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1 INTRODUCTION 

Operational loading as well as extreme natural 

events and weather conditions on civil infrastruc-

tures made them susceptible to various types of 

structural damage, which may lead to disruption of 

the operation of the structure in some cases or may 

result in catastrophic failures if not detected at early 

stage and appropriate actions are taken. Structural 

Health Monitoring (SHM) systems have proven high 

proficiency for early detection and assessment of 

damage, in particular with the current advancement 

in sensing and hardware technology, which has 

made it a more feasible and reliable approach. SHM 

systems attracted the attention of many engineers 

and researchers working in the field as a revolution-

ary method to detect and assess damage during and 

after severe loading events (Mustapha et al. 2012). 

SHM help extend the life of assets by detecting 

damage before it becomes severe. In addition public 

safety is maintained, inspection productivity can be 

optimized and disruption to asset users is minimized 

(Silva et al. 2007). 

Signal processing and damage feature extraction 

are fundamental aspects of any SHM system. This 

process usually involves the identification of fea-

tures that are sensitive to damage from the collected 

data.  This is then used as a damage “signature” that 

can be used to differentiate between intact and dam-

aged structures (Fugate et al. 2001). The time series 

approach is based on signal analysis of measured da-

ta from single or multiple types of sensors, for in-

stance acceleration or strain measurement data, and 

is highly capable to handle large volume of data. 

The concept of time series analysis was originally 

applied in the field of econometrics to investigate 

stock prices, production and interest rates, and later 

had much broader applications to include speech 

recognition, image analysis and DNA sequence 

analysis (Yao and Pakzad 2012). The main concept 

is that a time series model is fitted to a measured re-

sponse from the system being monitored when the 

system is intact and the coefficients (or the residual 

error) of the model can be used as the damage-

sensitive features. Data are then collected at a subse-

quent time and transformed using the time series 

model. If the input is known then any changes in the 

residual error indicate a change in the behaviour for 

the physical system – thus indicating potential dam-

age to the structure. (Farrar and Worden 2012). 
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ABSTRACT: A statistical pattern recognition technique was developed based on the time series analysis to 

detect cracking in steel reinforced concrete structures using vibration measurements. The technique has been 

developed for the Sydney Harbour Bridge. The measurements were collected from single and tri-axial accel-

erometers, which were integrated into sensor nodes that were developed at the National ICT Australia. 
The approach is based on two staged Auto-Regressive (AR) and Auto-Regressive with exogenous inputs 
(ARX) prediction models. The variation between the residual errors obtained from the intact and damaged 
states were used to define a Damage Index (DI) capable of identifying physical changed which could be due 
to structural damage. The effect of the severity of damage on the deviation of the AR-ARX model from its in-
tact state was also scrutinised. The results of the field trial and the laboratory testing demonstrated the ability 
of the approach in identifying the presence of cracking and handling large volumes of data in a very efficient 
manner. 
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Many researchers have been working on time se-

ries analysis for the application in SHM for the last 

two decades. Hoon Sohn et al. (2001) used statistical 

pattern recognition techniques based on time series 

analysis of fiber optic strain gauge data obtained 

from two structural conditions of a high speed patrol 

boat. They used two-staged AR-ARX time series as 

well as outlier analysis with Mahalanobis distance 

measure to differentiate between data collected from 

different structural conditions. In addition, Sohn et 

al. (2001) applied time series analysis to localize 

damage in an 8 degrees of freedom mass-spring sys-

tem which was also based on an AR-ARX model. 

The residual errors were used to define a damage in-

dicator. Thanagasundram et al. (2006) focused on 

the detection of ball bearing faults in dry vacuum 

pumps using an autoregressive algorithm by moni-

toring the vibration spectra collected from the bear-

ing elements at different loading speed and loading 

factors. Da Silva et al. (2007) focused on damage 

detection using AR-ARX model, the authors focused 

on the application of the fuzzy c-means clustering of 

damage indices in an unsupervised learning tech-

nique. Additional work was carried by Da Silva et 

al. (2008) used auto-regressive moving average with 

exogenous input (ARMAX) system identification 

model and statistical process control charts for linear 

prediction to detect and locate damage. The data 

used were collected using PZT patches bonded to a 

lightweight structure (aluminum beam). Further 

work was completed by Lautour et al. (2010) where 

they used an AR model to establish a damage sensi-

tive feature of signals extract from a 3-storey book-

shelf and phase II ASCE structure under dynamic 

excitation and then applied the ANNs for damage 

classification. Moreover, Peng et al. (2011) present-

ed an integrated approach of the Nonlinear Auto-

Regressive Moving Average with exogenous inputs 

(NARMAX) and the Nonlinear Output Frequency 

Response Functions (NOFRFs) to the detection of 

damage in engineering structures. Gul et al. 

(2011;2013) have also used time series analysis to 

detect, locate and assess the extent of the structural 

changes in a steel frame structure.  

In this study, an AR and ARX are combined in a 

two-staged process to be used in the prediction of 

cracking in steel reinforced concrete structures. A 

Damage Index (DI) was defined based on the change 

in the residual errors calculated between the predic-

tion and the measured data before and after damage 

occurs. Furthermore, the ability to detect and assess 

gradual cracking was investigated. Several challeng-

es associated with the application of the proposed 

method, in the field, were investigated. The accuracy 

in the damage prediction of the two-staged AR-ARX 

model was assessed based on field trials on the icon-

ic Sydney Harbor Bridge and through laboratory 

testing.     

2 TIME SERIES ANALYSIS – PATTERN 
RECOGNITION 

2.1 Theoretical background 

Based on the theory of system dynamics, given that 

the input and the transfer function of the structure 

are known, then the output response from the struc-

ture can be predicted. However, in the case where 

the transfer function is unknown, the system is treat-

ed as a “black box” whose properties can be identi-

fied through the analysis of the system’s inputs and 

outputs.  

 
Figure 1. Block diagram for a typical dynamic system. 

 

Figure 1 displays a block diagram of a dynamic 

system with feedback loop where X and Y are the 

input and the output of the system, respectively. 

A(q) represents the dynamic function of the system, 

B(q) is the disturbance function, q is the lag opera-

tor, U is the external excitation (which could be op-

erational or environmental loading such as traffic 

loading and wind excitation) and  is the measure-

ment noise.  

Base on that, the governing equation describing 

the system above can be built as shown in Equation 

(1): 

                   (1) 

where the general polynomial equations 

are written in terms of the time-shift 

operator q
–1

.  

 

 
 

The model order for are consid-

ered to be non-zero, consequently ARX models are 

used (Gul and Catbas 2011). Furthermore, the nega-

tive exponent of q leads to the backshift when ap-

plied to a time series to calculate the previous ele-

ment in the series. 
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For the time delay, Y can also be expressed as a 

function of X when the lag operator q is introduced, 

and then Equation 1 can be arranged as: 

                                  (2)  

Moving  to the left side of Equation 2 and 

by extracting the homogeneity X, the standard ex-

pression of ARX model can be obtained as in Equa-

tion 3: 

                    (3) 

 and  are the two polynomials 

describing the ARX model, and  is the residual er-

ror which should be Gaussian white noise with zero 

mean (De Lautour and Omenzetter 2010). When the 

residual error is not Gaussian distributed, the model 

requires further refinement to establish the system 

with the correct dynamic characteristics. 

As the external input excitation into the system 

(U) is unknown, it is assumed that the error term ( ) 

between the measured and the predicted responses 

from an AR model can be an estimate as the external 

input (Silva et al. 2007;Sohn et al. 2001). Note the 

resulting error ) from the AR model could be very 

large due to the ambient excitation factors, including 

wind; seawater and traffic loading that are not in-

cluded in the AR model. An AR model can be ex-

pressed as in Equation 4: 

                                 (4) 

To determine the order of the model, there are 

several criterions that are widely used including the 

Akaike’s information theoretic (AIC), the Akaike’s 

final prediction error (FPE) and the Bayesian infor-

mation criterion (BIC) (Brockwell and Davis 2002), 

in this work the AIC method was used to determine 

the order of AR model. The total order of the two 

polynomials in the ARX model should be smaller 

than that of AR model to avoid over-prediction. The 

coefficients of AR and ARX models are estimated 

using the Yule-Walker method (Brockwell and 

Davis 2002). 

Occurrence of damage in the structure results in 

the change of the  and , conse-

quently the data collected from the new condition of 

the structure (for instance with damage) cannot fit 

into the reference model, this form the basis of the 

concept adopted in this study. 

2.2 Damage Index 

After establishing the AR and the ARX models for 

the benchmark structure, the residual errors (  - b 

corresponds to the benchmark) calculated could be 

obtained using any set of intact data. Similarly, for 

any unknown or structural damage conditions of the 

structure, the residual errors (  - u corresponds to 

the unknown condition of the structure) can be also 

obtained using the ARX model developed earlier. 

Following that, the ratio of the standard deviation 

of both residual errors (for benchmark and unknown 

conditions) can be used as damage sensitive feature. 

Therefore, the DI can be defined as (Sohn et al. 

2001): 

                        (5) 

where  ad are the residual errors obtained 

from the benchmark and the unknown/damaged 

structures, respectively.  denotes the standard devi-

ation of the sequence.  

Theoretically, when the DI is equal to 1, then the 

unknown condition matches the benchmark (no 

damage occurred); however when the ratio exceeds 

the value of 1 then this indicates a change in the 

structural condition of the structure. In reality there 

are many uncertainties that may deviate the value of 

DI from 1 for the healthy case, therefore it is critical 

to define a threshold in some cases to assess the 

structural health. 

2.3 Damage detection algorithm 

Before proceeding with the data analysis, the sample 

size required to build the AR-ARX model must be 

determined. An insufficient number of samples may 

lead only to partial modelling of the dynamic char-

acteristic of the system, while too many samples 

may increase the uncertainty of the model predic-

tion. Also, a larger sample size most likely results in 

over fitting, in other words, the AIC order selection 

method will select a much higher order. Empirical 

study was performed and resulted that a sample size 

between 500-700 sampling points (about 2 seconds 

of recording) should be satisfactory to give a precise 

prediction about the model for the current data.  

The subsequent step is the standardization pro-

cess. There are several factors which can influence 

the collected data including environmental condi-

tions (e.g. humidity and temperature) as well as op-

erational conditions (data collection), therefore it is 

essential to standardise the signals in order to elimi-

nate any environmental and operational effects while 

maintaining features due to the change in structural 

conditions. The standardisation process is done by 

subtracting the mean from the original raw signal 

and dividing it by the standard deviation, as shown 

in Equation 6: 

                       (6) 
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where  is the standardised time series of the 

original raw signal ( ),  and  are the mean 

and the standard deviation, respectively.   

Following that, the AIC method was applied to 

determine the order of the AR model and the Yule 

Walker method was used to determine the coeffi-

cients for the benchmark structure. Later the ARX 

model was calculated (using the residual error terms 

from the AR model as an input) and the residual er-

rors were obtained for the benchmark structure.  

The residuals errors are also obtained from the 

structure with an unknown condition. At this stage 

the residual errors are now available for the bench-

mark and the unknown condition of the structure, an 

assessment is then carried out using the DI defined 

in Equation 5. The full process is summarised in 

Figure 2.  

 
Figure 2. Flow chart for the damage identification algorithm. 

3 EXPERIMENT SET-UP 

For the validation of the AR-ARX model, two sets 

of data were used: (a) the first set of data was col-

lected using a simplified section of the deck (on the 

bus lane) of the Sydney Harbour Bridge Structure, 

which was manufactured and tested in the laboratory 

and (b) the second set of data was directly obtained 

from sensors that are currently deployed on the Syd-

ney Harbour Bridge. 

For the data collection, the sensor node developed 

at the National ICT Australia was used. The node 

consists of a custom designed hardware circuit 

board, which is built around off-the-shelf ARM-

based Gumstix “Overo” micro-controller. Three low 

cost MEMS accelerometers (Bosch BMA-150) are 

attached to the node and capable of sampling at 1500 

Hz (bandwidth 750 Hz).  

3.1 Laboratory testing 

A steel reinforced concrete beams was manufac-

tured with a similar geometry to those on the Sydney 

Harbour Bridge where an I-beam (UB 200-18) was 

embedded inside the concrete as shown in the cross 

section of Figure 3. The length of the specimen was 

2000 mm, the width was 1000 mm and the depth 

was 375 mm. After poring the concrete (32 Mpa), 

the specimen was left to cure for at least 28 days 

(according to the Australian Standard) at room tem-

perature before testing. The specimen was fixed at 

one end using a steel bollard to form a cantilever, 

where 400 mm along the length of the beam were 

fully clamped as shown in Figure 3 and Figure 4. In 

addition, a support was placed at 1200 mm away 

from the tip to avoid any cracking occurring in the 

specimen under self-weight.  

The input excitation was modelled as filtered 

Gaussian white noise (stochastic process with 

Gaussian distribution) with a mean of 0 and a stand-

ard deviation of 0.333.The modelled noise was fed 

into the shaker that was fixed in the middle of the 

specimen and toward the tip, as shown in Figure 

4(b). The Gaussian white noise runs for a duration of 

20 minutes. The data are collected continuously at a 

sampling rate of 500 Hz and bandwidth of 250 Hz.  

After testing the benchmark, a crack was intro-

duced into the specimen in the location indicated in 

the Figure 3 (a) and Figure 4 (c) using a cutting saw. 

The length of the cut was increased gradually from 

75 mm to 270 mm as shown in Figure 3(c-f), and the 

depth of the cut was fixed to 50 mm. The data were 

collected from a sets of 3 single accelerometers 

(PCB 352C34) placed on the tip of the joint and they 

are referred to as sensor 1, sensor 2 and sensor 3 as 

shown in Figure 4(c). Following every damage case, 

the Gaussian white noise excitation was applied 

again and the vibration data were collected in a simi-

lar fashion to the benchmark. 

A description of the damage cases is detailed in 

Table 1. 

 
Table 1.  Description of tested cases. 

Case Damage size 

Benchmark -- 

Damage 1 75 mm x 50 mm 

Damage 2 150 mm x 50 mm 

Damage 3 225 mm x 50 mm 

Damage 4 270 mm x 50 mm 
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(a)  

 

 

 

 

 

 

(b) 

(c) 

 

 

 
 

(d) 

(e) (f) 

Figure 3. Boundary condition and loading of the beam speci-

men: (a) intact with the arrow indicating the direction of the 

cut, (b) clamping of the specimen, (c) 75 mm cut, (d) 150 mm 

cut, (e) 225 mm cut and (f) 270 mm cut.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Detailed geometry of the beam section (a) elevation 

view, ( b) plan view and (c) cross sectional view. 

 

3.2 Field trial 

For the current case study, 6 instrumented jack 

arches were considered for this analysis (similar di-

mensions to Figure 4). They are named Joint 1 to 

Joint 6 moving from north to south following the di-

rection of the traffic, shown in the schematic of Fig-

ure 5. These joints are located on the eastern side of 

the bridge underneath lane 7 (Bus lane – Figure 5(a)) 

near the north pylon. Analysed data are collected 

from tri-axial accelerometer mounted on the base of 

each joint (illustrated in Figure 5 (b)). 

The data were collected after the vehicles (usually 

buses) drive over the deck where the nodes are lo-

cated. A pre-set threshold was used to trigger the re-

cording on the node. The data were collected during 

the period from August to October in 2012. During 

this time a known crack existed on joint 4 while all 

the others were in good conditions. Each node (after 

it is triggered) records for a period of 1.5 seconds at 

a sample rate of 400 Hz. Later, Joint 4 was repaired 

in February 2013 and another set of data was col-

lected on the 10th of April 2014. In this case, two 

sets of data were available for analysis: (a) Joint 4 

damaged and the rest of joints are healthy and (b) all 

joints healthy. 
 

 
(a) 

 

 
(b) 

Figure 5. Schematic of the evaluated joints (a) location of 

testing and (b) sensor configuration. 
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Before proceeding into the analysis and discussion 

section, it is worth mentioning that although the 

PCB 352C34 has a much wider measurement range 

in comparison with the Bosh BMA150, however the 

amount of g-force acting on the bridge due to traffic 

loading can hardly exceed ± 2g which is within the 

measurement range of the Bosh BMA150. In addi-

tion, the Bosh BMA150 has a resolution up to 4 mg 

within the ± 2g measurement range (BOSH 

2015;PCB 2015). Furthermore, the BMA150 has an 

output noise of  and a programmable 

bandwidth up to 1500 Hz and therefore capable of 

capturing ambient vibration within the 1500 Hz 

range.   

4 ANALYSIS AND DISCUSSION 

4.1 Results: laboratory testing 

Using the healthy events that were collected during 

the laboratory testing, 50 events were chosen ran-

domly to establish the ARX model for the intact 

state. After the standardizing process is completed, 

an order selection was performed to determine the 

best order for the AR model. The AIC was calculat-

ed for different orders varying from 1 to 50. It was 

determined that an order of 17 results in the most 

negative value of AIC as shown in Figure 6 which 

indicate a larger maximum likelihood and a lower 

order, therefore 17 will be selected as an order for 

the benchmark AR model.  

 

 

 

 

 

 

 

 

Figure 6. Order selection for the benchmark AR model based 

on the AIC. 

 

 

 

 

 

Following the order selection of the AR mode, the 

coefficients of the polynomial of the AR model were 

calculated based on the Yule Walker method, the 

 polynomial was calculated to be: 

       (7) 

 

The fitting between the measured data and AR 

model was examined, shown in Figure 7, and a fit of 

66.7 % was achieved. At this stage the effect of the 

ambient excitation have not been considered appro-

priately in this model, therefore the full dynamic 

characteristics of the system have not been captured. 

Furthermore, the calculated error is not a random 

value, which means that there are some correlations 

that have not been extracted (coloured noise). The 

error from the AR model may be attributed to the 

disturbance (external effects) coming into the sys-

tem, therefore this error was assumed to cause the 

disturbance input (U) into the function  

(Figure 1) of the ARX model. Subsequently, the co-

efficients for the ARX model can be determined us-

ing the Yule Walker method since the two inputs in-

to the model including the previous acceleration data 

and the current excitation (error resulted from the 

AR model) are known. Note that the sum of the or-

der of  and  should be less than the order 

of . The two polynomial equations of the ARX 

model are determined to be: 

            (8) 

and 

               (9) 

 

Based on the comparison between the measured data 

and the ARX model, shown in Figure 8, the fitting 

has improved by approximately 6.5%. 
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Figure 7. Measured output and predicted model for an undamaged case with AR(17) model. 
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Figure 8. Measured output and predicted model for an undamaged case with ARX model using Sensor 2 data. 

 

 Most importantly in this situation is that the resid-

ual error from the ARX model is now normally dis-

tributed, which means it is now an independent pat-

tern and has no effect on the structural dynamic 

function, as it appears in Figure 9.  

The process was repeated for Sensor 1, Sensor 2 and 

Sensor 3 to establish the AR and ARX benchmark 

models. 

After finalising the model for the benchmark, the da-

ta collected from the healthy state were tested in or-

der to ensure that they fit well into the established 
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ARX model and that DI fallout in the expected range. 

The process for testing starts by creating a AR model 

for every time series collected (event) from the ac-

celerometers, ensuring the new model has the same 

order as the benchmark, and then the residual error 

(e) from the AR model is calculated and fed back in-

to the ARX benchmark model (established earlier) to 

obtain the ARX residual error ( ). Finally, the stand-

ard deviation for the ARX residual error is calculated 

for the testing data. Afterward, the DI is calculated as 

defined in Equation 5. The same procedure is repeat-

ed after the crack was gradually introduced and once 

more the DI is calculated for the data collected after 

the damage. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Residual error with Gaussian distribution using the 

benchmark data (ARX) using sensor 2 data. 

Damage 4 was considered to illustrate the sensitiv-

ity of the approach to detect damage. The DI was 

calculated using the data collected from Sensor 2 for 

both healthy and damaged case as it appears in Fig-

ure 10 (a). The mean of the scattered data was calcu-

lated for easier interpretation. For this case 50 events 

were able to provide an accurate estimate of the 

mean, which resulted in a uniform standard deviation 

when the number of events was further increased. 

When the structure is intact, the mean value obtained 

for the DI was calculated to be 1.6, while the exist-

ence of damage resulted in an increase of the DI to 

2.2, which is about 27% increase. It was also ob-

served that the events received from the damaged 

states are well separated from the intact state and can 

be easily identified.  

Moreover, the effect of the extent of damage was 

investigated. Based on data collected from Sensor 2 

and Sensor 3, the first damage case (75 mm) resulted 

in an increase in the DI. However, when the damage 

size was further increased, it was noticed that the DI 

dropped slightly and then further increased for dam-

age case 3. On the other hand, using the data collect-

ed from sensor 1, the DI continues increasing for the 

following the three damage cases and suddenly 

dropped when the damage size reached 270 mm. 

Based on the above, it was observed that the increase 

in the damage size changes the dynamic characteris-

tics, however it does not follow any particular pat-

tern, as shown in Figure 10 (b).  

In addition, it was observed that the location of the 

sensor did not influence the DI in regular trend. The 

DI was highest when calculated using the data cap-

tured with Sensor 3 which is furthest away from the 

crack, while the DI calculated based on the data cap-

tured with Sensor 1 and Sensor 2 were within the 

same range.  

The results in Figure 10 (a) indicated that the loca-

tion of the sensor as well as the severity of damage 

are not directly proportional to the DI calculated.  
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Figure 10. (a) Separation of the benchmark and damaged data 

using the ARX residual errors based on the data collected Sen-

sor 2 (b) effect of damage extent on the DI.  
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4.2 Results: field trial 

With the data collected in the laboratory, the 

healthy and the damaged condition were available for 

analysis. While with the field trial the data are only 

available for one state of the structure, however what 

make this analysis valuable is that one of the joints 

(Joint 4) had a crack, along the front face and the 

crack propagated toward the surface of the deck, 

while the other joints were intact. The cracked joined 

was later repaired in February 2013, therefore two 

sets of data were obtained for the healthy case and 

the damaged cased. As all the joints are very similar 

in geometry (the dynamic characteristic may differ 

slightly due to the slight change in the boundary con-

ditions), any of the healthy joints can be used to es-

tablish the benchmark ARX model. For this particu-

lar case, Joint 1 was used to form the benchmark 

model.   

After forming the benchmark model, the data col-

lected from all the joints can be tested, as described 

in the previous section, to calculate the DI. Figure 11 

(a) summarizes the data obtained from the bridge, 

once more the healthy and the damaged data can be 

easily separated, before and after the repair has oc-

curred on Joint 4. It appears that all the joints beside 

Joint 4 has a mean value around 2.2, while for Joint 4 

the mean value increased to above 7 for the damaged 

case and then dropped to 2 after the repair, as shown 

in Figure 12.         

As it appears from Figure 12 that it is very diffi-

cult to obtain a DI of 1 when testing the healthy 

joints on the bridge, although theoretically they 

should be. This is mainly due to the nature of excita-

tion, unless the excitation is Gaussian white noise, a 

DI of 1 is difficult to achieve. When the excitation is 

coloured noise, which is the case on the bridge, some 

extreme loading highly influences the construction of 

the AR model resulting in a deviation of the DI from 

1.  

 Both laboratory and field testing indicate that the 

AR-ARX model developed in this study has a high 

sensitivity to small structural changes, such as crack-

ing.  
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(b) 

Figure 11. Separation of the benchmark and damaged data using 

the ARX residual errors: (a) before repair and (b) after repair. 

 
 
 
 

 

 

 

 

 

 

 

Figure 12. Mean value calculated based on the DI. 

5 CONCLUSIONS AND FUTUE WORK 

In this paper, a vibration based method for dam-

age detection was demonstrated using time series 

analysis. An AR-ARX two-staged model was adopt-

ed to identify any structural change based on the re-
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sidual errors obtained from the ARX model. Field 

trial and laboratory testing were performed to vali-

date the approach, the method has shown a high po-

tential to identify cracking in concrete structures.  

Various factors related to implementation were 

discussed including the sample size, the training data 

size and the testing scheme.  

Despite the excitation on the Sydney Harbour 

Bridge cannot perfectly behave like Gaussian white 

noise that still can give a good indication of the ex-

istence of damage. Interestingly, when the damaged 

joint was repaired, the data collected (after repair) fit-

ted well into the trained model. Therefore, this ap-

proach has the ability to assess the repaired regions 

in the bridge. 

Based on the laboratory testing there was no clear 

pattern relating the location of the sensor to the re-

sulting damage index. However, it was clear that de-

spite the location of the sensor we were capable of 

identifying the presence of damage. 

Future work will involve the development of more 

sophisticated experiments to understand the sensitivi-

ty of the approach to early cracking due to fatigue 

and have the ability to define a proper threshold to 

indicate damage/cracking. The authors will also fo-

cus on using a classification algorithm to identify dif-

ferent levels of damage. Furthermore, more work is 

needed to deal with de-colouring the noise in order to 

improve the robustness of this method.  
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