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1 INTRODUCTION 
 
Maintenance expenses constitute a significant frac-
tion of the operational costs in managing railway as-
sets. A conventional approach to maintenance plan-
ning is the use of a Track Recording Vehicle (TRV) 
(Gikas 2005). The instruments on board measure a 
range of track parameters such as gauge, cross-level 
and twist as the train runs over the track. These 
measured parameters are statistically analyzed and 
compared with thresholds dictated in standards or 
operational manuals, to decide on the required 
maintenance priority (Soleimanmeigouni, Ahmadi et 
al. 2016).  

A drawback of this method lies in the use of a 
passive threshold in making decisions on mainte-
nance interventions. These limits do not completely 
expose the risk in operation (Liu 2009). It has been 
shown that a number of maintenance interventions 
based on geometry measurements have not resulted 
in any improvement in performance (Dingqing Li 
2005). Further, even when individual defects are 
within the set threshold limits, some combination of 
defects still results in poor performance and in some 
cases derailment (Lupton 2003). A more appropriate 
parameter for the assessment of risk in railway oper-

ations is the dynamic response of the track vehicle 
(Kraft, Causse et al. 2017). The dynamic response of 
the track vehicle is a function of the operational 
speed, loading condition, underlying track features 
and the wheel rail interface. Thus the dynamic re-
sponse, gives a direct indication of the operational 
risks pertaining to the track and operational condi-
tion (Zhu, Ahmed et al. 2010). 

Instrumented Revenue Vehicles (IRVs), devel-
oped by Institute of Railway Technology at Monash 
University, can be used to achieve a performance 
based assessment of the track (Glenn Hardie 2015), 
(Thompson C 2016). An alternative to the direct 
measurement of the dynamic response of the rolling 
stock is the use of multibody dynamic simulation 
(Luber, Haigermoser et al. 2010). The challenge in 
developing such models is the lack of information 
on various parameters of the rolling stock. Recent 
advances in Machine Learning make it an ideal tool 
for the development of dynamic behavior predictive 
modes (G.M. Shafiullah 2008, Jordan and Mitchell 
2015). This paper explores the development of a 
model that can predict various dynamic responses of 
the train from the measured track parameters and 
operational conditions such as speed and loading 
state. 
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The paper is organized as follows: Section 2 clar-
ifies the various notations used in this paper. Section 
3 outlines the instrumentation setup to collect data 
for the model development. Section 4 presents the 
data conditioning for the model. Development of the 
machine learning models and the comparison of the 
predicted results with the measured response are 
made in Section 5. Finally the conclusion is present-
ed in Section 6. 

2 NOTATION 
 

𝑥(𝑡) : Track vertical displacement profile 
�̂�(𝑓):  Fourier transform of 𝑥(𝑡) 
�̈�(𝑡) : Axle box vertical acceleration 
�̂̈� (𝑓): Fourier transform of �̈�(𝑡) 
𝑓 : Frequency of signal 
𝐶 : Track Curvature 
𝑟 : Radius of curvature 
�̇� : Yaw rate 
𝑣 : Longitudinal Velocity of train 
𝐿𝑎: Lateral alignment 
𝑠 : Distance along track chainage 
𝑆𝑁𝐷 𝑅𝑎𝑤(𝐿𝑒𝑓𝑡/𝑅𝑖𝑔ℎ𝑡): Measurement from the 
Spring Nest Displacement sensor affixed on the 
left/right axle box.  
𝐶𝐿: Cross Level 
𝜑 : Bogie roll 
𝑤 : Distance from the bogie center to SND sensor 
attachment point 

3 INSTRUMENTATION 
 
For the purpose of this project a passenger wagon 
was instrumented in Indonesia (Chong, Awad et al. 
2017, Lingamanaik, Thompson et al. 2017, 
Ravitharan, LaBrooy et al. 2017). The mainline 
speed was around 60 Km/h. Inertial sensors were 
mounted on the unsprung and sprung mass 
(Lingamanaik, Thompson et al. 2017) to determine 
the track condition and the dynamic response of the 
wagon respectively. A differential Global Position-
ing System (GPS) was affixed to the wagon to de-
termine the position of the train and its’ speed. All 
instruments were powered from the on-board power 
supply.  

Figure 1 shows the instrumented passenger wag-
on. Dynamic behavior of the wagon was measured 
using accelerometers, roll, yaw and pitch rate sen-
sors mounted to the undercarriage of the wagon at its 
center. The accelerometers on the axle box were 
used to measure the underlying vertical profile of the 
track. 
The volume of the data and the power consumed 
was managed by programming the data acquisition 
system to switch off when the train was idle for a 
prolonged period of time. All recorded data were 
time aligned with the readings from the differential 
Global Positioning System which allowed geospatial 
information to be mapped to locations on the track. 

The instrumentation was in operation for 10 nor-
mal service runs between Surabaya and Lamongan. 
Figure 2 shows the track along which the instru-
mented passenger wagon was in operation. The trip 

(a) 

Body response GPS 

Wheel  

response 

Wheel response 

Bolster 

response 

Figure 1.  (a) Instrumentation of the passenger wagon to measure track condition and dynamic re-
sponse. (b) Detailed view of the Spring Nest Displacement Sensor measuring primary suspension behav-
ior.(c) Roll rate sensor to measure the bogie roll. (d) Tri-axial accelerometers and roll rate sensors to 
measure the dynamic response of the wagon body. 
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to Surabaya from Lamongan was along the south 
track and the trip to Lamongan from Surabaya was 
along the north track.  

The instruments were sampling at a rate of 100 
Hz. Most dynamic events of interest are only in the 
order of a few Hz including the natural frequency of 
the carriages. Thus, a sampling frequency of 100 Hz 
was sufficient (Ju, Lin et al. 2009). The recorded da-
ta from the sensors were wirelessly transmitted to 
the Institute of Railway Technology facility at 
Monash University through 4G telecommunication 
networks. This gave a near real time assessment of 
the rolling stock and rail performance. 
 

Figure 2. Track Map showing the service line of the instru-
mented passenger wagon. 

 
4 DATA PROCESSING 
 
The raw data from the sensors were processed to be 
used for machine learning purposes. A number of 
filtering and smoothing operations were performed 

to remove drifts in measurements and to focus on 
frequency content of interest. Most dynamic events 
of importance for the wagon are under 10 Hz, and 
this guided the frequency choice (Wolfs, Bleakley et 
al. 2006). Input parameters to the machine learning 

model were track vertical profile, curvature, track 
centerline alignment and speed. 

The track vertical profile is determined from the 
accelerometer readings on the axle box. Due to the 
high relative stiffness of the rail and wheel, the axle 
box accelerometer measurements can be seen as a 
direct response to the track vertical profile. Thus the 
track vertical profile can be recovered from the ac-
celerometer measurement through a double integra-
tion scheme as shown in Equation 1(Glenn Hardie 
2015). 

 
𝑥(𝑡) = ∬ �̈�(𝑡)𝑑𝑡𝑑𝑡              (1) 

 
𝑥(𝑡) and �̈�(𝑡) in Eq. 1 refer to the track vertical 

profile and the vertical acceleration measurement of 
the axle box respectively. The vertical profile of the 
track can be calculated in the frequency domain us-
ing Eq. 2. 

 
�̂�(𝑓) = �̂̈�(𝑓) (𝑖2𝜋𝑓)2⁄             (2)  

 
𝑓 in Equation 2 refers to frequency and �̂�(𝑓) and 

�̂̈�(𝑓) refer to the Fourier transform of the track ver-
tical profile and the acceleration measured at the ax-
le box respectively. In theory both Equation 1 and 
Equation 2 should yield the same result for the track 
vertical displacement profile. However, the standard 
integration schemes employed to solve Equation 1 
introduces inaccuracies that accumulates (Han 
2003). On the other hand evaluation in the frequency 
domain has been shown to have greater accuracy 
and flexibility in control.  

Another practical consideration was the sensitivi-
ty of the accelerometer. At low speeds the magni-
tude of the axle box acceleration measurements was 
small and submerged in the noise floor of the meas-
urement. For this reason, the track vertical profile 

was not evaluated over sections where the train 
speed was less than 30km/h (Glenn Hardie 2016). 
Additionally, given the length of the carriages 
(~17m) and the typical speeds of operation, extreme-
ly long wavelength features (>50m) are left out of 

Figure 3:  Track vertical profile calculated from the axle box accelerometer readings 

(c) 
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the calculation (Glenn Hardie 2016). Long wave-
length features are typically part of the track design 
and not indicative of a defected condition of the 
track. The evaluated track vertical profile for a sec-
tion of a rail is shown in Figure 3. 

The track curvature was calculated from the yaw 
rate sensors and the speed measurement as shown in 
Equation 3. Yaw rate sensors were mounted on the 
bolster as shown in Figure 1 (c). 𝐶 in Equation 3 in-
dicates the track curvature which is the reciprocal of 
the radius of curvature (1/𝑟). �̇� indicates the yaw 
rate and 𝑣 the speed of the train. Figure 4 shows the 
curvature over a section of the track. 

 

𝐶 =
1

𝑟
=

𝜓

𝑣

̇
                 (3) 

The lateral alignment is another crucial parameter 
to be included in the model. Lateral alignment de-
fects can result in adverse dynamic response of the 
wagon body. Conventionally this parameter is meas-
ured using lateral accelerometers attached to the axle 
box. However, literature sources indicated that the 
use of a yaw rate sensors to calculate the alignment 
is a more robust method (Weston, Ling et al. 2007). 

This is due to the fact that the yaw rate sensor is not 
influenced by roll unlike lateral accelerometer sen-
sors. Equation 4 outlines the calculation of the 
alignment from the yaw rate sensor measurement. 𝐿𝑎 
in Equation 4 indicates the alignment and s indicates 
the track chainage length. Figure 5 shows the align-

ment over a section of the track. 
 

𝐿𝑎 = ∬
�̇�

𝑣
𝑑𝑠 𝑑𝑠               (4) 

Cross level - CL (the height difference between 
the left and right rails on a track, is another parame-
ter that strongly influences the response of the wag-
on. There were a number of spring nest displacement 
(SND) sensors, installed between the bogie and the 
axle box as shown in Figure 1 (b). The readings of 
these sensors were a combination of relative exten-
sion/compression between the bogie and the wheel-
set, roll of the bogie and roll of the wheelset. This is 
illustrated in Figure 6. 

The mean measurement of the SND sensor on the 
left and right wheels of a wheelset gives the meas-
urement of the relative extension/compression be-
tween the bogie and the 
set (𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑙𝑒𝑓𝑡 , 𝑆𝑁𝐷𝑟𝑖𝑔ℎ𝑡)). The measurement 
of the roll rate sensor can be integrated to measure 
the absolute roll (φ) of the bogie. The roll was then 
used to determine the displacement contribution at 
SND from the bogie roll (𝑆𝑁𝐷𝐵𝑟𝑜𝑙𝑙 = 𝑤 × sin (φ)). 
𝑤 is the distance from the center of the bogie to the 

attachment point of the SND sensor. Knowing the 
relative extension/compression between the bogie, 
the roll of the bogie and the raw measurement of the 
SND sensor, the roll of the cross level between the 
left and right rail can be calculated as shown in 
Equation 5. Figure 7 shows the calculated cross level 

 

 
Figure 4:  Calculated curvature over a section of the track  

 
Figure 5:  Calculated alignment over a section of the track 
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over a section of the track. 
 

𝐶𝐿 = (𝑆𝑁𝐷 𝑅𝑎𝑤𝑙𝑒𝑓𝑡 − 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑙𝑒𝑓𝑡 , 𝑆𝑁𝐷𝑟𝑖𝑔ℎ𝑡) −

𝑆𝑁𝐷𝐵𝑟𝑜𝑙𝑙) + (𝑆𝑁𝐷 𝑅𝑎𝑤𝑟𝑖𝑔ℎ𝑡 − 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑙𝑒𝑓𝑡 , 𝑆𝑁𝐷𝑟𝑖𝑔ℎ𝑡) +

𝑆𝑁𝐷𝐵𝑟𝑜𝑙𝑙)                  (5) 

The speed of the train was obtained from the 
measurement of the differential GPS. The dynamic 
response of the wagon was measured using accel-
erometers and roll rate sensors mounted on the un-
dercarriage of the wagon as shown in Figure 1 (c). 
The measured data was smoothed and filtered to fre-
quency range of interest. Critical dynamic events are 
often in the low frequency range.  

5 DEVELOPMENT OF PREDICTIVE MODEL 

Dynamic predictive models can range in complexity 
and prediction accuracy. Categorically they can be 
termed as white, grey and black box models. Multi-
body kinematic models are typical white box models 
(Blundell and Harty 2004) and provide great insight 
to the dynamic behavior of the track vehicle. How-
ever, these models can be tedious to develop and 

some information of the rolling stock and rail that 
are typically required for the modelling are difficult 
to source. Additionally they are also often computa-
tionally costly to execute. Grey box models do not 
require the same level of detail for development. 
Generally they are faster to execute but, they do not 
provide the same level of insight as the white box 
models.  

Black box models are those that reveal least in-
sight into the relationship between the track condi-
tion and dynamic response. These are data driven 
models in which relationships between inputs and 
output is determined using Machine Learning tech-
niques (D Li 2006, Guler 2014). The appeal of this 
modelling process is the fact that an in-depth under-
standing of the kinetics of the dynamic system is not 
necessary for the development of the model. 

As outlined in the earlier section a number of 
track and operational parameters can be determined 
from the instrumented wagon. A significant ad-
vantage of being able to obtain all the input and out-
put parameters from the one system is synchroniza-
tion between the measured signals. 

Two different black box machine learning predic-

(a) (b) (c) 

Figure 6:  Primary suspension motion represented as a sum of (a) vertical compression/extension (b) Wheelset Roll (c) 
Bolster Roll  

Figure 7:  Calculated Cross level over a section of track 
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tive models were developed as part of the work dis-
cussed in this paper. A classification model that cat-
egorizes the response over 50 m sections of the track 
into 4 distinct classes based on peak dynamic re-
sponse over that section. A regression model that 
predicts the dynamic response of the rolling stock 
over the entire length of the track. The models were 
validated by comparing the dynamic behavior pre-
diction, over a section of the track that was not used 
in the training process (validation dataset), to the 
measured responses. Both models utilized a super-
vised learning scheme where the classes of the clas-
sification model and the measured dynamic response 
of the wagon was supplied for training purposes. 

5.1 Classification model 

The determination of the maintenance activities on a 
track, requires the establishment of a good condition 
indicator value. The indicator value often corre-
sponds to the performance of the train over 50 to 
100m sections of track (Soleimanmeigouni, Ahmadi 
et al. 2016). The model was trained to predict the 
severity class of the track section from severity 1-4, 
with severity 4 being the section that induced the 
lowest amplitude response on the wagon and severi-
ty 1 inducing the highest amplitude response. The 
classification were based on the maximum response 
over the section. The classification model utilizes 
the speed, track vertical profile, curvature, alignment 
and cross level as predictors. Knowing that the fre-
quency content of the predictors plays a significant 
role in the dynamic behavior of the wagon, the am-
plitude of the predictors at frequencies 0.5Hz to 
10Hz in 0.5Hz increments were also used as inputs 
to the model. Other statistical parameters such as the 
maximum, minimum, mean, standard deviation, and 
root mean square of the track parameters was also 
used as the input. The model was trained with data 
from the north track. The south track data was used 
to validate the model. 

The Classification Learner Toolbox in Matlab 
was used to build the predictive models. A number 
of different predictive algorithms like Support Vec-
tor Machine, Linear Regression, Tree Bagger and 
Nearest Neighbor were tested. The Tree Bagger 
model’s performance was much better than the other 
models tested. The Confusion Matrix of the valida-
tion dataset was used to quantitatively evaluate the 
performance of predictive models. A number of op-
timization techniques were utilized to improve the 
results of the prediction. Cost matrices were used to 
minimize the predictions that were off by more than 
one class. Additionally, it was found that using 70% 
quantile instead of the maximum response over a 
section improved the accuracy of the prediction.  

Table 1 shows the prediction accuracy of the 
bounce classification model. The model performs 

exceptionally well in predicting the class 4 section 
of the track. 89% of the time the model was capable 
of correctly recognizing a severity class 4 section of 
the track. It is also worth noting that even in the cas-
es where the class was not correctly recognized, 
most prediction still fall within a single class on ei-
ther side. For example, 99% of class 3 predictions 
fall in class 3 or one class on either side of class 3. 

 
Table 1 Confusion Matrix showing the performance of the 
bounce classification model  ______________________________________________ 
      Actual Class      |                Predicted Class         ______________________________  
       | 4    3    2   1 ______________________________________________ 

4    89%     7%      3%       1% 
3    29%   38%    32%    <1% 
2      7%     3%    88%   2% 
1    14%        1%    59%         26% _____________________________________________ 

 
The performance of the model in predicting the 

Class 1 severity was poorer than the other classes. 
This is because the training set has limited class 1 
data for training. However, here again most predic-
tion are between Class 1 and 2.  

Table 2 gives the confusion matrix showing the 
performance of the roll prediction model developed. 
Like the earlier model for bounce, this too has high 
accuracy in predicting all classes but 1. The model 
only correctly identifies severity 3 15% of the time. 
However, once again 99% of predictions fall within 
1 class on either side of class 3.  

 
Table 2 Confusion Matrix showing the performance of the roll 
classification model ______________________________________________ 
      Actual Class      |                Predicted Class         ______________________________  
       | 4    3    2   1 ______________________________________________ 

4    82%      6%     12%      <1% 
3    38%   15%    47%    <1% 
2     13%     7%    75%   5% 
1    15%          1.5%           47%        50% ______________________________________________ 

 
The confusion matrices from the prediction of lat-

eral motion and pitch is given in Table 3 and Table 
4. 
 
Table 3 Confusion Matrix showing the performance of the lat-
eral motion classification model ______________________________________________ 
      Actual Class      |                Predicted Class         ______________________________  
       | 4    3    2   1 ______________________________________________ 

4    95%     5%     <1%      <1% 
3    64%   27%       8%  1% 
2     14%   10%      64%    11% 
1       1%          1%          20%   78% ______________________________________________ 
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Table 4 Confusion Matrix showing the performance of the 
pitch classification model  ______________________________________________ 
      Actual Class      |                Predicted Class         ______________________________  
       | 4    3    2   1 ______________________________________________ 

4    87%     9%      3%        1% 
3     51%   30%     13%  5% 
2       9%     7%      61%    22% 
1       2%          1%          19%   78% ______________________________________________ 

5.2 Regression Model 

A supervised regression predictive model was 
trained to predict the dynamic response of the pas-
senger wagon. After the trial of a number of ma-
chine learning models, the Tree Bagger method was 
chosen as the best model for the purpose. As in the 
classification learner, a number of statistical parame-
ters such as the mean, standard deviation, root mean 
square, minimum and maximum were used for the 
model. In addition the measured track parameters 
and the speed over the section of the track were also 
used as predictors in the model. The Principal Com-
ponent Analysis (PCA) coefficients of inputs were 
also used as predictors. PCA redistributes the vari-
ance in the data into a number of components, with 
the first component accounting for most of the vari-
ance. 

Another key consideration in the development of 

a regression predictive model was the length of the 
input data that has to be considered to predict the re-
sponse at a particular point. There are 3 factors that 
influence this choice: 
1 The time for the dynamic response of the train to 
decay. 
2 The total length of the wagon. 
3 Position of the wagon in consideration within the 
train. 

The length of the instrumented passenger carriage 
was approximately 17m with 4 wagons in the train. 
Other studies have shown that impact of the irregu-
larity excitement on the train wagon vanished after 
40 m (Guler 2014). Thus, the track data condition 40 
m ahead of/ behind the instrumented wagon was 
used for the prediction. 

Further, optimization studies were undertaken to 
determine the optimal size of the track section to be 
used in the prediction. The results showed that for 
the purposes of this study a window size of 500 data 
points (at 100 Hz sampling) gave the best prediction 
results. The best choice of the number of branches in 
the tree bagger model was also explored. The mean 
square error did not show significant improvement 
when the branch number was increased above 25 
(Table 5.). The results obtained through these mod-
els were seen to be able to predict major dynamic 
events. Figure 8 and Figure 9 compare the prediction 

 
Figure 8:  Comparison of the regression model’s bounce prediction with the validation data 

 
Figure 9:  Comparison of the regression model’s pitch prediction with the validation data 
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of bounce and pitch response with the validation da-
ta set.  
 
Table 5 Optimization study to determine the number of 
branches to minimize MSE of regression prediction  ___________________________________________________ 

No. of branches ___________________________________________________ 
   | 10  25  50  100  250  500  1000  2500  ___________________________________________________ 
mse| 5.42 4.82 5.48 5.42  5.18  5.13   5.14     5.19 ___________________________________________________ 

 
The comparison of the predicted response with 

the measured response shows the ability of the mod-
el to predict the high amplitude low frequency 
events. In practice these are the events of high rele-
vance when evaluating the risks in operations. 

6 CONCLUSION 

This paper explores the use of machine learning in 
developing dynamic behavior predictive models. A 
passenger wagon in Indonesia was temporarily in-
strumented for the purpose of this study. Data from 
10 in service runs were utilized for the development 
of the models. Two distinct model types were devel-
oped; a classification and a regression model. The 
classification model assigns a class for every 50 m 
section of the track based on the maximum predicted 
response in the section. The regression model pre-
dicts the dynamic response of the wagon over the 
entire length of the track. The models were validated 
by comparing the predicted response, over a section 
of the track not utilized in training, with the meas-
ured response. 

Confusion matrices were used to determine the 
effectiveness of the classification model and the 
mean squared error was used to determine the accu-
racy of the regression model. A number of machine 
learning algorithms were tested and the ensemble 
tree baggers method gave the most accurate predic-
tions for both the classification and the regression 
models. Grid search was performed to optimize the 
meta-parameters of the machine learning algorithm. 

The classification model predictions were within 
one class of the correct class which gives a qualita-
tive indication of the status of the track. The regres-
sion model were able to adequately predict low fre-
quency high amplitude events of interest. The 
natural frequencies of the system are less than 5 Hz, 
thus the model has high practical relevance.  

Work is in progress to further enhance these 
models. The models are extremely useful in predict-
ing ride comfort and safety in railway lines. They 
can also be used to evaluate the quantitative effect of 
temporary speed restriction on the dynamic response 
of the train. 
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