Analysis of mode conversion and scattering of guided waves at cracks in isotropic beams using a time-domain spectral finite element method

S. He & C.T. Ng
School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia

Email: alex.ng@adelaide.edu.au

ABSTRACT: Detecting damages in its early stage, and hence, to ensure the safety and reliability of structures is of vital important. Guided waves have been recognised as one of the promising damage detection techniques that are sensitive to small and different types of damages. The understanding of guided wave propagation and scattering phenomena at the damages is one of the fundamental elements to facilitate the development of this technique for damage characterisation. This paper presents a study of scattering characteristics and mode conversion effects of guided waves at cracks in isotropic beams. An efficient time-domain spectral finite element method using one-dimensional (1D) beam element is developed to solve this problem. The developed model is then used to carry out a series of case studies that consider different crack sizes in the beams. These parametric studies provide a fundamental physical insight into the mode conversion phenomena and scattering characteristics of the guided waves at the cracks.

Keywords: Damage Detection, Guided Waves, Spectral Finite Element, Mode Conversion, Scattering, Crack

1 INTRODUCTION

The monitoring and maintenance of structural serviceability have increasingly attracted public attention in civil, mechanical and aeronautic engineering industries due to economic and safety reasons. Structural health monitoring (SHM) is of vital importance as it continuously examines the structural integrity and offers the valuable information of damages and material deterioration. SHM requires damage detection techniques that inspect the performance of individual structural components and detect any damage in its early stage. In recent decades, different methods (Doebbling et al., 1996; Doebbling et al., 1998; Sohn et al., 2004; Carden and Fanning, 2004; Fan and Qiao, 2011) have been applied to detect and characterise damage for increasing the safety, durability and reliability of structures, and also minimising their maintenance cost.

Among these methods, guided wave based approach has been proven to be one of the promising techniques for damage detection (Rose, 1999, 2002; Raghavan and Cesnik, 2007; Ostachowicz and Radzieniski, 2012). This approach is capable of detecting small damages with high efficiency and outstanding sensitivity. An understanding of guided wave propagation and scattering characteristics plays one of the important roles in the development of damage detection methods.

Guided wave can propagate in different types of structures, which are generally classified into one-dimensional (1D) waveguide, such as beam-like structure, and two-dimensional (2D) waveguide, such as plate-like structures (Ng, 2014). Analytical solutions of guided wave scattering at damages are difficult to obtain due to the difficulties in simulating its complicated propagation and scattering characteristics at the damages, especially for complex structures.

Numerical methods, such as finite element (FE) method (Moser et al., 1999; Hong et al., 2013; Veidt and Normandin, 2013), finite difference (FD) method (Chu and Chaudhuri, 1989; Xu et al., 2003) and boundary element (BE) method (Zhao and Rose, 2003) are suitable for solving wave propagation problems in various structural environments but they are computationally expensive. Other numerical methods, such as finite strip element (FSE) method (Liu, 2002; Bergamini and Biondini, 2004), which is developed based on low level of discretisation, has difficulty in obtaining proper strip stiffness and mass matrix. Local interaction simulation approach (LISA)
is impractical in constructing the distribution of the mass matrix (Delsanto et al., 1992; Delsanto et al., 1994; Delsanto et al., 1997). The fast Fourier transform (FFT) based spectral finite element (SFE) method (Ng et al., 2009; Deepak et al., 2012; Ajith and Gopalakrishnan, 2013) were reported to be computationally efficient but it is not capable in simulating the guided waves in complex structures. Specifically, this method assumes that one side of the modelled beam must be infinitely long, which is impracticable in real applications for monitoring civil and mechanical engineering structural components.

Among all the numerical methods, the time domain SFE method (Kudela et al., 2007; Kudela and Ostachowicz, 2009; Rucka et al., 2012; Li et al., 2012) is one of the computational efficient approaches and is suitable to simulate the guided wave propagation in geometrically complex structures. It combines the advantages of FE method and spectral method (Boyd, 2001). The SFE method has the same flexibility of discretisation as FE method, thus, it can be easily implemented for analysis. Furthermore, the use of high order Gauss-Lobatto-Legendre (GLL) approximation polynomials leads to a diagonal mass matrix, and hence, the guided wave propagation simulation can be solved efficiently using the explicit central difference method. Also, in terms of simulating 1D guided wave propagation in beam-like structures, different wave propagation theories have been well developed for accounting dispersion effects of guided wave propagation. In this study, the Mindlin–Herrmann rod and Timoshenko beam theories are considered in the 1D SFE model for accounting lateral contraction, rotating mass inertia and shear deformation, respectively.

Admittedly, the surface cracks are the most commonly observed defects in many beam-like components, which are asymmetrically located along the structural depth direction. The mode conversion effect of guided waves occurs when the waves interacting with these non-axisymmetric discontinuities. This phenomenon has been investigated by a number of studies (Lowe et al., 2002; Castaings et al., 2002; Shkerdin and Glorieux, 2004; Benmeddour et al., 2008). Understanding this behaviour is of significant importance because it provides more information for further improving the performance of damage identification. Generally, the studies of the mode conversion effect focus on 2D waveguides, which usually use 3D or 2D structural models (Benmeddour et al., 2008; Zhou and Ichchou, 2011; Zhou et al., 2013; Xu et al., 2014) but it is computational expensive. In order to solve this problem, a 1D spectral cracked beam element is developed using Paris’ equation (Tada et al., 2000) to study the mode conversion effect and scattering of guided waves at a semi-elliptical surface cracks. Different to most of 1D crack model, the crack in this SFE model is not across the full width of the beam.

The aims of this paper are to determine the scattering characteristics of guided waves at the cracks in the isotropic beam with rectangular cross section using 1D SFE method. It is worth mentioned that this method can be easily extended to 2D and 3D simulations. The 1D spectral crack element is proposed to couple the longitudinal, shear and bending displacements, and hence, enabling the prediction of mode conversion effects. Different locations, depths and widths of the surface cracks are considered in this study. In addition, the validity of the 1D SFE model will be verified using results calculated by 3D explicit FE model.

The organisation of this paper is presented as follow. The simulation of guided wave propagation using the proposed SFE method and the formulation of the SFE crack element are first described in Section 2. In Section 3, the verification of the SFE model using commercial FE software, ABAQUS, is presented and the mode conversion effect is then discussed in detail. After that, a parametric study is conducted to study the scattering characteristics of guided waves at the cracks in Section 4. Finally conclusions are drawn in Section 5.

2 TIME DOMAIN SPECTRAL FINITE ELEMENT METHOD

Guided wave propagation in structures can be expressed using the dynamic equilibrium equation as (Reddy, 2006)

$$\ddot{\textbf{M}}\ddot{\textbf{Q}} + \textbf{C}\dot{\textbf{Q}} + \textbf{K}\textbf{Q} = \textbf{F}$$ \hspace{1cm} (1)

where \textbf{M}, \textbf{C} and \textbf{K} are the global mass matrix, damping matrix and stiffness matrix, respectively. \textbf{F} is the time domain excitation force vector. It is assumed that the global damping matrix \textbf{C} is proportional to the mass matrix as $\textbf{C} = \eta \textbf{M}$, and η is the damping coefficient. \textbf{Q}, $\dot{\textbf{Q}}$ and $\ddot{\textbf{Q}}$ are the displacement, velocity and acceleration vectors, respectively.

In equation (1), the global mass matrix \textbf{M}, stiffness matrix \textbf{K} and force vector \textbf{F} are determined by assembling the element matrix \textbf{M}^e, \textbf{K}^e and \textbf{F}^e. The expressions are similar to the conventional FE method (Reddy, 2006) and are defined as
where μ, D, and $p(\xi)$ are the mass density matrix, stress-strain matrix and external force vector, respectively. $N_j(\xi)$ is the spectral shape function, $B(\xi)$ is the strain-displacement operator and J is the Jacobian functions mapping the element nodes from local domain to global domain, which are expressed in a general form as

$$N_j(\xi) = \prod_{m=1, m \neq j}^{n} \frac{\xi - \xi_m}{\xi_j - \xi_m}, i(j = 1, 2, ..., n)$$

(5)

$$B(\xi) = L N_j(\xi), \quad \text{and} \quad J = \frac{\partial x}{\partial \xi}$$

(6)

where n is the number of total integrated nodes and m is the order of node considered. L is the differential operator based on wave propagation theories and its formula is given in Section 2.2. The abscissas ξ_i of each integrated GLL node are shown in Figure 1, which can be obtained by calculating the roots of the following equation (Pozrikidis, 2005)

$$(1 - \xi^2)P_{n-1}^\prime(\xi) = 0, \quad \xi_i \in [-1, 1]$$

(7)

where P_{n-1}^\prime is the first derivative of the $(n-1)$th order of Legendre polynomial. The weights w_i corresponding to the abscissa ξ_i can be calculated from the following equation (Pozrikidis, 2005)

$$w_i = \frac{2}{n(n-1)[P_{n-1}(\xi_i)]^2}$$

(8)

Applying this GLL integration, the spectral shape function has the following properties (Ostachowicz et al., 2012)

$$N_j(\xi) = \delta_{ij}, \quad j(j = 1, 2, ..., n) \quad \text{and} \quad \sum_{j=1}^{n} N_j(\xi) = 1$$

(9)

where δ_{ij} is the Kronecker delta. As shown in Figure 2 (Kudela et al., 2007), the spectral shape function is orthogonal, and hence, a diagonal local mass matrix M^e can be obtained using this spectral shape function. As a result, the explicit time integration scheme, i.e. central difference method (Ostachowicz et al., 2012) can be used to solve the dynamic equation (1) efficiently. Furthermore, the Runge effect is avoided by the application of this GLL-node element (Pozrikidis, 2005).

$$\bar{u}(x, y) \approx u(x) - y \psi(x)$$

$$\bar{v}(x, y) \approx \psi(x) y + v(x)$$

(10)

where $v(x)$ is the independent vertical displacement introduced based on the Timoshenko beam theory.
theory, \(u(x) \) is the longitudinal displacement by Mindlin-Herrmann rod theory and \(y \) is the vertical distance from neutral axis.

The governing equations for Mindlin-Herrmann rod theory are defined as (Doyle, 1989)

\[
2GA \left(\frac{\partial^2 u}{\partial x^2} + \nu \frac{\partial v}{\partial x} \right) = \rho A \ddot{u} - p(x,t),
\]

\[
K^M GI \frac{\partial^2 \psi}{\partial x^2} - 2GA \left(\nu \frac{\partial v}{\partial x} + \psi \right) = K^M I \rho I \ddot{\psi}
\]

(11)

where \(E, G, A, \nu, \rho \) and \(I \) denote the Young's modulus, shear modulus, cross-section area, Poisson's ratio, mass density and moment of inertia, respectively. \(p(x,t) \) is the longitudinal excitation, and \(t \) and \(x \) are its temporal and spatial variables, respectively.

The kinetic energy \(T_M \) and the strain energy \(U_M \) for Mindlin-Herrmann rod theory can be expressed as

\[
T_M = \frac{1}{2} \int (\rho A \dot{u}^2 + K^M \rho I \dot{\psi}^2) \, dx,
\]

\[
U_M = \frac{1}{2} \int \left\{ \frac{EA}{1-\nu^2} \left(\frac{\partial u}{\partial x} \right)^2 + \nu^2 \frac{\partial^2 u}{\partial x^2} + 2\nu \frac{\partial u}{\partial x} \psi \right\} \, dx
\]

\[
+ K^M GI \left(\frac{\partial \psi}{\partial x} \right)^2 \right\} \, dx
\]

(12)

The governing equations for Timoshenko beam theory are defined as (Doyle, 1989)

\[
K^T GA \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \phi \right) = \rho A \ddot{v} - f(x,t),
\]

\[
I \frac{\partial^2 \phi}{\partial x^2} - K^T GA \left(\frac{\partial v}{\partial x} - \phi \right) = K^T I \ddot{\phi}
\]

(13)

where \(f(x,t) \) is the transverse excitation.

The kinetic energy \(T_T \) and the strain energy \(U_T \) for Timoshenko beam theory can be expressed as

\[
T_T = \frac{1}{2} \int (\rho A \dot{v}^2 + K^T \rho I \ddot{\phi}^2) \, dx,
\]

\[
U_T = \frac{1}{2} \int \left\{ EI \left(\frac{\partial \phi}{\partial x} \right)^2 + K^T GA \left(\frac{\partial \psi}{\partial x} \right)^2 \right\} \, dx
\]

(14)

where \(K^M, K^M, K^T, \) and \(K^\phi \) are adjustable variables that influence the group velocity of wave propagation and they can be determined experimentally (Doyle, 1989).

2.2 Spectral element modelling

Considering the Mindlin-Herrmann rod theory and Timoshenko beam theory, the strains can be represented in the following form (Rucka, 2010)

\[
\epsilon = \begin{bmatrix} \epsilon^M \\ \epsilon^T \end{bmatrix} = \begin{bmatrix} L^M & 0 \\ 0 & L^T \end{bmatrix} \begin{bmatrix} u^M \\ v^T \end{bmatrix}
\]

(15)

where the superscripts \(M \) and \(T \) denote the Mindlin-Herrmann rod theory and Timoshenko beam theory, respectively. The total strain consists of \(\epsilon^M \) and \(\epsilon^T \), which have the following forms

\[
\epsilon^M = \begin{bmatrix} \frac{\partial u}{\partial x} - \psi \\ \frac{\partial \psi}{\partial x} \\ \frac{\partial \psi}{\partial x} \\ \frac{\partial \psi}{\partial x} \end{bmatrix} \text{ and } \epsilon^T = \begin{bmatrix} \frac{\partial \psi}{\partial x} \\ \frac{\partial \psi}{\partial x} \end{bmatrix}
\]

\[
L^M \text{ and } L^T \text{ are the differential operators, and } u^M \text{ and } u^T \text{ are displacements, they are denoted as}
\]

\[
L^M = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & 1 \end{bmatrix}, \quad L^T = \begin{bmatrix} \frac{1}{J \frac{\partial}{\partial \xi}} & -1 \\ 0 & \frac{1}{J \frac{\partial}{\partial \xi}} \end{bmatrix}
\]

(16)

\[
u^M = \begin{bmatrix} u \\ v \end{bmatrix}, \quad \nu^T = \begin{bmatrix} \psi \\ \phi \end{bmatrix}
\]

(17)

The mass density matrix \(\mu \) in equation (2) and the stress-strain matrix \(D \) in equation (3) are denoted as below

\[
D = \begin{bmatrix} D^M & 0 \\ 0 & D^T \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu^M & 0 \\ 0 & \mu^T \end{bmatrix}
\]

(18)

where

\[
D^M = \begin{bmatrix} \frac{EA}{1-\nu^2} & \frac{\nu EA}{1-\nu^2} & 0 \\ \frac{\nu EA}{1-\nu^2} & \frac{EA}{1-\nu^2} & 0 \\ 0 & 0 & K^M GI \end{bmatrix}
\]
Based on the number of DoFs considered, the spectral shape function has the following expression

\[N_i(\xi) = \begin{bmatrix}
N_i(\xi) & 0 & 0 \\
0 & N_i(\xi) & 0 \\
0 & 0 & N_i(\xi)
\end{bmatrix} \] \hfill (22)

The element mass matrix \(\mathbf{M} \), stiffness matrix \(\mathbf{K} \) and external force matrix \(\mathbf{F} \) can be obtained by substituting equations (19), (20), (21) and (22) into (2), (3) and (4). The global matrices can be obtained by assembling the element matrices, and hence, the guided wave can be simulated by solving equation (1).

2.3 Crack element modelling

The crack element contains a single transverse opened crack, which is modelled using a two-node beam element with three DoFs per node, i.e., \(u(x) \), \(v(x) \), and \(\varphi(x) \). There is no lateral contraction considered in this crack element so when the crack element is connected to the beam elements, the transmitted displacements \(\psi(x) \) are assumed to be zero. This is because the lateral contraction caused by low frequency waveguide (e.g., 100 kHz) in the Mindlin-Herrmann rod theory is inconsequential compared with the rotation \(\varphi(x) \) in the Timoshenko beam theory. Hence, there are totally six DoFs (i.e., \(q_1, q_2, ..., q_6 \)) in this crack element as shown in Figure 3a. In order to account for the presence of the crack, the stiffness matrix has been modified similarly using the approach proposed by Darpe et al. (2004) with considering the coupled effects for three DoFs of each node, i.e., longitudinal, shear and rotation of displacements. It is assumed that the cross section of the beam is rectangle in this paper.

The geometry of the crack element is shown in Figure 3b. It has width \(b \), depth \(h \) and length \(L_c \), with a crack located at a distance \(x_c \) from the left end of the element having width \(b_c \) and depth \(d_c \). In addition, each DoF at the first node of the crack element is assumed to be loaded with axial force \(P_1 \), shear force \(P_2 \) and bending moment \(P_3 \), respectively.
In equation (26), \(F, V \) and \(M \) have the following relationships with external nodal forces
\[
F(x) = p_1, \quad V(x) = p_2, \quad \text{and} \quad M(x) = p_2x_c - p_3
\]
(27)
Thus equation (26) can be rewritten as
\[
U^{\alpha} = \frac{1}{2} \left[\frac{P_1^2L_c}{EA} + \frac{\alpha_1P_2^2L_c}{GA} + \frac{P_2L_c^3}{3EI} + \frac{P_2P_3L_c^2}{EI} + \frac{P_2^2L_c}{EA} \right]
\]
(28)
Considering equation (23), the individual displacement of undamaged beam \(q_{ii}^u \) can be expressed as
\[
q_{ii}^u = \frac{\partial U^{\alpha}}{\partial P_i} = \frac{P_1L}{EA},
\]
\[
q_{ii}^u = \frac{\partial U^{\alpha}}{\partial P_2} = \left(\frac{\alpha_1L}{GA} + \frac{L^3}{3EI} \right) P_2 - \frac{L^2}{2EI} P_3,
\]
\[
q_{ii}^u = \frac{\partial U^{\alpha}}{\partial P_3} = \frac{L}{EA} P_3 - \frac{L^2}{2EI} P_2
\]
(29)
Similarly, the additional displacement \(q_{ii}^u \) due to the crack can be obtained using the cracked strain energy from equation (23)
\[
q_{ii}^u = \frac{\partial U^c}{\partial P_i}
\]
\[
U^c = \int_A S(A) dA
\]
(31)
where \(S(A) \) is the strain energy density function and it is defined as
\[
S(A) = \frac{1}{E^*} \left[\left(\sum_{i=1}^{3} K_{ii} \right)^2 + \left(\sum_{i=1}^{3} K_{iii} \right)^2 \right]
\]
(32)
where \(K_{ii} \) and \(K_{iii} \) are the stress intensity factors (SIFs) for the first and second mode of the crack displacement corresponding to \(q_{ii}^u \). \(E^* = E \) for plane stress, and \(E^* = E/(1-\nu^2) \) for plane strain situation. The derivation of SIFs is written as follow.

SIFs for the first mode I (sliding)

\[
K_{II} = \sigma_1 \sqrt{\frac{\pi d_c}{Q}} F_I
\]
where \(\sigma_1 = \frac{P_1}{bh} \),

\[
K_{I1} = \frac{P_1}{bh} \sqrt{\frac{\pi d_c}{Q}} F_I
\]

\[
K_{I3} = \sigma_3 H \sqrt{\frac{\pi d_c}{Q}} F_I
\]

where \(\sigma_3 = \frac{6M_2}{bh^2} = \frac{6(p_2x_c - p_3)}{bh^2} \)

Hence
\[
K_{I3} = \frac{6(p_2x_c - p_3)}{bh^2} H \sqrt{\frac{\pi d_c}{Q}} F_I
\]
(34)
SIFs for the second mode II (tearing)

\[
K_{II2} = \sigma_2 \sqrt{\pi d_c} F_{II}
\]
where \(\sigma_2 = \frac{\alpha_2 p_2}{bh} \),

Hence
\[
K_{II2} = \frac{\alpha_2 p_2}{bh} \sqrt{\pi d_c} F_{II}
\]
(35)
where
\[
Q = 1 + 1.464 \kappa^1.65
\]
(36)
The function \(F_I \) (Newman Jr and Raju, 1981) and \(F_{II} \) (He and Hutchinson, 2000) are the boundary-calibration factors corresponding to tension and shear for \(0 < d_c/b \leq 1, \ 0 \leq d_c/h < 1, \ b/b_c \geq 0.5 \) and \(0 \leq \theta \leq \pi \), which have the forms
\[
F_I = \left[M_1 + M_2 \left(\frac{d_c}{h} \right)^2 + M_3 \left(\frac{d_c}{h} \right)^4 \right] f_\theta g_f w
\]
(37)
\[
F_{II} = \frac{m(d_c/h)\cos \theta}{B[(\sin^2 \theta + (d_c/h)^2 \cos^2 \theta)]^{1/4}}
\]
(38)
where
\[
M_1 = 1.13 - 0.09 \kappa
\]
\[
M_2 = -0.54 + \frac{0.89}{0.2 + \kappa}
\]
\[
M_3 = -0.5 - \frac{1.0}{0.65 + \kappa} + 14(1.0 - \kappa)^{24}
\]
(39)
\[
g = 1 + \left[0.1 + 0.35 \left(\frac{d_c}{h} \right)^2 \right] (1 - \sin \theta)^2
\]
(40)
The angular function \(f_\theta \) for the half elliptical crack in function \(F_I \) is
\[
f_\theta = \left[\kappa^2 \cos^2 \theta + \sin^2 \theta \right]^{1/4}
\]
(41)
The finite width calibrated function \(f_w \) is
\[
f_w = \left[\sec \left(\frac{\pi b_c}{4b} \sqrt{\frac{d_c}{h}} \right) \right]^{3/2}
\]
(42)
The product of H and F' is the boundary-calibration factor for bending, where H is expressed

$$H = H_1 + (H_2 - H_1) \left(\sin \theta \right)^{0.2 + 0.6d/h}$$

(43)

where

$$H_1 = 1 - 0.34 \frac{d}{h} - 0.11 \kappa \left(\frac{d}{h} \right)$$

$$H_2 = 1 - G_1 \left(\frac{d}{h} \right)^2 + G_2 \left(\frac{d}{h} \right)^2$$

(44)

where in H_2

$$G_1 = [1.22 + 0.12 \kappa]$$

$$G_2 = [0.55 - 1.05 \kappa^{0.75} + 0.47 \kappa^{1.5}]$$

(45)

In function F''_b

$$m = 1 - \kappa^2$$

$$B = (m - v)E(m) + \nu k^2 K(m)$$

(46)

(47)

where the elliptic integrals are

$$E(m) = \int_0^{\pi/2} \sqrt{1 - m \sin^2 \theta} d\theta$$

$$K(m) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}}$$

(48)

Substituting these SIFs into equations (31) and (32), equation (30) becomes

$$q^c = \left[P_1 I_{e1} + (x P_2 - P_3) I_{e2} \right]$$

$$q^c = \left[P_2 I_{e2} + P_1 I_{e3} + (x P_2 - P_3) x I_{e4} \right]$$

$$q^c = \left[-P_1 I_{e2} - (x P_2 - P_3) I_{e4} \right]$$

(49)

where

$$I_{e1} = \frac{8 \pi \kappa^2}{Eb^3 h^2 Q} \int_0^{\pi/2} \sin^2 \theta F^2 d\theta d\bar{b}$$

$$I_{e2} = \frac{48 \pi \kappa^2}{Eb^3 h^2 Q} \int_0^{\pi/2} \sin^2 \theta HF^2 d\theta d\bar{b}$$

$$I_{e3} = \frac{8 \pi \kappa^2}{Eb^3 h^2 Q} \int_0^{\pi/2} \sin^2 \theta H^2 F^2 d\theta d\bar{b}$$

$$I_{e4} = \frac{288 \pi \kappa^2}{Eb^3 h^2 Q} \int_0^{\pi/2} \sin^2 \theta H^2 F^2 d\theta d\bar{b}$$

(50)

Hence, the total displacement q_k of the two-node spectral crack element can be expressed in a matrix form as

$$\left[q_k \right] = C_{\text{flex}} \left[P_k \right] \quad (k = 1, 2, \ldots, 6)$$

(51)

where C_{flex} is the flexibility matrix and it is defined as

$$C_{\text{flex}} = \begin{pmatrix}
 c_{11} & c_{12} & c_{13} \\
 c_{21} & c_{22} & c_{23} \\
 c_{31} & c_{32} & c_{33}
\end{pmatrix}$$

(52)

with

$$c_{11} = \frac{L_c}{EA} + I_{e1},$$

$$c_{22} = \left(\frac{\alpha L_c}{EA} + \frac{L_c^3}{3EA} \right) + \left(I_{e3} + x_i^2 I_{e4} \right),$$

$$c_{33} = \frac{L_c}{EI} + I_{e5}, \quad c_{12} = c_{21} = x_i I_{e2},$$

$$c_{13} = c_{31} = -I_{e2}, \quad c_{23} = c_{32} = -\frac{L_c^2}{2EA} x_i I_{e4}$$

(53)

The stiffness matrix could be obtained using the transformation matrix P to consider the static equilibrium of the crack element.

$$\left\{ q_1, q_2, q_3, q_4, q_5, q_6 \right\}^T = P \left\{ q_1, q_2, q_3 \right\}^T$$

(54)

where the subscripts of q denote the orders of the DoFs of this two-node crack element, and the transformation matrix P is given by

$$P^T = \begin{pmatrix}
 1 & 0 & 0 & -1 & 0 & 0 \\
 0 & 1 & 0 & 0 & -1 & L_c \\
 0 & 0 & 1 & 0 & 0 & -1
\end{pmatrix}$$

(55)

The stiffness matrix of the spectral crack element is given as follow

$$K^c = PC_{\text{flex}}^{-1} P^T$$

(56)

Assembling the spectral crack element stiffness matrix K^c with other uncrack spectral element stiffness matrices K^e, the global stiffness matrix K in equation (1) can be obtained, and hence, the axial-flexural coupling effect of the guided wave interaction with cracks is consider in the time domain SFE model.
3 MODEL VERIFICATION

3.1 Comparison of SFE and 3D FE results

The SFE model was verified using a 3D FE model in this section. The goal of this verification is to demonstrate 1) the accuracy of predicting guided wave propagation in the isotropic beam using SFE method and 2) the capability of the developed spectral crack element in simulating the guided wave scattering and mode conversion at the cracks.

An aluminium beam with length 1 m, width 0.012 m and depth 0.006 m was considered in the verification. The beam having a crack with width $b_c = 0.006$ m and depth $d_c = 0.003$ m located at $x = 0.25$ m of the beam is shown in Figure 5. It should be noted that the crack was modelled asymmetrically with regard to the depth direction of the beam. The Young’s modulus E, density ρ and Poisson’s ratio ν are 200×10^3 GPa, 7556 kgm$^{-3}$ and 0.3, respectively. The excitation signal was a 100 kHz narrow-band six-cycle sinusoidal tone burst modulated by a Hanning window. It was applied as a nodal displacement in vertical direction at $x = 0$ m to excite the A_0 guided wave. The horizontal and vertical displacement responses were also measured at the same position (i.e. $x = 0$ m).

3.1.1 Results calculated by SFE method

The proposed SFE beam model was implemented using MATLAB. The beam was modelled using 40 SFEs, with eight GLL nodes in each element. The crack was modelled using the proposed spectral crack element. Damping was considered and it was assumed that the damping coefficient η is 550 s$^{-1}$. The central difference method was utilised to solve the dynamic equilibrium equation (1) and the time step Δt was 10^{-7} sec, which ensures the accuracy of the simulations. The simulated displacement response at $x = 0$ m is shown in Figure 4.

The guided wave propagates along the length of the beam. When the incident A_0 guided wave first interacted with the crack located at the middle of the beam, the S_0 guided wave was generated due to the mode conversion effect. In Figure 4, the solid line shows the mode-converted S_0 guided waves. The first and third wave packs are the mode-converted S_0 guided waves from the crack. The second and fourth wave packs are these mode-converted S_0 guided waves reflected from the crack and the beam end at $x = 0.5$ m, respectively.

Figure 5. Guided wave propagation in the beam with a crack located at 0.5 m. (S_0: blue solid line; A_0: red dashed line)

The dashed line shows the A_0 guided waves. The first wave pack is the incident wave. The second wave pack is the A_0 guided wave reflected from the crack. The aforementioned mode-converted S_0 guided wave from the crack reflected from the beam end at $x = 0$ m and then propagated toward the crack. When the mode-converted S_0 guided wave interacted with the crack, it produced the mode-converted A_0 guided wave, which is the third wave pack of the dashed line in Figure 4. The last wave pack is the A_0 incident wave reflected from the beam end at $x = 0.5$ m. Figure 5 shows the details of the guided wave propagations along the beam and the mode conversions between A_0 and S_0 guided waves at the crack.

Figure 4. Displacement response measured at $x = 0$ m. (S_0: blue solid line; A_0: red dashed line)
3.1.2 Results calculated by 3D FE method and comparison

A 3D FE model was constructed using the commercial software, ABAQUS, to verify the proposed SFE model. The FE beam geometry and the excitation signal were the same as the SFE model. The 3D explicit linear brick elements with 8 nodes per each element and three DoFs per node were used to model the beam. Because the amplitude of the guided wave was too small to cause large deformation, the geometrical nonlinear phenomena were not considered in verifying the SFE model. The 3D stress situation, full integration and the second-order accuracy of integration were considered in the model.

The crack was modelled using seam crack in the ABAQUS and the size of the crack was identical to that in the SFE model. A very small mesh size (i.e. approximately \(0.4 \times 0.4\) mm\(^2\)) was chosen for meshing, and hence, 12 elements along the depth of the beam were generated as shown in Figure 6. This ensures the accuracy of simulating the 100 kHz \(A_0\) and \(S_0\) guided waves (Veidt and Ng, 2011; Ng and Veidt, 2011; Ng et al., 2012).

![Image: 3D FE mesh of the beam and the seam crack]

A very good agreement was found between the FE and SFE results. A comparison between the \(A_0\) guided waves calculated by the FE and SFE method is shown in Figure 7a, where the solid line represents the displacement response obtained from FE method and the dashed line was from the proposed SFE method. Figure 7a shows that the arrival time and the amplitudes of \(A_0\) guided waves reflected from the crack and beam end at \(x = 0.5\) m have a good agreement between the SFE and FE method. Figure 7b shows the results of the \(S_0\) guided wave. A good agreement of the results between the FE and SFE method was found from the reflected \(S_0\) guided waves. Figures 7a and 7b indicate that the proposed SFE model is able to simulate the guided wave propagation, scattering and mode conversion effect at the crack accurately.

![Image: Normalised displacement amplitude of \(A_0\) guided wave]

![Image: Normalised displacement amplitude of \(S_0\) guided wave]

Figure 7. 3D-FE verification for the SFE model (FE results: blue solid line; SFE results: red dashed line)

3.2 Mode conversion effect

In engineering practice, the mode conversion is of great value for damage identification (Ramadas et al., 2010). Because different modes of guided waves have different properties, understanding the fundamental physics of this phenomenon plays an important role in developing damage detection techniques.

For example in a cantilever beam, cracks usually exist closed to the fixed end of the beam. Identification of these cracks using single guided wave mode is difficult as the \(A_0\) guided wave reflection from the crack (e.g. \(A_0-A_0\)) is mixed with the \(A_0\) guided wave reflected from the beam end as shown in Figure 8. However, the generation of the mode-converted \(S_0\) guided wave signal (i.e. \(A_0-S_0\)) clearly reveals the existence of the cracks. As shown in Figure 8, the \(S_0\) guided wave pack does not mix with the reflected \(A_0\) guided waves. This is because the group velocity of
the converted S_0 guided wave is much higher than that of A_0 guided wave.

![Figure 8. Displacement response measured at the beam end (\(x = 0\) m) with a crack located at 0.49 m](image)

4 PARAMETRIC STUDY

The proposed SFE model was utilised to investigate the low frequency guided wave scattering characteristics at the cracks with different depths and widths in this section. The modelled isotropic beam has length 1 m, depth 0.006 m and width 0.012 m. The crack was located at the middle of the beam. The reflected and transmitted guided wave signals were measured at $x = 0.24$ m and $x = 0.76$ m, and hence, the distances from crack to the both measurement points were 0.26 m.

Two cases were considered to study the mode conversion effect (i.e. A_0 to S_0 and S_0 to A_0, respectively). The excitation signal was a 100 kHz narrow-band six-cycle sinusoidal tone burst modulated by a Hanning window, which was applied through the nodal deformation in the vertical and horizontal direction at the beam end ($x = 0$ m), to excite the A_0 and S_0 guided wave in these two cases, respectively. The wavelengths of the A_0 and S_0 waveguides at this frequency are 19.72 mm and 51.11 mm.

When the incident guided wave interacts with the crack, the reflected and transmitted waves are generated. The reflected guided wave travels back to the measurement point located at $x = 0.24$ m. For the transmitted wave, it propagates toward the measurement point located at $x = 0.76$ m. It should be noted that no baseline signal was applied to extract the amplitude of the scattered waves from the crack.

In this study the measured data was normalised by the maximum absolute amplitude of displacement measured at the middle of the beam, which has the same distance to both measurement points.

One of the aims in this study is to investigate the reflected and transmitted wave amplitudes as a function of the crack size (i.e. asymmetric crack depth d_c and symmetric width b_c). Without loss of generality, the crack depth d_c and width b_c were normalised by the wavelength λ_m of the incident wave as

$$D_d = \frac{d_c}{\lambda_m}, \quad D_b = \frac{b_c}{\lambda_m}$$

where D_d and D_b are the crack depth and width to wavelength ratios, respectively.

4.1 Mode conversion from A_0 to S_0 guided wave

In this case, the A_0 guided wave was excited. Cracks with different depths were studied but the width of the cracks is a constant at the value of half of the beam width, i.e. 0.006 m. Figure 9 shows the normalised amplitude of a crack as a function of D_d while D_b equals to 0.305. It is shown that the normalised amplitude of the reflected A_0 guided wave steadily increases and reaches its local maximum at $D_d = 0.15$ where the amplitude of transmitted A_0 guided wave decreases and reaches the local minimum at around $D_d = 0.2$. The values of D_d that having the local maximum and minimum amplitude of the reflected and transmitted A_0 guided wave are not the same. This is mainly because part of the incident energy was mode converted from A_0 to S_0 guided waves. As the value of D_d increases, the transmitted A_0 guided wave amplitude increases to reach the local maximum amplitude and then decreases again whereas the reflected wave amplitude behaves the other way around.

Figure 9 also shows that the mode converted transmitted and reflected S_0 guided wave overlap each other and the amplitude increase with the depth to crack ratio D_d. The amplitude increases almost linearly and then starts falling when D_d is around 0.22. As D_d approaching its upper considered limit, the transmitted A_0 and the mode converted S_0 guided wave amplitudes shrank sharply. At the meanwhile, the reflected A_0 guided wave amplitude increases significantly as the depth of the crack almost reaches the depth of the beam.
Figure 9. Normalised amplitude as a function of D_d for incident A_0 guided wave.

Figure 10. Normalised amplitude as a function of D_b for incident A_0 guided wave.

Figure 11. Normalised amplitude as a function of D_d for incident S_0 guided wave.

Figure 12. Normalised amplitude as a function of D_b for incident S_0 guided wave.

4.2 Mode conversion from A_0 to S_0 guided wave

Different to Section 4.1, the S_0 guided wave was the incident wave in this section. The aim is to investigate the characteristics of the reflected S_0 guided wave and mode converted A_0 guided wave for different crack sizes. Figure 11 shows the normalised reflected and transmitted wave amplitude as a function of D_d with $D_b = 0.12$ (i.e. the crack width is 6 mm). Similarly, as D_d approaching the maximum value, the amplitude of the transmitted S_0 guided wave decreases but the reflected S_0 guided wave increases dramatically. They have the same amplitude at $D_d = 0.115$.

The amplitude of the mode converted A_0 guided wave increases significantly with D_d and then decreases after it reaches the maximum value at $D_d = 0.07$. The results show that the amplitudes of reflected and transmitted A_0 guided waves are identical.

Figure 12 shows the normalised amplitude as a function of D_b with $D_d = 0.04$ (i.e. the depth of crack is 2 mm). It shows that the transmitted S_0 wave decreases with D_b. The amplitude of the reflected S_0 guided wave and mode-converted A_0 guided waves increase with D_b. The results show that the amplitudes of mode converted A_0 guided waves have similar values and they are larger than the reflected S_0 guided waves.
5 CONCLUSIONS

This paper studied the fundamental physical insight into the guided wave propagation in an isotropic beam using a 4-DoF SFE beam model, which was developed based on the Mindlin-Herrmann rod and Timoshenko beam theory. A spectral two-node crack element with three DoFs per node was developed to model the crack. This proposed beam model was verified using the 3D explicit FE beam model. A good agreement of the wave propagation time history was found between the results of the SFE and 3D FE methods. This study demonstrated that the proposed computational effective crack element could be used to predict the mode conversion effect between A_0 and S_0 guided waves accurately.

Parametric studies of two different damage cases were conducted to investigate the guided wave reflection and transmission characteristics at the cracks with different depths and widths. The results show that the normalised amplitudes of A_0 and S_0 guided waves were highly dependent on the crack sizes. In general, the amplitudes of reflected and mode converted guided waves increase for larger crack size except that the amplitude of the transmitted guided wave decreases. The results of the parametric studies indicate the behaviour of the normalised amplitude as a function of D_d was more complicated than that of D_b.

ACKNOWLEDGEMENTS

This work was supported by the Australian Research Council under Grant Number DE130100261. The supports are greatly appreciated.

REFERENCES

at the 7th International Conference on Modern Practice in Stress and Vibration Analysis.

