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1  INTRODUCTION 

A critical mission for structural health monitoring 
(SHM) of bridges is to provide a reliable assessment 
technique to potential hazards caused by structural 
damage or other structural defects using continuous-
ly monitored vibration data. Recognising the needs 
and shortcomings of SHM, a project was established 
by the National ICT of Australia (NICTA), the Uni-
versity of Technology, Sydney (UTS) and The Uni-
versity of Sydney to develop reliable damage detec-
tion methods to provide robust and accurate 
assessment techniques for critical bridge infrastruc-
ture in Australia, in particular for the Sydney Har-
bour Bridge. In collaboration with the Road and 
Maritime Services (RMS) in NSW, a large number 
of accelerometers are installed on the Sydney Har-
bour Bridge to implement a SHM system that can 
continuously monitor the performance of the 
bridge’s critical structural components and ensure 
the safety and reliability of Sydney’s iconic struc-
ture. Particular attention is given to this structure 
since it has been in operation for over 80 years 
(Highway Engineering Australia 2012). This is of 
crucial importance since steel bridges are subject to 
a large number of repetitive loads over the course of 
their life mostly by passing vehicles, making it vul-

nerable to fatigue-related damage and failure (Ye et 
al. 2012). 

The installed SHM system on the Sydney Har-
bour Bridge is aimed at providing a robust and relia-
ble warning and evaluation system on the structural 
deficiencies of a series of jack arch beam-type com-
ponents. One of the most critical issues in this study 
is focused on how to reliably detect and evaluate 
structural damage or deficiencies from continuous 
real-time monitored data of the bridge components 
under ambient vibration conditions. Recent studies 
have shown that the vibration measurements in SHM 
systems are subject to noise, and hence, make it 
more difficult to assess the condition of the struc-
ture. Magalhães, Cunha and Caetano (2012) have 
shown that the dynamic features of a structure are 
sensitive to changes in environmental conditions. 
The results of their study demonstrated that an in-
crease in temperature will lower the first natural fre-
quency of the structure. In addition to environmental 
sensitivity, evaluation of the bridge’s loading capaci-
ty based on the estimated bridge condition also 
needs to be incorporated.  

The on-going project of implementing a SHM 
system in the Sydney Harbour Bridge is currently in 
its first stage focusing on exploring the effectiveness 
and efficiency of various damage detection algo-
rithms through numerical modelling to generate a 
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large number of damage cases and experimental in-
vestigations to validate the numerical model. The in-
itial focus is on the jack arch beams supporting the 
bus lane. 

The concept of using vibration response for dam-
age detection SHM is desirable due to the practicali-
ty of using low cost sensors to continuously measure 
the dynamic response of the structure and the 
measureable effect that damage has on its vibration. 
A great deal of vibration-based damage detection re-
search has focused on using modal parameters such 
as modal frequencies, modal damping and mode 
shapes, and their derivatives to form damage specif-
ic features (DSF). Among the three modal parame-
ters, the modal frequency is the simplest DSF for de-
tecting damage. According to Koh and Dyke (2006), 
changes in modal parameters, such as variances in 
frequencies and mode shapes, can be effective indi-
cators for damage detection. Koh and Dyke (2006) 
demonstrated on a simple cantilever model that it is 
possible to determine the extent and location of a 
crack by applying the Multiple Damage Location 
Assurance Criterion (MDLAC) using the first five 
natural frequencies. Dyke et al. (2003) investigated 
the application of the same procedure to more com-
plex models, such as an entire bridge structure, and 
found that at least 28 modal frequencies are required 
for the procedure to be effective. This, however, is 
unrealistic for SHM since ambient excitations are 
only capable of exciting a few lower modal frequen-
cies of a bridge. In addition to this, low frequencies 
of the structure are more sensitive to environmental 
changes rather than changes caused by local dam-
age. Modal shapes and their derivatives are found to 
be more sensitive to local damage. However, exper-
imental modal analysis (EMA) is needed to extract 
modal shapes from measured experimental data and 
is a complicated and error prone process, which of-
ten requires human judgement from the operators. 

Research undertaken in recent years has primarily 
focused on using directly measured data such as fre-
quency response function (FRF) to assess the condi-
tion of a structure and to identify damage (Bandara 
et al. 2014). In comparison to processed data such as 
modal parameters, direct measurements from numer-
ical and experimental modal testing have the ad-
vantage of retaining an abundance of information of 
a structure’s dynamic behaviour from measured data 
as well as avoidance of labour intensive EMA. 
Thereby, operational human induced errors can be 
eliminated and crucial damage sensitive information 
is preserved. Furthermore, using direct measure-
ments from real-time can make these methods fa-
vourable for online continuous monitoring. 

One of the critical issues with developed damage 
detection algorithms is the reliability and robustness 
of the methods. The primary sources of difficulties 

include measurement noise, modelling error, uncer-
tainty of ambient conditions and incompleteness of 
measured data. An important aspect of damage iden-
tification research is therefore the discrimination of 
abnormal response variation due to damage from 
normal response variation caused by measurement 
noise, fluctuations of ambient conditions or operat-
ing uncertainty. Artificial neural networks (ANNs), 
a form of artificial intelligence, have strong abilities 
to learn from experience, generalize from examples, 
and identify underlying information from noisy data. 
In the presented method, the joint use of directly 
measured FRF data and a hierarchical system of 
ANNs (network ensembles) is therefore employed. 
Such approach has already been applied by some re-
searchers and some successful results have been ob-
tained (Zang and Imregun 2001; Ni et al. 2006; Li et 
al. 2009; Dackermann et al. 2013). In previous re-
search, Principal Component Analysis (PCA) was 
used for data compression to address the issue of uti-
lising large FRF data, which can cause problems in 
training convergence and computational efficiency 
in neural networks. PCA is a statistical technique 
that is known for its capability in reducing the di-
mensions of data as well as its ability to reduce the 
influence of uncertainties by filtering unrepeatable 
random features. Previous research investigated the 
capability of using the ANN model to detect damage 
from data obtained using the same experimental con-
figuration and damage scenario as the data that was 
collected to train the ANN model. This paper will 
take this approach one step further by exploring the 
ANNs capabilities of testing measurements from 
damage cases that were not used to train the ANN 
model. As such, some generated damage cases will 
be used to train the ANN model and the remaining 
damage cases will be used for testing. 

2 PROPOSED DAMAGE IDENTIFICATION 
APPROACH 

In the proposed damaged identification method, an 
impact hammer is used to induce vibration to the test 
structure. In the presented study, the structure is a 
concrete arch beam specimen, which is a replica of 
one of many jack-arch cantilever beams that support 
the bus lane on the Sydney Harbour Bridge. The vi-
bration response of the structure is captured using 15 
accelerometers. From these acceleration measure-
ments, the FRFs are derived forming the basis for 
the damage specific feature (DSF) utilised in this 
method. The aim is to use the DSF to train ANNs to 
estimate the severity of damage based on data de-
rived from the acceleration measurements. A base-
line is defined by the FRFs of the healthy structure. 
By subtracting the FRFs of the undamaged structure, 
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residual FRFs are generated emphasising the differ-
ence between the undamaged and the damage cases. 

A major limitation with this approach is that the 
size of the residual FRFs is very large, making it im-
practical for ANN training. Data compression tech-
niques are considered to rectify this issue. PCA is 
used to significantly reduce the data size by project-
ing its most important features to different principal 
components. The schematic of the proposed meth-
odology is shown in Figure 1. 
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Figure 1. Schematic of damage identification method. 

3 EXPERIMENTAL SETUP 

The bus lane on the Sydney Harbour Bridge is 
supported by a series of connected arch type cantile-
ver joints as shown in Figure 2a. For the experi-
mental validation of the proposed damage identifica-
tion method, a concrete specimen was produced that 
replicates the geometry and material properties of a 
single arch joint. The specimen comprised of 
32 MPa characteristic strength concrete encasing a 
200UB18 steel I-Beam with 50 mm concrete cover 
on both ends and had a length of 2 m. 15 accelerom-
eters (PCB 352C34) were installed on the specimen 
to measure the vibration response resulting from im-
pact excitation. The cross-section of the beam and 
the location of the accelerometers are shown in Fig-
ure 2b (A1 to A10 on front surface, A11 to A15 set 
back 300 mm). The National Instruments data acqui-
sition system PXIe-4492 was used to record the data. 
The impact was applied 50 mm from the front and 
50 mm from the right face of the specimen to excite 
vertical bending and torsional modes (see Figure 
2c). 200 hammer strikes were executed and the 
structural response was recorded with a sampling 

rate of 8 kHz over a period of two seconds for each 
impact. 

After testing the structure in its healthy state, 
damage was inflicted to the specimen using a saw 
blade introducing a cut between accelerometer 2 and 
3 as indicated in Figure 2b. The cut had a depth of 
55 mm and was induced in four incremental stages 
each representing a different cut length. The struc-
ture was tested again after each damage stage. In to-
tal, five different structural conditions were tested: 

 
• Healthy State: No damage 
• Damage Case 1: Light damage with a cut length 

of 75 mm 
• Damage Case 2: Medium damage with a cut 

length of 150 mm 
• Damage Case 3: Severe damage with a cut 

length of 225 mm 
• Damage Case 4: Extra severe damage with a cut 

length of 270 mm 
 

 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
b) 
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Figure 2. a) Series of arch type cantilever joints supporting the 
bus lane, b) dimensions of the experimental replica single joint 
specimen and accelerometer locations, c) experimental setup. 

4 DAMAGE IDENTIFICATION PROCEDURE 

4.1 Residual Frequency Response Functions 

In the proposed damage identification procedure, the 
residual FRF data is processed to obtain unique 

Bus lane 

Impact 
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DSF. Residual FRFs emphasise the difference be-
tween FRF measurements of the structure in its 
healthy state and its damaged state. It can be calcu-
lated using Equation 1.  

Residual FRF = FRFundamaged – FRFdamaged   (1) 

An example of FRFs from a single accelerometer 
is shown in Figure 3a. The FRFs of all impacts of 
the healthy case and all damage cases are averaged 
respectively. As it can be seen, the introduced dam-
age has only a small effect on the FRFs making it 
difficult to distinguish between the healthy case and 
the damaged cases. It is therefore beneficial to ob-
tain the differences between the FRFs of the dam-
aged cases and the baseline FRF to emphasise the 
changes in the FRF caused by the damage. The re-
sidual FRF captures these changes and are shown in 
Figure 3b. 

 

 

Figure 3. (a) FRFs of healthy case and all four damage cases 
(of a single accelerometer), and (b) residual FRFs of all four 
damage cases (of a single accelerometer). 

4.2 Outlier Removal 

Due to various factors, such as background noise 
and human errors, the acceleration measurements are 
subjected to uncertanties and do therefore include 
outliers. Utilising all recorded data, including the 
outliers, would result in ANNs being trained with 
poor quality data and hence would deliver poor 
quality results. To remove the outliers, in this study, 
the emperical rule is considered, which states that 
99.73% of all data values lie within three standard 

devations of the mean of the data, assuming that the 
data has a normal distribution. This concept is 
illustrated in Figure 4. 

 
 

Figure 4. 3 Sigma normal distribution.  

One of the challenges in applying this theory to 
the experimental data is that the residual FRF of 
each impact excitation (from a total of 200 
excitations) consists of 4000 data points (for a 
frequency range from 0 to 2000 Hz) rather than a 
single value. In many cases, only a few of the data 
points were considered outliers and removing the 
sample based on only a small amount of outlier data 
points would result in excessive removal of data. 
This issue was overcome by defining a threshhold of 
maximum number of data points that were outside of 
the three sigma boundary, and by classifying the 
data sets that exceeded this threshhold as outlier data 
set. Table 1 lists the outlier count for accelerometers 
1 to 5 for five impact excitations of the healthy state. 
 
Table 1. Outlier count for accelerometers A1 to A15 for five 
impacts. 

  A1 A2 A3 A4 A5 A6 – A15 Avg

Impact 1 24 42 22 109 0 … 66

Impact 2 234 282 242 248 79 … 184

Impact 3 0 0 0 0 0 … 0.2

Impact 4 0 8 19 0 0 … 2

Impact 5 14 21 30 24 14 … 18

 
From the example in Table 1, it can be seen that 

for impact excitation 2, there are a notable number 
of outliers across all fifteen accelerometers. This is a 
clear indicator that this impact is an outlier. Similar-
ly, there are a notable number of outliers across most 
of the accelerometers of the first impact, marking 
this impact as an outlier. In contrast to this, there are 
also a number of outliers for the fifth impact excita-
tion, however, this impact excitation is not consid-
ered to be an outlier in this analysis. In this case, the 
average number of outliers across the 15 accelerom-
eters is only 18 out of the 4000 data points, which 
presents 0.45% of the data points. Figure 5 illus-
trates the outlier count for 30 impacts of the undam-
aged case. It can be seen that the outlier count is 
consistently high for all accelerometers of impact 2, 
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20, 22 and 24, which were classified as outlier data 
sets and subsequently removed. 
 

Figure 5. Outlier count identification.

To ensure that good quality data was maintained 
and used to train the ANNs, an outlier removal sys-
tem was developed that removes impact data sets of 
an average outlier count above a certain threshold, 
which was defined to retain 150 of the 200 impact 
samples. For the case presented above, a threshold 
of 22.3 was defined as the threshold. 50 impact exci-
tations had an average outlier count of over 22.3, 
hence 150 samples were retained. 

Figure 6a and 6b show the residual FRFs of a 
single accelerometer before and after the outlier 
analysis. It can clearly be seen that the FRFs are 
much clearer after the outlier analysis. This process 
was repeated for all damage cases.  

 

 

Figure 6. Removal of outliers in the frequency response 
functions. a) FRFs before outlier analysis, and b) FRFs after 
outlier analysis (for a frequency range from 0 to 2000 Hz).  

4.3 Principal Component Analysis 

PCA can overcome issues associated with using 
large-size data in ANNs and are capable of reducing 
measurement noise and other uncertainties. PCA is a 
statistical technique that projects data onto its most 
important principal components (PC), and thereby, it 
greatly reduces its size without significantly affect-
ing the data. Eigenvalue decomposition of the covar-
iance matrix forms the basis of PCA.  

In the presented study, PCA is applied to the 
standard score of the linearly transform residual 
FRFs to compress the data to a smaller set of uncor-
related values. A standard score value for each data 
point is found by applying Equation 2 where x is the 
measured data point, μ is the mean value and σ is the 
standard deviation of the data points. 

 
                                                                     (  

(2) 

In the resulting data, the first PC, which is the 
largest eigenvalue, represents the direction and 
amount of maximum variability of the residual FRF. 
The subsequent PCs have lower contribution to the 
data. The contributions of the derived PCs from one 
of the accelerometers are depicted in Figure 7a. 

 

Figure 7. a) PC contributions, and b) PC values.  
 

To ensure that at least 95% of data is represented, 
the first 15 PCs were considered as input to the 
ANN models. PCA was applied to all residual FRF 
data of all accelerometers. Figure 7b illustrates an 
example of the derived PCs of the residual FRFs. It 

10 20 30 40 50
0%

20%

40%

60%

80%

100%

Principal Component Number

C
on

tr
ib

ut
io

n

 

 

Cumulative Contribution

Individual Contribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-50

0

50

100

Principal Component Number

P
rin

ci
pa

l C
om

po
ne

nt
 V

al
ue

 

 
No Damage

Damage Case 1

Damage Case 2

Damage Case 3

Damage Case 4

0 500 1000 1500 2000

-0.06

-0.04

-0.02

0

0.02

0.04

Frequency (Hz)

M
ag

ni
tu

de

0 500 1000 1500 2000

-0.06

-0.04

-0.02

0

0.02

0.04

Frequency (Hz)

M
ag

ni
tu

de

a) 

b) 

a) 

b) 

No Damage 
Damage 1 
Damage 2 
Damage 3 
Damage 4 

No Damage 
Damage 1 
Damage 2 
Damage 3 
Damage 4 



                         Special Issue: Electronic Journal of Structural Engineering 14(1) 2015 
 

80 
 

can be seen that the PCs of the five condition cases 
show unique and distinguishable features.  

To enable the same data transformation for sub-
sequent testing data sets, the eigenvalues of the co-
variance matrix used to define the PCs of the FRF 
data, and the mean and standard deviation values of 
each data point along the FRF are saved. Thereby, 
subsequent data can be converted to standard scores, 
making the test data compatible with the stored ei-
genvectors. 

4.4 Artificial Neural Networks 

ANNs mimic biological neural networks and use 
weighted interconnected processing elements called 
neurons to learn and map set input variables to out-
put variables by adjusting the input weights and bi-
ases of the neuron connections according to the ad-
justed transfer functions. The Neural Network 
Toolbox in MATLAB was used to carry out the re-
gression-type ANN analysis.  

In this study, a total of 15 individual networks 
were trained, each with data from the 15 accel-
erometers, and one network ensemble, fusing the 
outcomes of the individual networks. For each net-
work, the available data was divided into a training, 
a validation and a testing set. While each network 
was trained with the training samples, its perfor-
mance was supervised utilizing the validation set to 
avoid over-fitting. The testing data was used to test 
the trained networks with before unseen data. All 
networks consisted of an input layer made up of 15 
nodes representing the first 15 PCs. This was fol-
lowed by a hidden layer of 7 nodes, which was fol-
lowed by the output layer consisting of a single nu-
meric node predicting the length of the damage cut. 
The regression-type network analysis was optimised 
to minimise the mean squared error of the outputs 
using the Levenberg-Marquardt back propagation 
algorithm.  

4.5 TESTING THE ANN MODEL 
INTERPOLATION 

One focus of this research was to explore the ability 
to train ANNs using measurements based on the 
healthy state and a limited number of damage cases 
and to test whether the trained network can accurate-
ly estimate the damage cut length from measure-
ments of damage cases that were not used to train 
the ANNs.  

Therefore, the available data was divided into a 
training and validation set, and a testing set. The 
training and validation set included the following 
cases: 

• Healthy State – No Damage 
• Damage Case 2 – 150 mm cut 

• Damage Case 4 – 270 mm cut 
 

Each of these three cases was divided into 100 
training, 25 validation and 25 testing samples. The 
remaining two damage cases were used purely to 
test the ability of the network to interpolate between 
the trained cases. They are referred to as the testing 
cases in this study and include the following. The 
division of the data set is summarised in Table 2. 

 

• Damage Case 1 – 75 mm cut 
• Damage Case 3 – 225 mm cut 
 

The training and validation sets were used to pro-
duce the eigenvectors that compressed the residual 
FRF data to PCs and to train/validate the ANN mod-
el. These Eigenvector features were stored and sub-
sequently used to process the testing set after the 
ANN training process. In particular, the PC values 
from each impact excitation were generated by mul-
tiplying the previously stored Eigenvectors of the 
covariance matrix by the standard score of the resid-
ual FRF data points. These PCs were then used as 
inputs to the already trained ANN regression model 
to obtain the damage cut length prediction. 

 
Table 2. Division of data for the healthy state and four damage 
cases into training, validation and testing set. 

Damage 
case 

Cut length 
(mm) 

Data set division 

HS 0 100 (Train) 25 (Val) 25 (Test)

D1 75 150 (Test) 
D2 150 100 (Train) 25 (Val) 25 (Test)
D3 225 150 (Test) 

D4 270 100 (Train) 25 (Val) 25 (Test)
 
As transfer functions, the linear, logistic sigmoid 

and hyperbolic tangent transfer functions were stud-
ied to test the interpolation capabilities of the ANNs. 
Although it was necessary to optimise the ANN 
model to achieve a high accuracy of the cut length 
for the training and validation samples, considera-
tion also needed to be given to the two damage cases 
in the testing set that were not used to adjust the 
ANN model. It was found that the logistic sigmoid 
and the hyperbolic tangent functions improved the 
overall accuracy of the ANN models for the training 
and validation set, however, these models were una-
ble to provide reasonable estimates for the testing 
set. This suggests that the ANN model was over-
trained to specifically recognise the input data that 
was used to train the model. The linear transfer func-
tion was also tested. It was found that, although, the 
training set data were not as accurately predicted, the 
estimations for the testing cases were much more 
reasonable. Hence, the linear transfer function was 
used for the hidden layer and the output layer in the 
ANN models. 
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An ANN ensemble was used to combine the re-
sults of the individual accelerometer ANN models 
and to thereby give an improved estimation of the 
damage cut length. The schematic of the network 
ensemble is shown in Figure 8. 

 
 

Figure 8. ANN Ensemble. 

5 NUMERICAL MODELLING 

A numerical model was created to simulate the ex-
perimental setup and to introduce more damage cas-
es. The commercial software ANSYS® was used to 
conduct the numerical analysis of the concrete arch 
cantilever. The geometry of the model was based on 
the specimen in the experimental setup. The created 
model had a length of 2 m and a width of 1 m. The 
cross-section is shown in Figure 2b. The model con-
sisted of two main materials, i.e. steel and concrete. 
The structure mostly comprised of a 32 MPa charac-
teristic strength concrete, which was modelled using 
a Young’s Modulus of 30.1 GPa, a Poisson’s ratio of 
0.2 and a density of 2.4 t/m3. The second material 
property used in the model is the steel I-Beam that 
sits along the beam axis with a 50 mm concrete cov-
er on both ends. The steel I-Beam was modelled 
with a Young’s Modulus of 200 GPa, a Poisson’s ra-
tio of 0.3 and a density of 7.85 t/m3.  

The boundary conditions of the FE model needed 
to be adjusted to account for the semi-rigid supports 
of the experimental setup. This was achieved by 
modelling thin strips at the boundary conditions at 
three locations as indicated in Figure 9 to reflect the 
real experimental setup conditions. The material 
properties of the strips were optimised to simulate 
the contact between the specimen and the support.  

A modal analysis was run to determine the mode 
shapes and natural frequencies of the structure. This 
was a necessary procedure, as the transient analysis 
was computationally expensive and the modal anal-
ysis allowed for optimisation between the experi-
mental natural frequencies and the numerical natural 
frequencies. The natural frequencies of the first four 

modes are listed for the experimental and numerical 
model in Table 3. 
 

Figure 9. Finite element model with marked boundary condi-
tions and simulated damage mesh. 

 
Table 3. Comparison of experimental and numerical natural 
frequencies. 

Mode 1 Mode 2 Mode 3 Mode 4 

Experimental (Hz) 45.50 180.50 263.50 400.00 

FEA (Hz) 46.68 175.99 258.06 383.72 

Error 2.59% -2.50% -2.06% -4.07% 

 
Transient analysis was used to obtain the time-

history of the dynamic response of the structure. 
Therefore, a load was applied replicating the ham-
mer impact excitation of the experimental specimen. 
The transient analysis produces a much cleaner sig-
nal than the experimental measurements, as it is not 
subjected to noise. For this reason, 2% artificial 
white Gaussian noise was added to the acceleration 
time history data. White Gaussian noise was added 
150 times to each measurement in order to produce 
150 unique hammer excitations to train the ANN 
model. Following the addition of the noise, the data 
was transformed into FRFs. The damage cases were 
produced by introducing a cut into the numerical 
model as shown in Figure 9. The ANNs were trained 
using the same procedure that was used to process 
the experimental data.  

One of the main advantages of using numerical 
models is that it enables the training of ANN models 
with additional damage cases that can easily be pro-
duced without the need to spend extensive resources 
on experimental testing. In this study, a numerical 
model was produced to simulate the damage cases 
that were introduced in the experimental model. In 
addition, four extra damage cases were created with 

Boundary  
Condition 1 Boundary  

Condition 2 

Boundary  
Condition 3 

Cut introduced in FE model 
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the severity of the damage being midway between 
the existing experimental damage cases. Thereby, a 
total of eight different damage cases were created. 
The following cases were used for ANN training and 
validation: No Damage, 75 mm cut, 150 mm cut, 
225 mm cut, 270 mm cut. To test the interpolation 
capabilities of the ANN model, the following dam-
ages cases were used: 37.5 mm cut, 112.5 mm cut, 
187.5 mm cut and 247.5 mm cut. 

For the numerical cases, the division of the data 
in testing, validation and training sets is summarised 
in Table 4.  
 
Table 4: Division of data for the healthy state and eight damage 
cases into training, validation and testing sets. 

Damage  
case 

Cut length 
(mm) 

Data set division 

HS 0 100 (Train) 25 (Val) 25 (Test)
D0.5 37.5 150 (Test) 

D1 75 100 (Train) 25 (Val) 25 (Test)
D1.5 112.5 150 (Test) 

D2 150 100 (Train) 25 (Val) 25 (Test)
D2.5 187.5 150 (Test) 

D3 225 100 (Train) 25 (Val) 25 (Test)
D3.5 247.5 150 (Test) 

D4 270 100 (Train) 25 (Val) 25 (Test)

6 RESULTS AND DISCUSSION 

For the experimental structure, the testing set regres-
sion outcomes of the neural networks are shown in 
Figure 10. Figure 10a depicts the estimated damage 
length estimation of data from accelerometer 1, and 
Figure 10b shows the results of the ensemble. As 
mentioned above, for the testing sets, 25 samples 
were used from the healthy case, damage case 2 and 
damage case 4, and the full set of 150 samples was 
used from damage case 1 and damage case 3. In both 
figures, the regression shows smaller errors for the 
damage cases that were also included in the training 
and validation sets (healthy case, damage case 2 and 
damage case 4), as the networks were optimised for 
these particular cases. However, success can be seen 
in the interpolation of these results, even though a 
larger scatter for the tested case can be observed. 
This is to be expected, as the ANN model was not 
optimised to these cases. Furthermore, a majority of 
the predicted values appears to have an offset from 
the actual value. This suggests that training the mod-
el using only data from the healthy case, damage 
case 2 and damage case 4 has not accurately cap-
tured the relationship between the compressed FRF 
data and the actual damage cut length; however, it 
does give a reasonable estimate. It can be seen that 

the ensemble improved the accuracy of the length 
estimation with an improved R value. 

The numerical modelling equivalent to the exper-
imental training and testing of the ANN was also 
run. The regression plots are shown in Figure 11. 
Similar to the experimental analysis, the numerical 
approach used the healthy state and damage cases 2 
and 4 to train the ANN model and tested the general-
isation ability of the ANN using the two damage 
cases that were not used in the training process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Experimental test regression for (a) network of ac-
celerometer 1, and (b) network ensemble. 
 

Despite the 2% white Gaussian noise that was 
added to the time history of the acceleration meas-
urements, the regression of the estimated against the 
actual damage cut lengths had less scattered esti-
mates than those of the experimental results. Again, 
it was found that the estimated damage lengths for 
the tested cases had an offset from the actual damage 
length, although the estimation was reasonable. The 
regression plot of Figure 11b shows the advantages 
of using a network ensemble. It can be seen that the 
scatter of the results was reduced, providing a clear-
er value as to how the ANNs have interpolated the 
results. 

In order to improve the interpolation capabilities 
of the ANN, an additional numerical model was 
studied that introduces more damage cases to the 
structure. In this configuration, the healthy case and 
four damage cases were used to train the model and 

a) 

b) 
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four damage cases were used to test the interpolation 
capabilities of the model. Figure 12a shows the re-
gression for a single accelerometer with the in-
creased number of damage cases. It is evident that 
with the increased number of damage cases used to 
train the ANN model, the generalisation ability of 
the ANNs has been improved. This highlights the 
main advantages of using numerical modelling to 
produce data from simulated damage. Like the pre-
vious ANN setups, the ensemble has reduced the 
scatter of the estimated damage cut lengths showing 
a clearer estimation to the captured relationship be-
tween the input and output of the ANN model. 

 
 
 
 
 
 
 

 

Figure 11. Finite element test regression using the same 
damage cases as experimental for (a) accelerometer 1 and (b) 
network ensemble. 

 
Figure 13 shows the averaged values of the dam-

age cut length estimations of each damage case for 
the experimental ANNs and the two numerical mod-
elling configurations. Table 5 shows the error per-
centages associated with the regression plots in Fig-
ure 13. These results are to be seen as final outcomes 
of the proposed damage identification method. 

It is observed from the chart that the average of 
the interpolated values do not lie perfectly with the 
actual damage length. In the experimental ANN con-
figuration, the ANN model estimated the cut to be 
98 mm as opposed to the actual cut length of 75 mm 
for damage case 1, resulting in a 31.2% error. Simi-

larly for damage case 3, the ANN model estimated 
the damage length to be 196 mm as opposed to the 
actual cut length of 225 mm, resulting in a -12.88% 
error. 

 
 
 
 
 

Figure 12. Finite element test regression using additional 
damage cases for (a) accelerometer 1 and (b) network ensem-
ble.
 

Figure 13. Averaged results of all investigated cases. 
 

As for the numerical case with the same configu-
ration as the experimental case, the damage length 
estimation for damage case 1 is much closer to the 
actual value than the experimental estimation with a 
predicted length of 81 mm and an error of 7.8%. 
However, the error of the predicted cut length for 
damage case 3 is closer to the experimental value 
than the actual value, suggesting that although the 

a) 

b) 

b) 

a) 
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networks are able to interpolate that the damage 
length lies in between the trained cases, it cannot ac-
curately predict the damage length. 

 
Table 5: Error of damage cut length of all investigated cases. 

Damage  
case 

Cut 
length  
(mm) 

Experimental 
structure 

Numerical 
model 

Numerical 
model with 
extra cases 

D0 0 - - - 

D0.5 37.5 - - -12.40% 

D1 75 31.20% 7.80% -0.20% 

D1.5 112.5 - - 0.77% 

D2 150 2.56% -0.05% 0.07% 

D2.5 187.5 - - 1.15% 

D3 225 -12.88% -9.89% -0.07% 

D3.5 247.5 - - -2.56% 

D4 270 0.42% 0.00% 0.04% 

 
This issue can be addressed by training the net-

works with more cases, which can more accurately 
capture the relationship between the compressed 
FRF data and the damage cut length. It is observed 
from Figure 13 that interpolation improved when 
training more damage cases to the ANN. 

In the presented study, for the experimental test-
ing, the healthy structure and two damage cases 
were used to train the model. However, it was found 
that these three cases were not enough to capture the 
relationship between the compressed FRF and the 
damage length. In order to address this issue, numer-
ical modelling was used to create more damage cas-
es that could improve the ANN model’s capabilities 
to interpret the compressed FRF data and accurately 
estimate the damage length accordingly. Further-
more, the results of the ANN have been combined in 
an ensemble to reduce the scatter of the plots and 
obtain higher damage identification accuracy. 

7 CONCLUSIONS 

This paper presents an innovative method for identi-
fying the presence of local damage in a structure and 
estimating its severity. An experimental specimen 
that replicates a single joint of a series of jack arch 
beams that support the bus lane under the Sydney 
Harbour Bridge was used as the basis of this study. 
Local damage was inflicted to the specimen with 
four different damage severities (damage cut 
lengths). From impact testing, acceleration meas-
urements were recorded for each damage case and 
derived to obtain residual frequency response func-
tion. These were then compressed into dimensional-
ly smaller data size using principal component anal-
ysis. The compressed data was used to train artificial 
neural network models to learn the relationship be-

tween the compressed FRF measurements and the 
damage severity. A limited number of damage cases 
were used to train the networks and the remaining 
damage cases were used to test the models. The ex-
perimental results showed that the testing cases were 
able to interpolate between the trained cases using 
the compressed FRF data. In addition, a numerical 
model of the experimental structure was created to 
benefit from the capability of generating additional 
damage cases to be trained in the ANN model. From 
the numerical study, it was found that training the 
ANN models with more damage cases allows the 
model to better capture the relationship between the 
compressed FRF data and the damage severity and 
therefore improve the interpolation capabilities of 
the ANN models. 
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