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1 INTRODUCTION 

Monitoring the service and health conditions of 
structures is of great interest for the structure owners 
in terms of effective management strategy and 
maintenance planning. Dynamic vibration measure-
ments are generally used with system identification 
techniques to detect local structural damages. Nu-
merous studies have been conducted in the field by 
using vibration characteristics for the condition as-
sessment and damage detection. The idea is based on 
the fact that the damages in the structural systems 
will change the vibration properties. These vibration 
characteristics may include frequencies, mode 
shapes, modal strain energy, strain intensity, flexibil-
ity and frequency response functions, etc, which are 
derived from the measured vibration time histories. 
 The measured time domain responses can also be 
used for damage detection directly. Cattarius and 
Inman [1] developed a non-destructive time domain 
approach to examine structural damage. Choi and 
Stubbs [2] proposed a methodology to locate and 
quantify the damage in a structure via time domain 
responses. The mean strain energy for a specified 
time interval for each element of the structure was 
obtained to build the damage index. The feasibility 
of the methodology was demonstrated using simu-

lated data from a continuous beam structure. Link 
and Weiland [3] discussed the methodology of com-
putational model updating techniques for damage 
identification in the modal and time domain. The 
modal data as well as time histories from impact 
tests were used for model updating and identifying 
the damage of a layered test beam which consisted 
of two thin aluminum sheets and an adhesive layer. 
Zhu et al. [4] presented a statistical model updating 
technique for damage detection of underwater pipe-
line systems via vibration measurements. Different 
damage scenarios with different damage locations 
and severities were simulated by removing one or 
several springs that were used to simulate the bed-
ding conditions. Numerical and experimental results 
showed that the proposed approach is effective and 
reliable in identifying the bedding conditions and 
damages in the pipe structures. Wang et al. [5] de-
veloped an ARMAX model updating method for 
structural damage identification in the time domain. 
The developed model was used to identify structural 
damage through an updating process. 
 Many studies such as the works in Ref. [3-5] con-
ducted the damage identification of structures via the 
vibration measurements by using the model updating 
techniques. As a system intrinsic vibration property, 
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the impulse response function represents the time 
domain response of a system under the input of an 
impulse excitation. The impulse response function 
has been derived analytically [6] and used for sub-
structural response reconstruction [7]. A subsequent 
study by using the developed wavelet-based re-
sponse reconstruction for substructure damage iden-
tification has been conducted with experimental ver-
ifications [8]. The wavelet-based response 
reconstruction technique based on impulse response 
functions has also been extended to the damage 
identification of a target substructure or a full struc-
ture under moving loads [9, 10]. The local damages 
in the bridge structures can be identified effectively 
with both numerical and experimental investiga-
tions. 
 This paper presents a structural damage identifica-
tion approach based on the time domain impulse re-
sponse functions, which are extracted from the 
measured dynamic responses with the input availa-
ble. The theoretical sensitivity of the impulse re-
sponse function with respect to the system stiffness 
parameters considering the damping model is de-
rived. The first-order sensitivity based model updat-
ing technique is performed for the iterative model 
updating. The initial structural finite element model 
and acceleration measurements from the damaged 
structure are required. Local damage is identified as 
a reduction in the elemental stiffness factors. The 
impulse response function sensitivity based optimal 
sensor placement strategy is employed to investigate 
the best sensor locations for the proposed damage 
identification approach. Numerical studies on an Eu-
ler-Bernoulli beam structure are conducted to vali-
date the proposed approach for the extraction of time 
domain impulse response functions and subsequent 
structural damage identification.   
 

 
2 SYSTEM IMPULSE RESPONSE FUNCTION 
AND TIME DOMAIN EXTRACTION 

The Fast Fourier Transformation (FFT) based ex-
traction of the impulse response function has been 
developed based on the frequency domain spectral 
densities. The impulse response function in the fre-
quency domain can be obtained by dividing the 
cross power spectral density between the input force 
and output response with the auto power spectral 
density of the input force. Inverse FFT is performed 
to transform the impulse response function in the 
frequency domain back into the time domain. Both 
the forward FFT and backward inverse FFT are re-
quired in the extraction of impulse response func-
tions. It is noted that leakage, end effects and alias-

ing occur in the FFT analysis. Filtering, windowing 
and ensemble-averaging techniques are often em-
ployed to alleviate these deficiencies. Nevertheless, 
these errors in the FFT process still exist which may 
lead to a reduction in the accuracy of the impulse re-
sponse estimation [11]. Moreover, the basis func-
tions associated with each frequency component in 
the Fourier-transformed domain span the entire 
measured time interval, hence making different sig-
nals indistinguishable as long as their spectral densi-
ties are the same. The errors in the inverse FFT 
could also significantly affect the extraction accura-
cy of the impulse response functions. It has been al-
so reported that the impulse response data can be ex-
tracted via the wavelet transform from known 
measured responses and input excitation information 
to avoid errors in the Fourier transformation process 
of both the input and output signals [12, 6]. 
 To avoid the errors induced by performing FFT or 
wavelet transformation, methods for the extraction 
of impulse response functions from time domain 
measured responses and inputs have been developed 
and will be presented in the following sections. The 
direct use of time domain inputs and outputs for the 
extraction will improve the accuracy by avoiding the 
errors in the forward and inverse FFT analysis, and 
possibly the errors in the forward and inverse wave-
let transforms. 

2.1 Analytical impulse response function of a struc-
ture 

The general equation of motion of a damped struc-

tural system with n  Degrees-of-Freedom (DOFs) 

can be written as 

           )()()()( tfDtxKtxCtxM     (1) 

in which  M ,  C  and  K  are the nn  mass, 
damping and stiffness matrices of the structure re-
spectively;   tx ,   tx  and   tx  are respectively 
the acceleration, velocity and displacement response 
vectors of the structure;   tf  is a vector of applied 
forces on the associated DOFs of the structure with 
the mapping matrix  D  relating the excitation force 
location to the corresponding DOF. Rayleigh damp-
ing      KaMaC 21   is assumed, where 1a  and 

2a  are the Rayleigh damping coefficients. The dy-
namic responses of the structure can be obtained 
from Equation (1) using the time integration algo-
rithm, i.e. Newmark- method [13]. 
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 Recently, the impulse response function has been 
derived analytically from the general equation of 
motion and it will be introduced briefly below [6]. 
The equation of motion of the above-mentioned 
structural system under the unit impulse excitation is 

          tDtxKtxCtxM  )()()(      (2) 

where  t  is the Dirac delta function. The impulse 
response function can be represented as a free vibra-
tion state with the specific initial conditions. Assum-
ing that the system is in static equilibrium initially, 
the unit impulse response function can be computed 
from the equation of motion using the Newmark- 
method as 

           
   







 DMhh

thKthCthM
10,00

0



             (3) 

where  th ,  th  and  th  are the unit impulse re-
sponse functions for displacement, velocity and ac-
celeration, respectively.  

When the structural system is under general exci-
tation  tf  with zero initial conditions, the accelera-

tion response  kxl  at location l  at time instant k  is 

       dtfhkx
k

ll  0                     (4) 

in which  thl
  is the temporal unit impulse response 

function at location l . Equation (4) can be expressed 
in the discrete form as  

   



k

i
ll ikfihkx

0

)(                     (5) 

The entire time domain response at location l  can 
be obtained in the matrix multiplication form as  

FHX                               (6) 
where X and H are the output response and impulse 
response function vectors, respectively. They are 
denoted as   

         T
llll nxxxxX  ,,2,1,0           (7) 

        Tllll nhhhhH  ,,2,1,0            (8) 

F is the input force matrix and is expressed as  
     
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           (9) 

 2.2 Extraction of impulse response function from 
measured responses 

Providing excitation forces are available, the im-
pulse response function can be derived from meas-
ured temporal responses by solving Equation (6).   

    TT FFFXH 
1

                 (10) 

in which TF  is the transpose of matrix F . It is not-
ed that the pseudo-inverse is used to extract the im-
pulse response function. Normally the condition 
number for the excitation force matrix F  is not an 
extremely large value since the columns are basical-
ly independent. However, when the matrix F is bad-
ly ill-conditioned, the truncated Singular Value De-
composition (TSVD) can be employed to eliminate 
those very small singular values and the correspond-
ing vectors to have a better and more stable solution 
for the pseudo-inverse.  
 The extracted impulse response function will be 
used for the damage identification. One main ad-
vantage of using impulse response functions instead 
of measured responses is that the impulse response 
function is an inherent system property and the en-
sembling technique can be performed to reduce the 
errors in the impulse response function with repeated 
tests. 
 
 
3 IMPULSE RESPONSE FUNCTION SENSITIVI-
TY BASED DAMAGE IDENTIFICATION 

The parametric model updating methods for damage 
identification are popular because they keep a clear 
physical understanding of the stiffness matrix. In 
this study, an impulse response function sensitivity 
based finite element model updating method is used 
for the structural damage identification. The local 
damage is assumed as a stiffness reduction, i.e., a 
reduction in the elastic modulus of a specific ele-
ment. The mass matrix is assumed to be unchanged 
before and after the damage. 

3.1 Damage model 

Linear damage scenario is assumed in this study. 
The initial linear-elastic structure is assumed re-
maining linear-elastic after the minor local damage. 
The damaged structure stiffness matrix  dK  is de-

fined as  

  



n

i
ii

n

i
iid KKK

11

)1(            (11) 

where iK  denotes the intact i th elemental stiffness 

matrix; i  and i  represent the system stiffness 

parameter and the extent of stiffness reduction in the 
i th element, respectively. 
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3.2 Sensitivity of Impulse Response Function 

The perturbation equation of motion is obtained by 
calculating the differentiation of Equation (3) with 
respect to system parameter  . Rayleigh damping 
     KaMaC 21   is defined, and the perturbation 
parameter is taken as the stiffness change in struc-
tures. The damping model is included and consid-
ered in the sensitivity calculation, which improves 
the accuracy of the computed sensitivity by ignoring 
the damping effect [6]. The following equation can 
be derived by differentiating Equation (3) 

           

           
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




    (12) 

Re-arranging Equation (12), we have 

           
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
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2

          (13) 

in which, 
 


 th
, 

 


 th
 and 

 


 th
 are the sensitivity 

vectors of the acceleration, velocity and displace-
ment impulse response functions with respect to sys-

tem parameter  . 
 


 K
 is the differentiation of the 

whole structure stiffness matrix to the system pa-
rameter change, and it can be derived with Equation 

(11).  th  and  th  are solved by Equation (3) based 
on the finite element model of the structure. The 

sensitivity vectors 
 


 th
, 

 


 th
 and 

 


 th
 can be 

obtained by solving Equation (13) with the time in-
tegration method, i.e. Newmark- method men-
tioned in Section 2.1 for structural dynamic response 
calculation. 

3.3 Damage identification algorithm 

The objective function of the damage identification 
algorithm is to minimize the difference between the 
analytical impulse response function from finite el-
ement analysis and extracted impulse response func-
tion from measured responses 

   
2

ththf maobj
                       (14) 

where  tha
  is analytical impulse response function 

from the finite element model analysis.  thm
  is the 

impulse response function extracted from the meas-
ured responses following Equation (10).  

The first order sensitivity-based model updating 
method [14] without considering the second- and 
higher-order effects is adopted  

            ththth
th

ma
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



 


     (15) 

where   is the perturbation of system stiffness 

factors, 
 











th

 is the sensitivity matrix of impulse 

response function with respect to system stiffness 

factors calculated from Equation (13).   th  is the 
difference between the analytical and extracted im-
pulse response functions.  

Equation (15) could be solved by using the pseu-
do-inverse of the sensitivity matrix as   
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ththth
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    (16) 

Since the sensitivity matrix 
 











th

 is usually ill-

conditioned, Tikhonov regularization [15] is used to 
stabilize the solution by defining a modified objec-
tive function which controls the errors between the 
accuracy and stability of the solution. The Tikhonov 
regularized solution is defined by minimizing the 
following objective function  

    2
2








 th
th

J 


      (17) 

where   is the optimal regularization parameter 
which balances the weight of the norm of the solu-
tion   and the minimization of the identification 

equation 
   th
th 




 


. The L-curve method 

[16] is employed to obtain this optimal regulariza-
tion parameter  . The solution of Equation (17) can 
be expressed as 
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  (18) 

where I  is an identity matrix. 

3.4 Damage identification procedure 

An iterative damage identification procedure is used 
to update the initial finite element model and identi-
fy the structural damage. The first step is to extract 
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the structural impulse response function from meas-
ured dynamic acceleration responses. The excitation 
force information is assumed available. The second 
step makes use of extracted impulse response func-
tions from the structure to update the structural ele-
mental stiffness factors iteratively with the sensitivi-
ty based model updating method. The difference 
between the analytical and extracted impulse re-
sponse functions is minimized. Analytical impulse 
response function can be obtained from the finite el-
ement analysis. An initial intact finite element model 
is used as a baseline model for the identification. 
The iterative damage identification procedure is de-
scribed as follows 

 
Step 1: Acquire the dynamic acceleration responses 

at a limited number of measurement loca-
tions from the damaged structure. 

Step 2: Extract the impulse response function with 
measured responses by Equation (10). It is 
noted that the ensemble-averaging technique 
can be employed to improve the accuracy of 
extracted impulse response functions.  

Step 3: Compute the analytical impulse response 
function from Equation (3) with the structur-
al finite element model. The difference be-
tween the analytical and extracted impulse 
response functions can be obtained.  

Step 4: Calculate the sensitivity matrix of the im-
pulse response function with respect to sys-
tem stiffness parameters by Equation (13) 
with the numerical integration algorithms.  

Step 5: Obtain the Tikhonov regularized solution of 
the perturbation vector of structural stiffness 
factors    from Equation (18). 

Step 6: The finite element model is iteratively up-
dated with   ii 1  as the system pa-

rameters for the next iteration. Repeat Steps 
3 to 5 until the following convergence crite-
rion is satisfied.  

Tolerance
i

ii 


2

21




                        (19) 

where i  denotes the i th iteration. The tolerance is 
taken as 1.0×10-4 in this study. 

3.5 Optimal sensor placement for sensitivity based 
damage identification 

The choice of sensor numbers and placed locations 
may affect the damage identification performance. It 
is interesting to investigate the optimal sensor 
placement for the sensitivity based damage identifi-

cation. The Fisher information matrix [17], which is 
an indicator that can effectively reflect the contribu-
tion of each DOF to the vibrations of a structure, 
will be used in this study to find out the best loca-
tions for the impulse response function sensitivity 
based damage identification. The Fisher information 
matrix is widely used in the optimal sensor place-
ment. In this paper, it is calculated based on the sen-
sitivity of the impulse response function with respect 
to system parameters calculated from Equation (13) 

   
 


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


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
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thth

F

T 
                     (20) 

Maximizing the Fisher information matrix will 
lead to a good damage identification if the meas-
urement noise is assumed not correlated [17]. To ac-
count for the contribution from different DOFs to 
the Fisher information matrix, Kammer [18] defined 
an effective independence matrix which was formed 
as follows to estimate the contribution of each can-
didate DOF 
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       (21) 

The terms on the diagonal elements of matrix E 
represent the contributions of the corresponding 
DOFs. The summation of the contribution from dif-
ferent time instants to the effective independence 
matrix will be calculated to estimate the importance 
of candidate sensor locations. The contribution at the 
ith DOF is expressed as  

 
 






nti

ntij
ji EdiagE

11

                    (22) 

The largest the value of iE  is, the more important 

the associated sensor location is. The above-
mentioned optimal sensor selection method will be 
used in this study to define the best locations for 
placing the sensors with the purpose of impulse re-
sponse function sensitivity based damage identifica-
tion. It should be noted that in a previous study of 
selecting the optimal measurement locations [19], 
Fisher information matrix, which defines the loca-
tions that are most sensitive to structural damage, is 
used together with a noise sensitivity analysis. The 
locations that are most sensitive to structural damage 
and least sensitive to measurement noise are selected 
as the optimal vibration measurement locations. In 
the present study, however, the measurement noise 
is not considered in selecting the optimal sensor 
placement locations. 
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4 NUMERICAL STUDIES 

Numerical studies on a simply-supported beam 
structure are conducted to demonstrate the accuracy 
and effectiveness of the proposed approach for struc-
tural damage identification. A 20 m long simply-
supported Euler-Bernoulli beam structure is taken as 
an example. The Young’s modulus and mass density 
are MPa4103.3   and 3/2500 mkg , respectively. 
The moment of inertia and area of the cross-section 
of the beam structure are respectively 0.05 m4 and 
0.6 m2. The finite element model of the beam struc-
ture consists of ten Euler-Bernoulli beam elements 
and eleven nodes, as shown in Figure 1. Each node 
has a translational degree-of-freedom (DOF) in the 
vertical direction and a rotational DOF. The entire 
structure has 22 DOFs in total. Rayleigh damping is 
assumed and the damping ratios for the first two 
modes are taken as 012.0 . The first three natural 
frequencies of the intact structure are 4.08 Hz, 16.46 
Hz and 36.81 Hz, respectively. Two scenarios with 
different types of excitation forces will be studied in 
this paper. The first scenario studies the damage 
identification problem of the tested beam structure 
under a multi-sine wave excitation force, and the 
second scenario considers an impact force as the ex-
citation. 

4.1 Scenario 1: Multi-sine wave excitation force 

A multi-sine wave excitation force is applied on the 
transverse DOF of node 3, as shown in Figure 1. The 
sinusoidal excitation force is expressed as  

      tttF  8sin05.04sin1.018000     (23) 
The sampling rate is set as 2000 Hz and the sam-

pling duration is the first 0.5 s. The damage is simu-
lated as a reduction in the stiffness, i.e. the reduction 
in the elastic modulus of a specific element. Dynam-
ic analysis is performed with the damaged structure 
to obtain the responses, which will be used for the 
extraction of impulse response function and damage 
identification. White noise is added to the original 
calculated responses to simulate the noisy responses. 
A normally distributed random noise with zero mean 
and unit standard deviation is added and the noisy 
response is obtained as  

      txstdNEtxtx coisepcn                  (24) 

 

4.1.1 Extraction of impulse response function 

10% stiffness reduction is introduced into the fifth 
element of the structure. Dynamic response analysis 
is conducted to obtain the “simulated” measured re-

sponses for the damage identification. The infor-
mation of the applied excitation, i.e. the time-history 
and location, is assumed available in the extraction 
of impulse response functions. The transverse accel-
erations at Nodes 4, 7 and 8 are assumed available 
for the extraction of impulse response functions, 
which will be used for the subsequent damage iden-
tification in the next section. Figure 2 shows the 
measured accelerations in the vertical direction of 
Nodes 4, 7, and 8. The impulse response function at 
each measurement location can be extracted by solv-
ing Equation (10). The extracted impulse response 
functions from measured acceleration responses 
without noise effect are shown in Figure 3. The 
identified impulse response functions are very close 
to the true ones calculated from the finite element 
analysis by Equation (3), indicating the accuracy and 
effectiveness of the proposed procedure to extract 
the impulse response functions. The smeared noise 
in the measured acceleration responses will have an 
influence on the identification accuracy of the ex-
tracted impulse response functions. 5% noise effect 
is added to the original responses and these noisy re-
sponses will be used for the computation to investi-
gate the noise effect on the extraction of impulse re-
sponse functions. Ensemble-averaging technique 
could be employed to improve the identification ac-
curacy of impulse response functions by performing 
repeated tests. Figure 4 shows the extracted impulse 
response functions with 5% noise effect and with 50 
ensembles. It can be seen that the extracted impulse 
response functions match the analytical curves accu-
rately in the initial period with high magnitudes. Af-
ter 0.1s, the smeared noise significantly affects the 
accuracy of the extraction of impulse response func-
tions. However, the identification results with 50 en-
sembles show a good agreement with the true im-
pulse response functions. The relative error between 
the true and extracted impulse response functions is 
defined as  

   
 

 %100 

(%)error  Relative

2

2 



th

thth

true

extractedtrue



            (25) 

The relative errors between the true and extracted 
impulse response functions at Nodes 4, 7 and 8 in 
the first 0.1 second are listed in Table 1. The identi-
fication accuracy of impulse response functions 
from measured acceleration responses is significant-
ly improved by employing the ensemble-averaging 
technique. These extracted impulse response func-
tions from the measurements without and with noise 
effect, and with 50 ensembles will be used in the 
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subsequent damage identification by using the itera-
tive damage identification procedure described in 
Section 3.4. 

 
Figure 1. Finite element model of the simply-supported beam 
structure 

 

Figure 2. Measured acceleration responses from the damaged 
structure under a multi-sine force 

 

Figure 3. Extracted impulse response functions from measured 
acceleration responses without noises 

 

Figure 4. Extracted impulse response functions with noise ef-
fect and ensembles 

 
Table 1. Relative errors in the first 0.1 s of the extracted im-
pulse response functions 
Relative 
error (%) 

No noise 5% noise with-
out ensemble 

5% noise with 50 
ensembles 

Node 4 2.79×10-9 27.11 3.80 
Node 7 5.29×10-9 45.86 6.34 
Node 8 7.18×10-9 63.44 8.75 
 

4.1.2 Damage identification results 

Figure 5 shows the damage identification results for 
the cases including no noise effect, 5% noise but 
without ensemble, and 5% noise with 50 ensembles. 
It can be seen from Figure 5 that using the meas-
urements without noise effect can identify the simu-
lated damage exactly, which demonstrates the cor-
rectness of the proposed damage identification 
approach. The identification results from measure-
ments including 5% noise without ensemble show 
that the introduced damage can be detected effec-
tively, however, several large false positives present, 
i.e. on the 4th and 10th elements. When the ensemble-
averaging technique is employed, the damage identi-
fication results are improved with less false identifi-
cations. The required iterations and relative errors in 
the identification result are shown in Table 2. The 
identification using original responses with no noise 
effect gives an accurate identification of damage se-
verity with the relative error of only 0.1%. For the 
identification with 5% noise but without ensembles, 
the identified damage is 10.92% and the relative er-
ror is 9.2%. A lesser number of iterations is required 
for convergence when employing the ensemble-
averaging technique, while the relative error in the 
identified damage at the 5th element is improved to 
5.4%. 
 

 
Figure 5. Damage identification results with noise effect and 
ensembles (Scenario 1) 
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Table 2. Identification iterations and errors 

 Iterations Identified damage 
at the 5th element 

Relative 
error 

No noise 8 9.99% 0.1% 
5% noise with-
out ensemble 

10 10.92% 9.2% 

5% noise with 
50 ensembles 

7 9.46% 5.4% 

 
4.1.3 Sensitivity based optimal sensor placement for 
damage identification 

The Fisher Information Matrix is calculated based 
on the sensitivity of impulse response function with 
respect to system stiffness parameter, which is ob-
tained by Equation (13). Since only the responses at 
the translational DOFs could be measured, the trans-
verse DOFs at all the eleven nodes are considered as 
candidates to possibly place the accelerometers. The 
contribution from each translational DOF is calcu-
lated with Equations (21) and (22) as shown in Fig-
ure 6. Three sensor locations are selected based on 
the amount of the contribution from each DOF to the 
Fisher Information Matrix shown in Figure 6. There-
fore the transverse DOFs at node 2, 3 and 9 are cho-
sen as the three optimal locations for the impulse re-
sponse function based damage identification. 
Damage identification is conducted by using the 
measured responses on these locations from the 
damaged structure. The same procedure for the ex-
traction of impulse response functions and subse-
quent damage identification is followed.  

A multi-damage case will be considered herein to 
investigate the performance and robustness of the 
proposed damage identification approach with opti-
mal sensor locations. 10% and 15% stiffness reduc-
tions are introduced into the 4th and 7th elements of 
the beam model. Measured responses without and 
with noise effect are used for the identification. Fig-
ure 7 shows the damage identification results with 
optimal sensor locations. The locations of the simu-
lated damages are identified accurately, and the 
identified extents of local damages are close to the 
true values. With the use of optimal sensor locations 
and ensemble-averaging technique, the introduced 
damages can be identified effectively and accurately 
with nearly exact damage severity estimation and 
small false positives and false negatives. 

4.2 Scenario 2: impact force 

An impact force as shown in Figure 8 is considered 
as the excitation force in the second Scenario. The 
excitation location is the same as that in the first 

scenario shown in Figure 1. The optimal sensor loca-
tions can be obtained based on the effective inde-
pendence matrix calculated with Equation (21). The 
contribution at each transverse DOF is computed 
from Equation (22) and is shown in Figure 9. Based 
on the observations with maximum contributions to 
the effective independence matrix, we also select 
three optimal sensor locations on Node 2, Node 3 
and Node 5.  
 

 
Figure 6. Contributions to Fisher Information Matrix at each 
DOF (Scenario 1) 
 

 
Figure 7. Damage identification results for the multi-damage 
case with optimal sensor locations (Scenario 1) 
 

10% stiffness reduction is introduced into the fifth 
element. Measured acceleration responses from the 
damaged beam structure under the impact force are 
obtained and used for the extraction of impulse re-
sponse functions. The sampling rate is 2000Hz. Sim-
ilar to the cases in Section 4.1, 5% noise effect and 
50 ensembles are considered. The extracted impulse 
response functions are shown in Figure 10. Only the 
response data in the first 0.1s are used for the extrac-
tion. It can be observed the noise effect has a signifi-
cant influence on the accuracy of the extracted im-
pulse response functions. However, using the 
ensemble-averaging technique can improve the ex-
traction accuracy and get a much better estimation of 
impulse response functions. Figure 11 shows the 
damage identification results under impact force. It 
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is observed that the identification with 50 ensembles 
from measured responses including 5% noise effect 
gives the correct damage location and closer damage 
extent estimation compared with the case without 
ensembles. Several large false identifications are ob-
served on undamaged elements for the case with 5% 
noise without performing ensemble averaging esti-
mations. Ensemble averaging always reduces noises 
in the signal, therefore leads to better damage identi-
fications.       

The above studies well demonstrate the effective-
ness and performance of the proposed damage iden-
tification approach by using the extracted impulse 
response functions from measured accelerations. 
Good identification results are obtained with 5% 
noise effect included in the measured responses. It is 
proved that the ensemble-averaging technique can 
be performed to improve the damage identification. 
The advantages of the proposed damage identifica-
tion approach using impulse response functions in-
stead of measured dynamic responses directly lie in 
the merits that the repeated testes could be conduct-
ed to better estimate the impulse response functions 
through averaging, and an accurate estimation of 
impulse response functions will lead to good damage 
identification results. Further studies on the optimal 
sensor placement considering the noise effect in the 
measured responses can be conducted. 
 

 
Figure 8. Impact force used in the Scenario 2  
 

 
Figure 9. Contributions to Fisher Information Matrix at each 
DOF (Scenario 2) 

 

 
Figure 10. Extracted time domain impulse response functions 
(Scenario 2) 
 

 
Figure 11. Damage identification results under impact force 
with optimal sensor locations (Scenario 2) 
 
 
5 CONCLUSIONS  

This paper presents a structural damage identifica-
tion approach based on the time domain extracted 
impulse response functions and optimal sensor loca-
tions. The impulse response functions are extracted 
from the measured dynamic responses with the input 
available. The theoretical sensitivity of the impulse 
response function with respect to system stiffness 
parameters considering the damping model is de-
rived. The first-order sensitivity based model updat-
ing technique is performed for the iterative model 
updating. The initial structural finite element model 
and acceleration measurements from the damaged 
structure are required. Local damage is identified as 
a reduction in the elemental stiffness factors. The 
impulse response function sensitivity based optimal 
sensor placement strategy is employed to investigate 
the best sensor locations for the proposed damage 
identification approach.  

Numerical studies on an Euler-Bernoulli beam 
structure are conducted to validate the proposed ap-
proach for the extraction of time domain impulse re-
sponse functions and the subsequent structural dam-
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age identification. Two scenarios with the beam 
structure under a multi-sine wave excitation force 
and an impact force respectively are investigated. 
5% noise effect is considered in the measured accel-
eration responses. Optimal sensor locations are ob-
tained based on the amount of the contribution at 
each DOF to Fisher Information Matrix. The simu-
lated damage can be identified effectively in both 
scenarios. It is demonstrated that performing the en-
semble-averaging calculations could improve the 
identification results. 
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