’s thin walled beam theory 
with the finite element technique to analyze curved multicell box girder bridges [5]. Dawe and 
Peshkam [6] have presented finite strips formulations for the buckling and vibration of finite 
length composite prismatic plate structures with diaphragm ends. 

The finite strip method, which is now routinely used to gain insight into the structural behavior 
of prismatic structures, was initially developed by Cheung [3] who presented a wide range of 
solutions for the static and dynamic analysis of prismatic plates and shells using Kirchhoff’s 
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classical thin plate theory Since its initial introduction by Cheung [3], many authors have 
investigated the applicability of the finite strips method and have developed many useful 
extensions. One area of research has been concerned with the development of finite strips 
models for plates and shells based on Mindlin-Reissner assumptions. Hinton and his colleagues 
[7-8] have presented a comprehensive study covering static and free vibration analyses of 
variable thickness prismatic folded plates and curved shells using linear, quadratic and cubic 
strips.  

SSO techniques based on the finite element method have been used for many years with some 
success in the design of structures and structural components. Shape optimization of structures 
are modeled using two-dimensional representations was first investigated by Zienkiewicz and 
Campbell [9]. Since then much work has been reported. Hartman and Neummann [10] carried 
out shape optimization of a box girder bridge using the finite strip method with constraints on 
stresses and weight minimization as an objective. Hinton and Rao [11,12] investigated the 
optimum structural design of prismatic folded plate and shell structures using the finite strip 
method with strain energy minimization as an objective and allowed the cross sectional shape 
and thickness to be varied.  

2 Mathematical Definition of Optimization Problem 
The optimization problem may be summarized in the formal mathematical language of 
nonlinear programming as follows: Find the design vector s which maximizes (or minimizes) 

the objective function F(s) subject to the behavioural constraints 0)( ≤sjg , equality constraints 
0)( =skh and explicit geometric constraints

u
iii sss ≤≤�

. The subscripts j, k and i denote the 
number of behavioural constraints, equality constraints and design variables respectively. The 
terms si

l and  si
u refer to the specified lower and upper bounds on the design variables. Table 1 

summarizes the list of commonly used design variables, objective functions and inequality 
constraints in SSO. 

Table 1: Design variables, objective functions & constraints  

used in structural shape optimization 

 

Design variables ‘s’ 

•Length of segments 

•Thickness of segments 

Objective functions F(s) 

•Weight minimization 

•Strain energy minimization 

Constraint functions g(s) 

•Stress constraint 

•Weight constraint 
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In general, the functions F, gj and hk may all be non-linear implicit function of the design 
variables s. The objective function is minimization of strain energy or weight, subject to stress 
or weight constraints. In addition, explicit geometrical constraints are imposed on the design 
variables to avoid impractical geometries. For example, a minimum element thickness is defined 
to avoid zero or ‘negative’ element thickness values. It is worth mentioning here that the 
objective function and the constraint hull may be non-convex and therefore local optima may 
exist. 

3 Structural Shape Optimization Algorithm 
The basic algorithm for structural shape optimization is given in Figure 1.  

 
 
 

Evaluate  
Displacements and stresses 

Evaluate  
Sensitivities  

Generate strips 

STOP Optimum  
Generate new  
cross-section 

Define 
cross-section etc. START 

 
 

Figure 1 Basic approach to structural shape optimization. 
 

A typical SSO procedure is based on the following algorithm: 

1. The optimization problem, which includes the objective function, constraints, design 

variables, etc., are defined. The objective function and behavioral constraints are nonlinear 

implicit functions of the design variables. 
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2. The initial cross-section of the box girder bridge cross-section in terms of a set of design 

variables T(1)
n

(1)
2

(1)
1

(1) ],...,,[ sss=s  are defined. Design variables may include the 

coordinates and the thickness at some specific points, and define the cross-sectional 

geometry. (The superscript denotes the design number in other words the optimization 

iteration number). 

3. Suitable finite strips are generated. This may be achieved with an automatic mesh generator 

for a prescribed mesh density. In this study, only uniform mesh densities are used. 

4. Displacements and stresses are evaluated. The finite strips analysis for current design s(c) is 

then carried out and the displacements and stresses are evaluated together with the objective 

function and constraints. A feasible design variable vector s(1) is usually used for initial 

designs but this is not always necessary. 

5. The sensitivities of various items such as strain energy, displacements, stresses and the 

objective function of the current design to small changes in the design variables are 

evaluated. Methods for evaluating the sensitivities may be semi analytical or can be based on 

finite differences. In the present work, both methods are used. 

6. Modify the current design and evaluate the design changes )(cs∆ using the mathematical 

programming methods. 

7. Check the new design changes )(cs∆ . If the design changes )(cs∆ are non-zero then update 

the design vector to 
)()()1( ccc sss ∆+=+  

and a new cross-section is generated with an improved value of the objective function. The 

new geometry is sent to the mesh generator, which automatically generates a new analysis 

model, and the whole process is repeated from step 3. Otherwise stop. 

4 Geometry Modelling 
4.1 Structural shape definition 
The definition and control of the geometric model of the structure to be optimized is a complex 
task. The cross-section of box girder bridge encountered in practice are so arbitrary and 
complex that it is essential that they should be presented in a convenient way using computer 
aided design tools, such as parametric cubic spline methods [13,14]. 

For the convenience we have adopted certain standard terms for the representation of the shape 
of the structure, which will be referred to frequently. The cross section of a typical box girder 
bridge structure is shown in Figure 2. It is formed by an assembly of segments. Each segment is 
a cubic spline curve passing through certain key points all of which lie on the midsurface of the 
structure cross-section. Some key points are common to different segments at their points of 
intersection. 
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Figure 2 Geometric representation of box girder bridge 

The number of key points used to define the shape of the structure is another important aspect in 
shape optimization. For curved segments, the more key points used the better the representation 
of the middle surface of the structure. However, it should be noted that in structural shape 
optimization procedures increasing the number of key points leads to an increase in the number 
of design variables and is likely to lead to greater computational expense. 

By judicious linking of design variables at two or more key points, the length of a segment can 
be treated as a design variable and symmetry of shape can be easily achieved; and also, the 
number of design variables is considerably reduced. 

4.2 Structural thickness definition 
The thickness of the box girder bridge is specified at some or all of the key points of the 
structure and then interpolated using cubic splines or lower order functions this results in 
smooth structure shapes. By linking of thickness variables, piecewise constant or linear 
variations can be obtained; this is necessary in some cases such as box girders. 

4.3 Selection of constraint points 
In weight minimization it is necessary to constraint some function of the stresses (for example, 
the von Misses stress or principal stress) to be less than or equal to a certain specified value 
everywhere throughout the entire structure. In SSO procedures where re-meshing is performed 
at every iteration the function cannot be associated with the nodes since their number and 
position do not remain constant. Therefore, apart from being used to represent the shape and 
thickness, the key points are also used as stress sampling points to verify whether the stress 
constraint has been satisfied or not. Although this approach is satisfactory in most cases, it can 
be dangerous, since the maximum value of the stress may not occur at a key point. To avoid this 
potential problem, the points where the maximum stress occur are also taken as constraint points 
in addition to the key points. This approach has been found to be reliable. 

4.4 Mesh generation 
The next step is to generate a suitable finite strip mesh. This may be achieved with an automatic 
mesh generator for a prescribed mesh density. Mesh generation should be robust, versatile, and 
efficient. Here, we use a mesh generator, which incorporates a re-meshing facility to allow for 
the possibility of refinement. It also allows for a significant variation in mesh spacing 
throughout the region of interest. The mesh generator can generate meshes of two, three and 
four noded elements and strips. Moreover, the box girder bridge thickness is also interpolated 
from the key points to the nodal points using cubic splines. 

To control the spatial distribution of strip sizes or mesh density throughout the domain, it is 
convenient to specify the mesh density at a sequence of points in the structure. The mesh 
density is a piecewise linear function of the values of mesh size δ at key points. At the initial 
stages of the analysis, mesh density values given at the two end key points of each segment will 
be sufficient if only a uniform or a linearly varying mesh density is required [14]. Figure 3 
shows a mesh of box girder bridge. 
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Figure 3 Mesh representation of box girder bridge 

5 Structural Analysis  
Box girder bridges with constant transverse cross-section with diaphragm ends are quite 
common. These structures are either of straight or curved planform and can have complex cross-
sections. In some cases they may also rest on elastic foundations. Considerably research effort 
has been directed towards the development of accurate and inexpensive analysis procedures.  

5.1 Theory of structural analysis and strip formulation  
The finite strip method has proven to be an inexpensive and useful tool in analysis of structures 
having regular prismatic type geometry and simple boundary conditions. Structures which are 
simply supported on diaphragms at two opposite edges with the remaining edges arbitrarily 
restrained, and where the cross section does not change between the simply supported ends, can 
be analyzed accurately and inexpensively using the finite strip method in cases where a full 
finite element analysis could be considered extravagant. The structures can have rectangular or 
curved planforms. The finite strip method combines the use of Fourier expansions and one-
dimensional finite elements to model the longitudinal and transverse structural behavior 
respectively.  

5.1.1 Total potential energy 

Consider the Mindlin-Reissner curved shell strip shown in Figure 4. Displacement components 
��

vu , and 
�

w  are translation in the � , η and n directions respectively. Note that η varies from 
an angle 0 to β along a curve of radius r.  
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Figure 4. Definition of Mindlin-Reissner finite strips which are curved in plan. 

 

The displacement components 
�

u  and 
�

w  may be written in terms of global displacements u 
and w in the r and z directions as 

αα sincos wuu +=
}

 

α+α−= cossin wuw
�

  (1) 

where α  is the angle between the r and �  axes; see Figure 4. The radius of curvature R may be 
obtained from the expression 

Rd
d 1−=
�

α
  .                                                     (2) 
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Figure 5 Single cell curved box girder bridge analyzed by Sisodiya and Ghali[22] 

(a) cross-sectional view; (b) plan view, (c) position of design variables. 
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The total potential energy for a typical curved Mindlin-Reisner strip spanning over an angle β 
resting on an elastic Winkler-type foundation of modulus k is given in terms of the global 
displacements u, v, w and the rotations φ and ψ of the mid-surface normal in the � n and ηn 
planes respectively by the expressions [15] 

∫∫ ∫

∫ ∫

−−+

++=
ββ

β

ηηη

ψφ

00

2

0

)][

][]([2/1)(

rddrddrdkw

,w,v,u,I

TT
ss

T
s

bb
T

bmm
T

m

guguD

DD

��
�

εεεεεεεε

εεεεεεεεεεεεεεεε
                       (3) 

where mεεεε , bεεεε  and sεεεε  are the membrane, bending or curvatures and transverse shear strains 
respectively and given in Table 2 for box girder bridge in curved planforms. Note that the 
method used to calculate the quantities are given in Hinton and Rao [8].  

Table 2. Strain terms and strain-displacement matrices for curved in plan 
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For an isotropic material of elastic modulus E, Poisson’s ratio ν  and thickness t, the matrix of 
membrane, flexural and shear rigidities have the form    
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10
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)1(2 ν
κEt

sD                                             (4) 

where κ is the shear modification factor and is usually taken as 5/6 for an isotropic material. 
Note that the displacement components u are listed as 

Tψ,w,v,u, ][ φ=u                                                    (5) 

and the corresponding distributed loadings g may be written as 
T

ψwvu g,g,g,g,g ][ φ=g                                          (6) 

The distributed line loadings are 
T

ψwvu F,F,F,F,F ][ φ=g                                           (7) 

in which the line forces are uF  and vF  and wF  and the distributed line couples are φF  and ψF . 

These loadings are applied at }} =  where the corresponding displacements are 
Tψ,,w,v,u ][ φ=u                                               (8) 

 

5.1.2 Finite strip idealization 

Using n-noded, C(0) strips, the global displacements and rotations may be interpolated within 
each strip by the expressions 
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where )/cos( bpC p ηπ=  and )/sin( bpS p ηπ=  and pppp wvu φ,,,  and pψ  are 

displacement and rotation amplitudes for the thp harmonic term and h is the number of 
harmonic terms used in the analysis. 

 
The next step is to discretize the displacement and rotation amplitudes (which are functions of 
the � -coordinate only) using an n-noded finite element representation so that within a strip e the 
amplitudes can be written as  
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where p
iu , p

iv , p
iw , p

iφ  and p
iψ  are typical nodal degrees of freedom associated with node i 

and harmonic p. For convenience, these terms are grouped together so that 
Tp

i
p

i
p
i

p
i

p
i

p
i wvu ],,,,[ ψφ=d                                           (11) 

)(ξiN , is the shape function associated with node i [8]. These elements are essentially 
isoperimetric so that 

∑
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i
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;      ∑
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;     ∑
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=
n
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iitNt

1

                      (12) 

where ir  and iz  are typical coordinates of node i and it  is the thickness at node i. Note also that 
the Jacobian is 
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Also, it is possible to write  
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The membrane strains mε , flexural strain or curvatures bε  and transverse shear strain sεεεε  may 
then be expressed as 
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and p
bi

p
mi BB ,  and p

siB are the membrane, bending and shear strain displacement matrices 
associated with harmonic p, node i and Jacobian J and given in Table 2. 

where if we set βπ /pp = . Note that the method for evaluating R is given in [8].  

 

The loads acting over the structure are expanded in the same way as the displacements, that is as 
the sum of the harmonic series along the length of the structure, so that 
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∑
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=
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1p
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ψψ Cg,g )()( �� η ;                               (18) 

The next step is to discretize the load amplitudes (which are functions of the � -coordinate only) 
using a standard finite element representation so that within a strip e the amplitudes can be 
written as  
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where, for example, p
uig  is the value of )(g �

p
u  at node i. The nodal load amplitudes are 

calculated individually using Euler’s formula. The consistent nodal force vector pe
i }{f  

associated with node i and harmonic p is written as 
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The expressions for the consistent nodal force vector for different load cases can be easily 
evaluated and are presented in [8]. 

 

Thus, neglecting line loads and couples, the contribution to the total potential from strip e may 
be expressed as  
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where the sub matrix of the strip stiffness matrix [ pqe
ij ]K  linking nodes i and j and harmonics p 

and q has the form 
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Note that pqe
ij ]K[  does not depend on p or q and that pqe

ij ][K  and 0K =pqe
ij ][  if qp ≠  

because of the orthogonality conditions [8]. To avoid locking behavior, reduced integration is 
adopted i.e. one, two and three point Gauss-Legendre Quadrature is used for the two, three and 
four noded strips respectively. Note also that since the rigidities Dm, Db and Ds all depend on t 
and since t is interpolated within each strip e from the nodal value it , strip of variable thickness 
may be easily accommodated in the present formulation. 

5.1.3 Stress resultants and strain energy evaluation  

The stress resultant vector for harmonic p can be expressed as  
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where p
mσ , p

bσ  and p
sσ  are the stress resultants vectors due to membrane, bending and shear 

effect, so that 
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These stress resultants can be obtained by the expressions 
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For a typical strip, the strain energy for p harmonic due to bending, membrane and shear can be 
evaluated by the expressions  
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since we have the orthogonality conditions.  The accumulated contributions to the bending, 
membrane and shear energies are obtained by summing the contributions from each strip.  The 
total strain energy of the finite strip solution 2W is then computed using the expression  

.2222

smb
WWWW ++=                                       (29) 

5.1.4 Branched strips 

In the case of plates and smooth shells, the strips all lie in the same plane, which coincides with 
the strip middle surface, whereas for branched structures the strips meet at different angles. 
Thus, to assemble the complete stiffness matrix for branched shell structures, displacements 
must be expressed in a common and uniquely defined coordinate system. The translational 
degrees of freedom iu , iv and iw  are already expressed in the global x, y and z directions and 
therefore the associated stiffness terms do not require any further transformation. However, 
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rotation degrees of freedom ψi am related to the local axis �  and therefore the associated 
stiffness terms must be transformed accordingly. Thus it is possible to write  

p
i

p
i dTd =                        p

i
p

i fTf =                              (30) 
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are the displacement and force vector at node i of strip e. The matrix T can now be defined as 
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T                                (32) 

Note that φi = θyi . The membrane strain displacement matrix is then modified to  

TBB mimi =                                                (33) 

with similar expressions for biB  and siB . The stiffness and mass matrices can be written as 
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6 Sensitivity Analysis 
Having completed the finite strip analysis, we now evaluate the sensitivities of the current 
design to small changes in the design variables. We calculate the sensitivities of the strain 
energy. Methods for evaluating the sensitivities may be purely analytical or can be based on 
finite differences in which case the choice of the step size may be crucial. Alternatively, we may 
use semi-analytical methods, which are partly analytical and partly based on finite differences. 

Sensitivity analysis consists of the systematic calculation of the derivatives of the response of 
the finite strip model with respect to parameters characterizing the model i.e. the design 
variables, which may be length, thickness or shape. Finite strip structural analysis programs are 
used to calculate the response quantities such as displacements, stresses, etc. The first partial 
derivatives of the structural response quantities with respect to the shape (or other) variables 
provide the essential information required to couple mathematical programming methods and 
structural analysis procedures. The sensitivities provide the mathematical programming 
algorithm with search directions for optimum solutions. 

In the present study, both the finite difference and semi analytical methods are used to calculate 
sensitivities. The finite difference method uses a difference formula to numerically approximate 
the derivatives. The semi-analytical method, which was originally proposed, by Zienkiewicz 
and Campbell [9] is quite popular in shape optimization and it combines the analytical and finite 
difference methods. The derivatives of some quantities are evaluated using finite difference 
whereas for the others the analytical method is adopted. These two methods are accurate, 
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computationally efficient and sensitive to round off and truncation errors associated with step 
size. 

6.1 Derivative of displacements and stress resultants 

To get is∂∂ /d and is∂∂ /σσσσ  the global finite difference method is used and the following 
expressions may be written 
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i s
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where is∆  is step size, )( ii ss ∆+d  is evaluated by solving 

)()()( iiiiii ssssss ∆+=∆+∆+ fdK                                     (37) 

and )( ii ss ∆+σσσσ  is found from 

)()()()( iiiiiiii ssssssss ∆+∆+∆+=∆+ dBDσσσσ                             (38) 

 

6.2 Derivative of volume 
The volume derivative is calculated using a forward finite difference approximation 
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                                        (39) 

where the volume V of the whole structure (or cross-sectional area of the structure may also be 
used) can be calculated by adding the volumes of numerically integrated FSs.  

7 Mathematical Programming  
Nonlinear programming techniques are the most popular and widely used methods for structural 
optimization. Using the information derived from the analysis and design sensitivities, 
mathematical programming methods such as sequential quadratic programming or the Method 
of Moving Asymptotes (MMA) are used to generate shapes with improved objective function 
values. In the present work only the MMA algorithm [16] is used. No effort has been made to 
study the mathematical programming methods used for SSO procedures and the MMA 
algorithm is used here essentially as a ‘black box’. The MMA method has the advantages in the 
early stages of the optimization to get close to the optimum in a fast and efficient manner, and 
SQP method exploits the higher accuracy of the to converge to the optimum.  

8 Examples 
Several box girder bridges curved in planform for which solutions are available have been 
analyzed. Note that in all cases the structures have simply supported end conditions at 0=θ  
and βθ =  and only meshes with uniform spacings are considered. In the paper dimensions and 
units are given according to appropriate references. The units are consistent in all the examples. 

The box girder bridge is optimized for the following objective function and constraints cases: 
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Strain energy minimization with a constraint that the total material volume of the structure 
should remain constant and Volume (or weight) minimization subject to the constraint that the 
maximum von-Mises stress should not exceed 5 % of its initial value prior to optimization. 

In this paper only linear elastic behavior is considered and the optimized shape and thickness 
distributions are not checked for buckling under the given set of loads. Although some of the 
optimal shapes of the structures obtained may look impractical, they could serve as a guide to 
designing practical shapes and as an educational tool. 

8.1 Single cell curved box girder bridge  
In the first example a single cell curved box girder bridge analyzed by Sisodiya and Ghali [17] 
is considered. The geometry of the structure is shown in Figure 5 (a), (b). The bridge spans over 
an angle of rad4.0=α  with an inner radius of 2330 =r . The following material properties 

are assumed: elastic modulus 2/1 inkipE =  and Poisson’s ratio 15.0=ν . The box girder is 
analyzed for a concentrated vertical load of intensity 1kip at midspan applied above the outer 
web 

Discussion of analysis results: using 26 odd harmonics and 17 cubic strips carries out the 

analyses. The results for the deflections and maximum stress resultants for the box girder are 

summarized in Table 3 and Table 4 for various number of harmonics and compare well with 

those presented using the finite element method by Sisodiya and Ghali [17]. 

Table 3 Comparison of deflections for single cell box girder bridge 

deflection w (in)number of 
harmonics    under the point at the inner web 

11 278.1 219.4 
51 279.5 219.4 
101 279.8 219.4 
151 279.1 219.3 

Ghali (FE/FS) 288.9 221.0 
 

Table 4 Maximum stress resultants under point load at midspan 

stresses × 10-2 
kips/ft 

Ref [22] present 

Mη 3.65 3.6468 
Mr   2.75 2.711 
Nη

  40.50 40.720 
 

Discussion of optimization results: The cross-sectional shape of the box girder bridge is 

defined using six segments and six key points. The location of the design variables and position 

of point load are shown in Figure 5(c). Three shape and five thickness design variables are 

considered. 
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Table 5 presents initial and optimal energies. Table 6 presents the initial and optimal design 
variables together with their bounds. For case (a) the problem of SE minimization 74.6 percent 
decrease and for case (b) the problem of volume minimization 44.5 percent decrease is obtained.  

Table 5 Single cell curved box girder bridge: initial and optimal energies 

   % contributions to SE 
 volume total SE×10-4 membrane bending shear 

initial 

case (a) 

case (b) 

2420.303 

---- 

1343.463 

2.7944 

0.7089 

--- 

98.614 

98.886 

98.810 

1.359 

1.064 

1.179 

0.027 

0.050 

0.011 

 

Table 6 Single cell curved box girder bridge: values of the design variables 

design variables opt. design variables Type 
max. min. initial case (a) case (b) 

s1 9.000 2.250 4.500 9.000 8.086 
s2 28.000 7.000 14.000 7.000 7.000 
s3 20.000 5.000 10.000 9.262 5.936 
t1 1.334 0.334 0.667 0.334 0.334 
t2 1.334 0.334 0.667 0.334 0.354 
t3 1.334 0.334 0.667 0.646 0.334 
t4 1.334 0.334 0.667 0.427 0.334 
t5 1.000 0.250 0.500 0.897 0.291 

 

8.2 Two cell curved box girder bridge  
This example involves the analysis of a two cell curved box girder bridge analyzed by Cheung 
and Cheung [18]. The geometry of the structure is shown in Figure 6 (a), (b). The bridge spans 
over an angle of rad0.1=α  with an inner radius of 780 =r . The following material 

properties are assumed: elastic modulus 2/1 inkipE =  and Poisson’s ratio 16.0=ν . Three 
separate load cases are considered: vertical load at midspan of intensity 1kip is applied above (a) 
the inner web, (b) the middle of the top flange and (c) the outer web. 
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Figure 6 Two cell curved box girder bridge. (a) cross sectional view; 

(b) plan view. (All dimensions are ft), c) position of design variables. 

Discussion of analysis results: The analyses are carried out using 15 odd harmonics. Table 7 

contains the magnitude of the SE and its composition. It can be noted that the membrane energy 

contribution increases as the point of application of the load changes from the inner web to the 

outer web. Table 8 shows the deflections at mid-span and under point load. The deflections of 

two cell curved box girder bridge is compared with two different references. A good 

comparison is obtained with [15,18]. Table 9 compares the maximum stress resultants with 

[15,18] similar distribution of the stress resultants were obtained. 
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Table 7 Comparison of strain energy values for two cell curved box girder 

% contributions to SE loading 
position 

W 2  kip.in 
membrane bending shear 

above Ref present Ref present Ref present Ref present 
inner  71.86 71.86 67.7 67.69 32.0 32.02 0.3 0.29 

middle 57.79 57.78 85.5 85.57 14.3 14.30 0.2 1.13 
outer web 78.10 78.07 94.7 94.72 5.2 5.23 0.1 0.05 

 

Table 8 Comparisons of deflections for two cell curved box girder under point load 

deflection  w  (in)
18 linear strip 37 cubic strip 

Loading 
position 
above ref [21] present ref [23]  present 

inner web 70.62 68.77 71.86 71.86 

middle web 56.88 56.95 57.79 57.79 

outer web 77.69 78.69 78.10 78.07 

 

Table 9 Comparisons of maximum stress resultants for two cell curved  

                      box girder (reference values are approximately taken from graphics) 

Mη × 10-2 kips.ft Mr × 10-2 kips.ft Nη × 10-1 kips/ft loading 
position Ref Ref present Ref Ref present Ref Ref present

inner 2.2 2.0 2.1 2.8 3.5 3.4 2.6 2.8 2.9 

middle 1.9 1.9 1.8 2.1 2.7 2.7 1.3 1.6 1.6 

outer 1.3 1.3 1.2 1.5 1.9 1.8 2.1 2.3 2.4 
 

Discussion of optimization results: Optimization is done under the load is applied two 

points with an intensity of kipP 1= , at point A, on the top flange which is above inner web, 

and at point B, on the top flange which is above middle web (middle point of top flange). 

The cross-sectional shape of the box girder bridge is modeled using nine segments and eight key 
points. The location of the design variables is shown in Figure 6(c). Shape design variables are 
the length of segment 2 and the total length of segment 3-6 and 4-7. Thickness design variables 
are the thickness of the top flange cantilever segments, the top and bottom flanges, and the 
middle and outer webs. Note that to maintain the symmetry, the length of segment 2 is forced to 
equal the lengths of the segments 5 and 8 by linking. Optimization is carried out for both shape 
design variables s1, s2 and s3 and thickness design variables t1, t2, t3, t4 and t5 together. 

Table 10 presents the initial and optimal design variables together with their bounds. Table 11 
presents initial and optimal energies. For case (a) the problem of SE minimization 62.2, 65.5 
percent decreases and for case (b) the problem of volume minimization 28.6, 40.3 percent 
decreases are obtained when load is applied above point A and B respectively. 
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Table 10. Two cell curved box girder bridge: values of the design variables 

Opt. design variables design variables 
point load (A) point load (B) 

type max. min. initial case (a) case (b) case (a) case (b) 
s1 16.000 4.000 8.000 16.000 11.776 16.000 16.000 
s2 72.000 18.000 36.000 36.070 55.619 18.000 36.040 
s3 72.000 18.000 36.000 18.000 18.000 39.630 29.998 
t1 1.334 0.334 0.667 0.334 0.334 0.334 0.334 
t2 1.334 0.334 0.667 0.828 0.334 0.334 0.334 
t3 1.334 0.334 0.667 0.334 0.334 0.825 0.334 
t4 1.334 0.334 0.667 0.104 0.334 0.392 0.334 
t5 1.000 0.250 0.500 0.250 0.447 1.000 0.313 

 

Table 11. Two cell curved box girder bridge: initial and optimal energies 

% contributions to SE load shape volume 
total SE×10-5 membrane bending shear 

 

(A) 

initial 

case (a) 

case (b) 

6803.2 

---- 

4855.97 

7.153 

2.703 

--- 

67.639 

74.113 

74.966 

32.085 

25.693 

24.959 

0.276 

0.194 

0.074 

 

(B) 

initial 

case (a) 

case (b) 

6803.2 

---- 

4060.54 

5.740 

1.979 

--- 

85.598 

88.387 

94.976 

14.289 

11.511 

5.008 

0.113 

0.102 

0.016 

 

9 Conclusion 
In the present work computational tools have been developed for geometric modeling, 
automatic mesh generation, analysis and shape optimization of box girder bridges. Several 
examples have been studied and used to test and to demonstrate the capabilities offered by this 
computational tool. Based on the above studies the following general conclusions can be drawn. 

•  Finite strip elements of the types presented in the present work, which can perform well in 
curved situations and thick, thin and variable thickness cases have proved to be most 
appropriate for the analysis and optimization of box girder structures due to their 
inexpensiveness, accuracy and reliability. 

•  The results obtained using finite strips analysis tools generally compare well with those 
obtained from other sources based on alternative formulations such as thin beam theory, 
shell theories. The results illustrate that the finite strip methods presented here can be used 
with confidence for the static analysis of box girder bridges, which has curved planforms. 
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•  The objective functions and constraint functions implemented in the program allow the 
design of a wide range of box girder bridge for curved in plan. 

•  Shape optimization with a strain energy minimization as the objective seems to be a 
mathematically better-behaved problem than those defined using volume/weight 
minimization as objective function. 

•  The more accurate the information given to the optimizer, the faster the convergence 
achieved. Finite strip solutions in combination with the semi-analytical sensitivity method 
deliver more accurate function and derivative values.  

•  The introduction of thickness as well as shape variation leads to a further improvement in 
the objective function of the optimal structures. 
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