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ABSTRACT 
A numerical method is developed for calculating the buckling loads of tapered columns of regular 
polygon cross-section with constant volume and both clamped ends. The linear, parabolic and sinusoidal 
tapers are considered in numerical examples. From the numerical results, the strongest columns by the 
taper types and side numbers of regular polygon cross-sections are identified. 
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1. Introduction 
Since columns are basic structural forms, these units have been widely used in various 
engineering fields. Estimating the buckling loads of non-prismatic columns, which have the 
same volume with specific span length, are attractive in the viewpoint of optimal design. Since 
Lagrange [1] had attempted to determine the optimum shape for a column, many investigators 
including Keller [2], Tadjbakhsh and Keller [3], Barnes [4] and Cox and Overton [5] determined 
the shape of the strongest column. In this study, the strongest column is defined as the elastic 
column of given both length and volume, which can carry the highest axial load without 
buckling. Lee and Oh [6] calculated the buckling loads of columns of constant volume.  
 
Nowhere in the open literature, the solutions for the class of buckling problems considered 
herein: buckling loads of non-uniform or tapered columns of regular polygon cross-section with 
constant volume and both clamped ends, whose cross-sectional depths are varied by functional 
fashions are given. The purpose of this paper is to investigate the buckling loads of such 
columns and the configurations of strongest columns. 
 
2. Object column 
 
Shown in Figure 1(a) is the object column of specific span length l and of constant volume V, 
which is supported by both clamped ends.  All the columns analyzed in this study have the 
same span length and same volume. Its cross-sectional shape is the regular polygon whose 
cross-sectional depth depicted as h varies with the axial length s.  The area and area moment 
of inertia of cross section depicted as A and I, respectively, vary with s.  Figure 1(b) shows the 
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variation of depth h with s.  As shown in this figure, the depth h is varied by functional 
fashion, and depths h at s=0 and l, and at s=l/2 are h0 and hm, respectively. For defining the 
geometry of column, a non-dimensional system parameter or section ratio n is introduced as 
follows. 
 
 0m hhn =  (1) 
The quantities A and I of the regular polygon cross-section with integer m of side number and 
cross-sectional depth h are expressed in the forms  

 
 A c h= 1

2 , (2) 
 4

2hcI = , (3) 
where 
 )mcos()msin(mc1 ππ= , (4.1) 
 c m m m m2

3 21 3 4= +sin( ) cos ( )[ tan ( ) / ] /π π π . (4.2) 
 

 
 

Figure 1 - (a) Column of regular polygon cross-section with constant volume and 
          (b) Its variation of cross-sectional depth. 

 
Now, consider the functional equations of variable depth h. It is natural that all columns whose 
variable depths are prescribed should be the object ones. In this study, the linear, parabolic and 
sinusoidal tapers are chosen for the variable depth h of tapered column. First, the equation h of 
linear taper through three points of (0, h0), (l/2, nh0) and (l, h0) in rectangular co-ordinates (s, h) 
is obtained. The result is  

 

 



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Where 
 1nc3 −= . (6) 

The column's volume V can now be calculated by using equations (2) and (5): 

  ) hc(cAdsV 2
0140
l

l
== ∫ , (7) 

where 
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 3)1nn()hc(Vc 22
014 ++== l . (8) 

In above equation (8), the coefficient c4 is defined as a ratio of constant volume V to volume of 
uniform column of regular polygon cross-section with depth h0, c1h0

2l.  
 
Second, the equation h and coefficient c4 of parabolic taper are, respectively, 
 
 lll ≤≤++−= s0 ],1)/s(c4)/s(c4[hh 3

2
30 , (9) 

 c n n4
2 4 3 15= + +(8 ) . (10) 

Finally, the equation h and coefficient c4 of sinusoidal taper are, respectively, 
 

 ll ≤≤+π= s0 ],1)/ssin(c[hh 30 , (11) 

 c n n4
21 2 4 1 1= − + − +( ) ( ) π . (12) 

In equations (9) and (11), the coefficient c3 is defined in previous equation (6). 
 
3. Mathematical model 
 
The object column is subjected to a compressive load P as shown in Figure 2. The column 
subjected to a load P less than the buckling load B is perfectly straight. But when the P exceeds 
the B, the column is buckled. The dashed line and solid curve are the neutral axes of the 
unbuckled and buckled columns, respectively. Thus the shape of elastica is the solid curve 
defined by the (x, y) co-ordinate system whose origin is at left end. At material point (x, y), the 
column's arc length is s, and the variable area moment of inertia of cross section taken with 
respect to s is I discussed in above section. Also the rotation of cross-section and bending 
moment are depicted as θ and M, respectively. It is noted that the axis length of buckled column 
maintains its length l due to incompressibility of column, and therefore the value s at right end 
is l. The end moments at both ends (s=0 and s=l) are M0. It is assumed that Bernoulli-Euler 
theory governs the buckled column behavior under load, for which the differential equations for 
the elastica are 
 
 

 
Figure 2 - Variables of elastica of buckled column. 

  
 l≤≤−=θ s0 ,EI)PyM(dsd 0 , (13) 

 l≤≤θ= s0 ,cosdsdx , (14) 
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 l≤≤θ= s0 ,sindsdy , (15) 
 
where E is Young's modulus and the term of (M0-Py) in equation (13) is the bending moment M 
at the material point (x, y). 
 
Since the horizontal and vertical displacements and rotation at left end (s=0) are not allowed, 
the following boundary conditions are obtained: 

 
 0s at 0x == , (16) 
 0s at 0y == , (17) 
 0s at 0 ==θ . (18) 
Since the rotation at mid-point of buckled column axis (s=l/2) is zero due to the symmetry of 
column geometry, the boundary condition is  

 
 /2s at 0 l==θ . (19) 
When the differential equations (13) - (15) with the boundary conditions of equations (16) - 
(19) are solved by the appropriate numerical methods, the non-linear behaviors of buckled 
columns such as the elastica and equilibrium path are obtained. However, such problem is 
beyond the purpose of this study. 
 
To facilitate the numerical studies and to obtain the most general results for this class of 
problem, the axial load, the end moment, the co-ordinates, and the governing differential 
equations with their boundary conditions are cast in the following non-dimensional forms. 
 
The load parameters p and m0 are defined as 
 
 )EI(Pp e

22 π= l , (20) 

 )EI(Mm e
2

00 π= l , (21) 

where Ie is the area moment of inertia of circular cross-section of uniform column whose 
volume is V, defined as 
  
 )4(VI 22

e lπ= . (22) 

Note that the load parameters p and m0 of equations (20) and (21) with equation (22) are 
defined by using the constant volume V and the column length l in order to compare all the 
responses of columns regardless of taper type, side number m and section ratio n. 
 
The arc length s and coordinates (x, y) are normalized by the column length l: 

 
 ls=λ , (23) 

 lx=ξ , (24) 

 ly=η . (25) 
When equation (3) is combined with either equation (5) or equation (9) or equation (11), and 
equations (20)-(25) are used, the non-dimensional form of equation (13) becomes 
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 ( ) 10 ,)ic4(pmccdd 20
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4

2
1 ≤λ≤η−π=λθ , (26.1) 

where 

  for linear taper : 
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    for parabolic taper : 10 ,1)4c4c(i 4
3

2
3 ≤λ≤+λ+λ−= , (26.3) 

                for sinusoidal taper : 10 ,]1)sin([ci 4
3 ≤λ≤+πλ= . (26.4) 

 
It is recalled that the coefficients c1-c4 of differential equation (26.1) with equations (26.2)-
(26.4) contain the side number m and section ratio n, respectively, as shown in the previous 
section.  
 
Just after the column is buckled, all values of column behavior including m0 are closed to zero. 
In this study, the buckling load parameter b is approximately equivalent to the load parameter p 
whose end moment m0 is 1×10-10, i.e. nearly zero but not zero. Substituting m0=1×10-10 and p=b 
into equation (26.1) gives 
 
 ( ) 10 ,i)(4cb101ccdd 2

102
4

2
1 ≤λ≤η−×π=λθ −  (27.1) 

in which the buckling load parameter b is defined as  
 
 )EI(�Bb e

22l= . (27.2) 
Further, with equations (23)-(25), equations (14) and (15) become 
 
 10 ,cosdd ≤λ≤θ=λξ , (28) 

 10 ,sindd ≤λ≤θ=λη . (29) 
The non-dimensional forms for boundary conditions of equations (16)-(19) are obtained by 
equations (23)-(25): 
 
 0 at 0 =λ=ξ , (30) 
 0 at 0 =λ=η , (31) 
 0 at 0 =λ=θ , (32) 

 21 at 0 =λ=θ . (33) 

 
4. Numerical methods 
Based on above analysis, the algorithm was developed to solve differential equations (27.1), 
(28) and (29) for calculating the buckling load parameter b. The Runge-Kutta and Regula-Falsi 
methods were used to integrate differential equations and to determine the b for a given 
geometry of column. This algorithm is summarized as follows. 

(1) Specify taper type (linear/parabolic/sinusoidal) and geometry (m and n), and calculate c1-c4. 

(2) Assume a trial value b in which the first trial value is 0. 

(3) Integrate equations (27.1), (28) and (29) with the boundary conditions of equations (30)-
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(32) in the range from λ=0 to 1/2 using the Runge-Kutta method. The results give trial 
solutions for θ=θ(λ), ξ=ξ(λ)  and η=η(λ). 

(4) Set D=θ (1/2). If the value of b assumed in step 2 is the characteristic value of the elastica, 
then D must be zero due to equation (33). The first criterion for convergence of the 
solutions is |D|≤1×10-10. 

(5) If the value of D does not satisfy the first convergence criterion, then increment the 
previous trial value b. 

(6) Repeat steps (3)-(5) and note the sign of D in each iteration. If D changes sign between two 
consecutive trial values b1 and b2, then the characteristic value b lies between b1 and b2. 

(7) Compute an improved value b3 based on its two previous values b1 and b2 using the Regula-
Falsi method. The second criterion for convergence of solutions is |(b2-b1)/ b2| ≤1×10-5 for 
which D1×D2< 0 in which D1 and D2 are the D values corresponding b1 and b2, respectively.  

(8) Terminate the calculations when two convergence criteria are met. Print the b2 as the 
approximate buckling load parameter b. 

 
Based on this algorithm, a FORTRAN computer program was written to solve the buckling load. 
All computations were carried on a notebook computer with graphics support. For all of the 
numerical results presented herein, a step size of ∆λ=(1/2)/50 in the Runge-Kutta method was 
found to give convergence for b to within three significant figures. 

 
5. Numerical results and discussions 
 
For the purpose of validation of this study, the buckling load parameters b predicted by the 
present theory are compared to those available in references [7,8] in Table 1. This table shows 
the results of this study agree quite well with the reference values, in which ‘m=c’ in geometry 
column means the circular cross-section, namely m=∞. 

 
Table 1 - Comparisons of b between this study and references 

Buckling load parameter, b 
Geometry 

This study Reference 

n=1.*, m=c b=4.0 4.0 of Ref. [7]  
 

cm 0.836,n
5m 0.836,n
4m 0.836,n
3m0.836,n

==
==
==
==

 

parabolic 

 

4.076b
4.145b
4.269b
4.929b

=
=
=
=

 [8] Ref. of 

076.4
145.4
270.4
927.4













 

       *If n=1. the columns are uniform regardless of taper types. See equations (26.2)-(26.4). 
 
Shown in Figures 3-5 are the b versus n curves of columns with m=3, 4, 5 and c for linear, 
parabolic and sinusoidal taper, respectively. Each curve reaches a peak, which is marked by �. 
At these peak points, the columns corresponding to the given taper types have the largest b 
values, which are the buckling load parameters of strongest columns. Here the word ‘strongest’ 
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is used to mean ‘most’ resistant to buckle. It is found that all strongest columns occur at the 
same value n regardless of side number m if the taper type is same. And all b values of 
strongest columns decrease, as the value m is increased from 3 to 4 to 5 to c. The values of b 
and n of all strongest columns are summarized in table 2. From this table, it is noted that all b 
values of strongest columns are largest at m=3 (triangular cross-section) and smallest at m=c 
(circular cross-section), and the ratios of b of m=3 to b of m=c are same, i.e. 1.210, regardless 
of taper types. Also, this holds true that each ratio of b of m=4 and 5 to b of m=c is same 
regardless of taper types. 
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         Figure 3 - b vs. n curves of linear taper   Figure 4 - b vs. n curves of parabolic  
                by side number m.                    taper by side number m. 
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Figure 5 - b vs. n curves of sinusoidal taper by side number m. 

 
Shown in Figure 6 are the b versus n curves of parabolic, sinusoidal and linear tapers, 
respectively, for m=3, in which the strongest columns are marked by �. It is clear that the 
strongest of all columns by taper type is the parabolic tapered column as shown in this figure 
and Table 2. The effect of taper type on b is negligible when n is less than about 0.4. 
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Figure 6 - b vs. n curves by taper type. 

 
Table 2 - Values of n and b of strongest columns by taper type and side number m 

Taper type m n b Ratio* 

Linear taper 3 
4 
5 
c 

1.00 
1.00 
1.00 
1.00 

4.837 
4.189 
4.068 
4.000 

1.210 
1.047 
1.017 
1.000 

Parabolic taper 3 
4 
5 
c 

0.836 
0.836 
0.836 
0.836 

4.929 
4.269 
4.145 
4.076 

1.210 
1.047 
1.017 
1.000 

Sinusoidal taper 3 
4 
5 
c 

0.855 
0.855 
0.855 
0.855 

4.904 
4.247 
4.124 
4.056 

1.210 
1.047 
1.017 
1.000 

* Ratio of b of m=3, 4 and 5, respectively, to b of m=c. 

6. Concluding remarks 
A novel numerical method developed herein for computing the buckling load of tapered column 
of regular polygon cross-section with constant volume and both clamped ends was found to be 
efficient, and highly versatile. The linear, parabolic and sinusoidal tapers were chosen for the 
variable cross-sectional depth. As the numerical results, the buckling load parameters versus 
section ratio (b vs. n) curves were reported. The strongest columns by taper types and side 
numbers of regular polygon cross-section were identified by reading the peak points of 
buckling load parameters and their corresponding section ratios on b versus n curves.  
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