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1 INTRODUCTION 
 

The elastic critical load of a bar with uniform or 
non-uniform cross section can be calculated by a 
numerical method of double integration (Newmark 
1943).  Instead of assuming the deflection y as some 
function of x, the beam is divided into segments and 
a numerical value of deflection is assumed at each 
division point along the beam. The subsequent cal-
culations are made, determining ordinates to the 
M/EI diagram (M is the moment, E is the elastic 
modulus of the material and I is the area moment of 
inertia), and new values of deflections at each site.  
If these are equal to the assumed deflections at every 
division point, then the required critical load P and 
the buckling mode are determined.  If they are not 
equal, the new set of deflections is assumed and the 
calculations are repeated.  This procedure is suc-
cessful because the results of each cycle yield better 
deflections and the procedure converges to the exact 
buckling mode after a few numbers of cycles of it-
eration. 
 
The technique of Newmark’s numerical method 
(Newmark 1943), applied to columns, has been ex-
tended for use in computing buckling loads and 
buckling modes of hinged frames (Badir 2011). In 
this paper, Newmark’s method is further extended 
for the case of frames with fixed columns. The anal-
ysis and results are reported herein with detailed 
calculations in order to illustrate the method for two 
cases; namely, (1) rigidly jointed elastic portal 
frames with fixed columns without sway, as in sym-
metrical modes or when translation of the joints is 
prevented for, and (2) rigidly jointed elastic frames 
with fixed columns, with sway as in anti-symmet-
rical modes.  
The philosophy of the method described herein can 
be summarized as follows:  the buckling load of the 
structure is the load just enough to maintain it in an 

assumed buckling configuration.  The method in-
volves cycles of iteration in which a new configura-
tion better than the assumed one is obtained at the 
end of each cycle. The calculations can be repeated 
until the required degree of accuracy is obtained.  In 
most cases, accurate results are obtained after only 
few cycles. 

2 SYMMETRICAL MODE OF BUCKLING OF 
FIXED FRAMES 

 
Consider the fixed frame shown in Fig. 1, the end 
forces and rotations of each member are separately 
shown in Fig. 2. The column AB is subjected to 
three forces at B, namely: vertical force P, end cou-
ple X1, and horizontal force X2. The end rotations φ 
at B or C can be easily determined from the hori-
zontal beam BC: φ = (Lb/2EIb) X1, neglecting the ef-
fect of axial force X2. 
Our goal is to determine P, X1, and X2 which are just 
enough to maintain the structure in its assumed 
buckling shape (ya) and satisfy the end conditions at 
B, namely: 
1. Rotation φ at B of both column BA and beam BC 
is equal to (Lb/2EIb) X1. 
2. Horizontal displacement at B equal zero. 
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Figure 1 Symmetrical Fixed Frame 

 
 

Figure 2 Symmetrical fixed frame: end forces and 
rotations  

 
Figure 3(a) shows the column AB and the end forces 
at B, the column under these forces can be regarded 
as the superposition of Fig. 3(b), Fig. 3(c) multiplied 
by X1, and Fig. 3(d) multiplied by X2. Hence 

𝜑𝜑𝑝𝑝 + 𝑋𝑋1𝜑𝜑𝑥𝑥1=1 + 𝑋𝑋2𝜑𝜑𝑥𝑥2=1 = 𝐿𝐿𝑏𝑏
2𝐸𝐸𝐼𝐼𝑏𝑏

𝑋𝑋1       (1) 

1 21 1 2 1 0p x xy X y X y= =+ + =  (2) 

Figure 4 shows the calculations of the last cycle of 
the frame shown in Fig. 1.  Line 1 in Fig. 4 repre-
sents the assumed set of deflections obtained from 
the previous cycle where the fixed column AB is di-
vided into seven sections (6 segments), each seg-
ment of length equal to λ. The assumed set of de-
flection ya of the first cycle, not shown in Figure 4, 
represents a sine curve of amplitude 1000 at the 
middle of the column. The final result does not de-
pend on the starting assumed function, the method 
converges to the correct buckling mode after a few 

number of cycles. Normal calculations (Newmark 
1943) are recorded from line 2 to line 18 as follows 

Line 2 corresponding values of angle changes α 
(α = M/EIc) commonly known as the elastic load. A 
common factor is shown at the end of each line, for 
line 2 the common factor is P/EIc 

Line 3 equivalent concentrated elastic load  act-
ing on each section. The values of theses concentra-
tions are computed with sufficient accuracy from 
the formulae given in the work of Newmark (1943). 

Lines 4 and 5 The shearing forces and bending 
moments in the conjugate beam are calculated from 
the concentrated loads  (in line 3). They represent 
the average slopes ϕ, and the deflections yp, respec-
tively. 

Line 6 the slope at B, due to the axial load P is 
thus found to be ϕp = (3368 + 104)Pλ/EIc = 3472 
Pλ/EIc. 
The fixed ended column AB is then subjected to a 
unit couple, 1 1X = , at its end B.  Normal calcula-
tions are shown from line 7 to 9.  In line 10 are given 
the values of average slope φav in the different seg-
ments. In line 11 the deflections are obtained start-
ing with zero value at the fixed end.  The resulting 
deflection at B has a value of -18λ2/EIc. 

Line 12 slope at B due to a unit couple, 1 1xϕ =  is 
equal to (-5.5 – 0.5)λ/EIc = -6λ/EIc 

Lines 13 through 18 corresponds to the case of 
Fig. 3(d).  
The following variables of Eqs. (1) and (2) are de-
termined: 
ϕp = 3472 Pλ/EIc (from line 6), 
yp = 9157 Pλ2/EIc (from line 5), 

1 1 6.0 /x cEIϕ λ= = −  (from line 12), 

𝑦𝑦𝑥𝑥1=1 = −18.0𝜆𝜆2/𝐸𝐸𝐼𝐼𝑐𝑐 (from line 11), 

2
2

1 18.0 /x cEIϕ λ= = −  (from line 18), and 

2
2

1 72.0 /x cy EIλ= = −  (from line 17).   
 
By solving these equations for a stiffness ratio Kc/Kb 
= 1, where Kc = EIc/Lc, Kb = EIb/Lb, and noticing 
that Lc = 6λ, we get X1 = +262.83 P and X2 = 61.472 
P/λ 

Line 19 same as line 5 
Line 20 line 11 multiplied by X1 
Line 21 line 17 multiplied by X2 
Line 22 superposition of the three previous lines 
Line 23 line 1 divided by line 22 giving the ratio 

ya/y at every division point which appears to be al-
most the same. 

 
The critical load calculated from the better ratio   
Σya/Σy  is 0.70186 EIc/Pλ2 for the case of stiffness 
ratio / 1c bK K = , giving a critical load with a value 
of 25.267 EIc / L2

c, which is the same as the value of 
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25.266 EIc / L2
c given by Horne and Merchant 

(1965). The assumed buckling mode of a next cycle, 
see last line of Fig. 4, is almost identical to the pre-
vious one. One may notice that line 7 to line 18 are 

unaltered, hence they are only calculated in the first 
cycle. 
 

 
 

 
 

Figure 3 Symmetrical fixed frame: superposition, Fig. 16(a) = Fig. 16 (b) +X1 Fig. 16 (c) + X1 Fig. 16 (d) 
 

 

 
Figure 4 Calculation of critical load Pcr for symmetrical fixed frame (last cycle) 
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3 ANTISYMMETRICAL MODE OF 
BUCKLING OF FIXED FRAMES 

 
Consider the single-bay fixed frame shown in Fig. 5 
with antisymmetrical mode of buckling. 
 

 
Figure 5 Antisymmetrical fixed frame 

 
The end forces and rotations for each member are 
separately shown in Fig. 6. 
 

 
Figure 6 Antisymmetric fixed frame: end forces 

and rotations 
 
The column AB is subjected to only two forces at 
B, namely: vertical force P and a couple X1.  The 
end rotation φ at B or C is equal to (Lb/6EIb) X1.  
Figure 7 shows the column AB with an arbitrary 
sidesway of Δ = 1000 units at B.  The columns can 
be regarded to as the superposition of Fig. 7(b) and 
Fig. 7(c) multiplied by X1.  Hence 

11 1 16
b

p x
b

LX X
EI

ϕ ϕ ϕ == + =  (3) 

 

11 1p xy y X y == +  (4) 

Where pϕ  and py  are the rotation and deflection 
at B due to the axial force P, 

1 1xϕ =  and 
1 1xy =  are the 

rotation and deflection at B due to unit couple acting 
at B. From Eq. (3) X1 is determined and then y is 
calculated from Eq. (4). Figure 8 shows complete 
calculations of the last cycle, in which column AB 
is assumed to buckle in the shape reached at this cy-
cle. The assumed set of deflection ya of the first cy-
cle, not shown in Fig. 8, represents a straight line 
varying from a value of zero at A to a value of 1000 
at B. However, the final result does not depend on 
the starting deflection assumption.  The better ratio 
Σya/Σy  is 20.20518 /cEI Pλ  for the case of stiffness 
ratio / 1c bK K = , giving a critical load with a value 
of 27.386 /c cEI L . The same problem was solved by 
Horne and Merchant (1965) and a value of 

27.378 /c cEI L  was obtained. 

4 CONCLUSIONS 
 
The Newmark’s double integration procedure is ex-
tended for use in computing critical loads and buck-
ling modes of rigidly jointed frames with fixed col-
umns.  Results obtained show very good agreement 
with well-known methods.  The elastic line of the 
mode of buckling is determined as a major part of 
the solution, which gives a clear insight of the be-
havior of the structure. The method presented here 
can be used to study buckling of frames with vary-
ing cross sections. 
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Figure 7 Antisymmetrical fixed frame: superposition, Fig. 20(a) = Fig. 20 (b) + X1 Fig. 20 (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8 Calculation of critical load Pcr for antisymmetrical fixed frame (last cycle) 
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