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1 INTRODUCTION 

Cylindrical shells are widely used in various engi-
neering fields as key structural components such as 
pressure vessels, storage tanks, pipes, water ducts 
and process equipments. Loading and environmental 
attack lead to the accumulation of damages in struc-
tures. In order to avoid disastrous structural failures 
induced by damages, it is essential to detect the 
damage in the very early stage of damage propaga-
tion. In general, damage will result in a local reduc-
tion in stiffness which in turn changes the dynamic 
behaviour of the structure, including natural fre-
quencies, mode shapes and damping ratios. Numer-
ous research studies have been conducted to use the 
change of structural vibration properties for damage 
detection. Doebling et al. (1998), Sohn et al. (2000) 
and Brownjohn (2007) presented the literature re-
view on damage detection based on parameters such 
as natural frequencies, mode shapes, mode shape 
curvatures, flexibility matrix and stiffness matrix. 
However, most of the researchers used beam or plate 
structures in their damage detection modelling, and 
only a few studies were based on shell structures. 

Generally, a crack in a structure introduces local 
flexibility which usually changes the dynamic be-
haviour of the structure that can be used as a possi-

ble means to detect the crack. Rice and Levy (1972) 
modelled the crack as a line spring model. The 
spring stiffness is related to a specific crack depth 
and severity and determined by a localised flexibility 
matrix based on fracture mechanics. This model is 
widely used to analyse the dynamic behaviour of 
beam and plate structures with cracks. However, few 
works have been done on shell structures. In one of 
the few studies, Roytman and Titova (2002) devel-
oped an analytical mathematical model to analyse 
the elastic oscillations of a cylindrical shell with sur-
face closing cracks. Relay’s energy conservation 
method was employed to derive the governing equa-
tion of motion for the system. Analytical solutions 
were obtained by using Fourier transformation 
method. The effect of the crack shape, such as 
square, triangle, or spherical was discussed. 
Javidruzi et al. (2004) conducted finite element 
analysis on the vibration, buckling and dynamic sta-
bility of cracked cylindrical shells. The effect of 
crack length and orientation on the vibration fre-
quency of a cracked cylindrical shell was investigat-
ed. A numerical analysis of partially cracked cylin-
drical shell system was performed by Mohan (1998) 
using the finite element analysis software ABAQUS. 
The line spring model was used to simulate the par-
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tial crack in the shell structure. The line-spring crack 
model essentially reduces a complex three dimen-
sional cracked shell system problem into a two di-
mensional one by transforming the crack mechanism 
into a series of line spring connections. It was also 
observed in their study that the results are closer to 
the experimental ones than that by other models. Lee 
et al. (2006) presented a structural damage identifi-
cation method based on frequency response function 
(FRF) data. Their method was very efficient since it 
only required FRF data at damaged state. Zhu et al. 
(2007) analyzed the vibrational power flow of an in-
finite cylindrical shell with a circumferential surface 
crack. The surface crack was modelled using the 
equivalent distributed line spring. Their results 
showed that due to the presence of the crack the vi-
brational power flow changes dramatically and the 
change is strongly dependent on the depth and posi-
tion of the crack. Sarker et al. (2011) used Ritz 
method to analyze the vibration of cylinder shell 
with cracks and detected cracks by using the second 
derivative of mode shape. Zhang et al. (2014) pre-
sented a damage detection method based on fre-
quency shift curve for cylindrical shell structures. 

Wavelet analysis has attracted enormous attention 
from researchers due to its ability to analyze non-
stationary signals such as the damage signal in struc-
tures. Wavelet analysis can be implemented success-
fully to detect the changes occurred in the mother 
signal as a means for damage detection. It can also 
be used to separate the noise from the original signal 
to extract the data which may be hidden by the 
noise. A wavelet based approach for structural dam-
age detection of beams, plates and composite plates 
was proposed by Rajasekaran and Varghese (2005). 
By breaking the dynamic signal of the structural re-
sponse into a series of local basis functions (also 
called wavelets) and using its scaling and transfor-
mation property, the special characteristic of the 
structure can be identified. A structural damage de-
tection method based on wavelet transform was pro-
posed by Lu and Hsu (2002) where they compared 
the vibration signals from the intact and damaged 
structures after the discrete wavelet transform. The 
presence, position and number of damages in the 
structure were determined. The defects in the struc-
ture were simulated by attaching several point mass-
es and spring on the string. They observed from the 
numerical results that even the minor changes in the 
structure have effects in the wavelet coefficients of 
the vibration signals. Law et al. (2005) showed ana-
lytically the relationship between the local change in 
the system parameters and the sensitivity of the 
wavelet packet transform component energy in a dy-

namic system. Their results showed that the method 
is insensitive to measurement noise and can define 
the damages at close proximity. Initial damage of 
composite laminated plates based on the energy var-
iation of the structural dynamic response was inves-
tigated by Yan and Yam (2002). They implemented 
the online damage detection method and used wave-
let analysis to determine the dynamic response of the 
plates. The constructed damage index changed with 
the propagation of the crack and the method was al-
so very sensitive to small damage (Yan et al. 2007).        

In this study we investigate the dynamic behav-
iour of a circular cylindrical shell with circumferen-
tial surface crack by using the Ritz method. The sur-
face crack is modelled as the line spring that 
provides the continuity among the internal forces. 
Different damage scenarios are simulated by chang-
ing the crack locations and spring stiffness. Modal 
parameters of the shells with different damages are 
obtained and compared. Wavelet analysis is carried 
out to detect the discontinuities in the mode shape 
where the damage is presented. The location and ex-
tent of the damage are predicted by the changes of 
modal parameters. Simulation results show that the 
proposed method is effective and accurate to deter-
mine the crack damage in the cylindrical shell struc-
tures, indicating the potential applications of the 
method in damages detection for oil pipelines and 
other cylindrical shell-type structures.   
 

 
2 VIBRATION ANALYSIS OF SHELLS BY RITZ 
METHOD 

Consider a circular cylindrical thin shell of uniform 
thickness h, radius R, length L, mass density ߩ, 
modulus of elasticity E, Poisson’s ratio	ߥ, and shear 
modulus	ܩ ൌ ܧ ሾ2ሺ1 ൅ ⁄ሻሿߥ . The geometry and co-
ordinate system of the shell is shown in Figure 1. 

 
Figure 1. Geometry of a cylindrical shell. 
 

 Based on Sander’s thin shell theory, the strain 
energy U of bending and stretching of the cylindrical 
shell is given by (Leissa, 1973) 
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where u, v, w are displacements in the longitudinal, 
tangential, and radial directions; x and ߠ are longitu-
dinal and circumferential coordinates, respectively. 
Neglecting the effect of rotary inertia since only the 
thin shell is considered, the kinetic energy T of the 
cylindrical shell is given by     
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(2) 
The Lagrangian functional F is the sum of the strain 

and the kinetic energies of the shell  
TUF            (3) 

Assuming harmonic vibration, the following functions 
are adopted to separate the spatial variables x, ߠand the 
time variable t:        

                tienxUtxu  sin)(),,(   

                  tienxVtxx  cos)(),,(   
tienxWtxw  sin)(),,(         (4) 

where n is the number of circumferential waves and ߱ is 
the  circular frequency of vibration. 

By substituting Eq. (4) into Eq. (3), the Lagrangian 
functional can be expressed as 
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2.1. Geometric boundary conditions 

For simply supported cylindrical shells, Sobel 
(1964) identified four kinds of boundary conditions 
that are designated as follows: 

0:;0:;0:;0: 4321  VUWSUWSWSVWS  

(6) 
Similarly for clamped shells, the boundary condi-

tions are  
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2.2. Ritz functions 

In order to satisfy the geometric boundary conditions 
in Eqs. (6) and (7), the Ritz polynomial functions for 
approximating displacements are given by (Wang et 
al. 1995) 
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where m is the number of terms in the Ritz trial 
functions, pi, qi and ri are the unknown Ritz coeffi-
cients to be determined and the powers Pu, Pv and Pw 
may choose the value as listed in Table 1 to satisfy 
the simply supported and clamped edge support 
conditions. 
 
Table 1. Powers of P of Eq.(8) 

 
Free 
End 1S  2S  3S  4S  1C  2C  3C  4C  

uP  0 0 0 1 1 0 0 1 1 

vP  0 1 0 0 1 1 0 0 1 

wP  0 1 1 1 1 2 2 2 2 

 
The superscripts of P, i.e., 0 and 1, denote the cy-

lindrical shell ends at x=0 or x=L, respectively. Ritz 
polynomial functions are mathematically complete 
to ensure easy exact differentiation and integration 
for high accuracy. In the present work, we limit our 
study to the S1 and C4 support conditions as shown 
in Eqs. (6) and (7). 

 
2.3. Ritz method 

In the Ritz method, the Lagrangian functional can be 
differentiated with respect to each of the unknown 
Ritz coefficients pi, qi and ri  as  
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Substituting Eq. (8) into Eq. (9), the following 
equation can be obtained: 

        02  CMK         (10) 
where [K] and [M]  are the stiffness and mass matri-
ces of the cylindrical shell, respectively, and 
   Tmm rrrqqpppC ,,,,,,,,,, 212121  is the col-

umn vector containing all Ritz coefficients. 
The matrix [K] can be expressed as 
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and D is the flexural rigidity of the shell and is given 
by  )1(12/ 23  EhD . 

The matrix [M] is given by 
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where the elements of the [M] matrix are 
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3 RITZ METHOD FOR CRACKED SHELLS 

The Ritz method is applied to analyze the vibration 
of a cracked cylindrical shell. Herein the circumfer-
ential surface crack is studied and it is modelled as a 
rotational spring. Two parameters are used to de-
scribe the crack damage, i.e.: spring stiffness and lo-
cation of the crack. The stiffness parameter is related 
to the crack damage severity. Owing to the introduc-
tion of circumferential crack in the shell surface, the 
shell can be divided into two segments. The strain 
and kinetic energies in both segments are calculated 
separately along with the strain energy of the spring. 
By equating the strain and kinetic energy for both 
segments along with the strain energy of the spring, 
the eigenvalue problem is solved to obtain the modal 
parameters (natural frequency and mode shape) of 
the cracked circular cylindrical shell. 
 
Spring connection model 

The shell is divided into two segments connected by line 
spring. The strain energy of the cracked shell is given by 

321 UUUU          (22)  

where	ܷ is the total strain energy of the shell; ଵܷ and 
ܷଶ	are the strain energies of Segments 1 and 2, re-
spectively; 	ܷଷ is the strain energy of the connecting 
springs. 

The kinetic energy of the shell is given by  

21 TTT             (23) 

where ܶ is the total kinetic energy of the shell, ଵܶ 
and ଶܶ	are the kinetic energies of Segments 1 and 2, 
respectively. The Lagrangian functional F is the sum 
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of the strain and kinetic energies of the cracked shell 
and springs, i.e. 

21321 TTUUUTUF      (24) 

The strain energy equation for the connecting 
springs is 

00

00

2

0

221
2

0

2
21

2

0

2
21

2

0

2
213

)(
2

1
)(

2

1

)(
2

1
)(

2

1

xx

s

xx

uvw

xx

uvw

xx

uvw

Rd
dx

dw

dx

dw
SRdwwS

RdvvSRduuSU




















 

(25) 

where 111 ,, wvu  are displacements in the longitudi-
nal, tangential, and radial directions of Segment 1 
and 222 ,, wvu  are displacements in the longitudinal, 
tangential, and radial directions of  Segment 2. 

 323 )1(12/ REhCS uvwuvw   is the translational 

spring stiffness coefficient to enforce the continuity 
of u, v and w at the crack location, and uvwC  is the 

non-dimensional spring stiffness parameter. 
 REhCS ss )1(12/ 23   is the rotational spring 

stiffness coefficient used at the crack location, and  

sC  is the non-dimensional spring stiffness parameter 

that varies the stiffness of the rotational spring con-
nection. uvwC  and sC  are related to the depth of the 

crack and they could be determined by the fracture 
mechanics. 0x  is the location of the crack along the 

length direction of the shell. 
Applying the Ritz method the following eigen-

value equation can be obtained, 
       02  crcrcrcr CMK        (26) 

where  crK  and  crM  are the stiffness and mass 

matrices of the cracked cylindrical shell, and cr  is 

the natural frequency of the cracked cylindrical 
shell.  
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is the column vector of Ritz coefficients.  
 
 

4 CONTINUOUS WAVELET TRANSFORM 

Owing to the presence of the crack in the circular 
cylindrical shell there will be discontinuities in the 
mode shapes. The curvature of the mode shape is 
very effective to detect the abnormal change in the 
mode shape. However, it is difficult to obtain the ac-
curate mode shape in practice, and the differentia-
tion of deflection will produce more errors. Wavelet 
transform is an effective tool to detect the disconti-
nuities in a signal and it has been successfully im-

plemented for the damage detection in beams and 
plates.  

A mother wavelet )(x  can be identified as a 
function of zero average value, 

0)( 




dxx          (27) 

and )(x  is normalized as: 

1)(
2 





dxx          (28) 

From the mother wavelet )(x , the analyzing 
wavelet can be obtained by dilation parameter s and 
translation parameter b: 







 


s

bx

s
xsb  1
)(,       (29) 

where both s and b are real numbers and s must be 
positive. 

The continuous wavelet transform of a signal 
)()( 2 RLxf   depending on time or space is defined 

by (Mallat and Hwang, 1992) 












 

 dx
s

bx
xfbsWf *)(),)((     (30) 

where    denotes the complex conjugate. The 
mother wavelet should satisfy an admissibility con-
dition to ensure the existence of the inverse wavelet 
transform, such as   

 




dx
F

C

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

2
)(

      (31) 

where  )(F  denotes the Fourier transform of 

)(x  and is defined as  

RxdxexF xi  




   ,)()( 
       (32) 

 
 

5 NUMERICAL STUDIES 

5.1 Convergence study  

To verify the convergence, efficiency and accuracy 
of the Ritz method in the analysis of circular cylin-
drical shells, the frequency parameters (Ω) of the in-
tact simply supported (S-S), clamped (C-C) and 
clamped free (C-F) shells have been compared with 
the results obtained by Naeem and Sharma (1999). 
For the sake of comparison, the same shell parame-
ters are used i.e. length-to-radius ratio L/R=6, radius-
to-thickness ratio R/h=500, Poisson’s ratio ν=0.3, 
modulus of elasticity E=206832.4MPa and material 
density ρ=7826.4 kg/m3. The natural frequency pa-

rameter is defined as Ω ൌ ܴ߱ඥߩሺ1 െ  where ,ܧ/ଶሻߥ
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߱ is the natural frequency of the circular cylindrical 
shell. The convergence study results have been pre-
sented in Table 2 with circumferential wave number 
n in the range of 1 and 10. The Ritz polynomial 
terms have been varied from 2 to 8 to observe the ef-
fect on the uncracked natural frequency parameters 

of the shell. It is observed that the convergence is 
achieved rapidly with the increase of the Ritz poly-
nomial terms. It is also found that the convergence 
rate of the method is dependent on the boundary 
conditions.  

     
Table 2. Convergence of frequency parameters (Ω) of an uncracked simply supported (S-S) shells [L/R=6, R/h=500,     ν=0.3, 
E=206832.4 MPa and ρ=7826.4 kg/m3].          

  
Number of polynomial terms  

2 4 6 8 

Circumferential Waves, 
 n 

Naeem & 
Sharma 
(1999) Present 

Naeem & 
Sharma 
(1999) Present 

Naeem & 
Sharma 
(1999) Present 

Naeem &  
Sharma 
(1999) Present 

1 0.15038 0.15038 0.14067 0.14067 0.14064 0.14064 0.14064 0.14064 

2 0.05972 0.05971 0.05434 0.05434 0.05432 0.05432 0.05432 0.05432 

3 0.02997 0.02996 0.02707 0.02708 0.02707 0.02707 0.02707 0.02707 

4 0.01934 0.01934 0.01778 0.01777 0.01778 0.01777 0.01778 0.01777 

5 0.01780 0.01779 0.01709 0.01707 0.01709 0.01707 0.01709 0.01707 

6 0.02159 0.02160 0.02130 0.02130 0.02130 0.02130 0.02130 0.02130 

7 0.02821 0.02820 0.02809 0.02808 0.02809 0.02808 0.02809 0.02808 

8 0.03652 0.03653 0.03647 0.03647 0.03647 0.03647 0.03647 0.03647 

9 0.04620 0.04620 0.04617 0.04617 0.04617 0.04617 0.04617 0.04617 

10 0.05711 0.05710 0.05709 0.05709 0.05709 0.05709 0.05709 0.05709 

 
Table 3. Comparison of the frequency parameters (Ω) for simply supported (S-S), clamped (C-C) and clamped-simply  
(C-S) supported cylindrical shells [L/R=20, h/R=0.01, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3 and Ritz polynomial terms=6].

S-S C-C C-S 

Circumferential Wave,  
n 

Loy et al. 
(1997) 

Zhang et al. 
(2001) Present  

Loy et al.
(1997) 

Zhang et al.
(2001) Present  

Loy et al. 
(1997) 

Zhang et al.
(2001) Present 

1 0.01610 0.01610 0.01610 0.03289 0.03488 0.03342 0.02397 0.02472 0.02416 

2 0.00938 0.00938 0.00938 0.01393 0.01405 0.01400 0.01123 0.01128 0.01124 

3 0.02211 0.02211 0.02210 0.02267 0.02273 0.02267 0.02231 0.02234 0.02231 

4 0.04210 0.04210 0.04209 0.04221 0.04227 0.04221 0.04214 0.04217 0.04214 

5 0.06801 0.06801 0.06801 0.06805 0.06812 0.06805 0.06802 0.06805 0.06802 

 
5.2 Numerical verification of results  

To verify the accuracy of the present analysis the re-
sults are compared with those available in the litera-
ture. In Table 3 the natural frequency parameters of 
uncracked shells with simply supported (S-S), 
clamped (C-C) and clamped-simply supported (C-S) 
boundary conditions have been compared with the 
results of Loy et al. (1997) and Zhang et al. (2001). 
The parameters used for the analysis are: length-to-
radius ratio of the circular cylindrical shell L/R=20, 
thickness-to-radius ratio h/R=0.01 and the number of 
Ritz polynomial terms being 6. 

From Table 3, it is observed that the natural fre-
quency parameters agree well with those obtained by 
Loy et al. (1997) and Zhang et al. (2001), indicating 
the accuracy of the present method. The percentage 

difference is listed in Table 4. For circumferential 
wave n=1, simply supported, clamped and clamped-
simply supported circular cylindrical shells have the 
differences in natural frequency parameters for the 
above mentioned studies and are 0.000 & 0.000, -
1.627 & 4.183, -0.763 & 2.281 percentage, respec-
tively. For the clamped case the difference is higher 
than usual but in the other cases it is less than 1% 
which is lower than the limits of engineering toler-
ance. For higher values of circumferential wave 
number i.e. n=2 to 5, the differences in frequency 
parameters are less than 1 % for all the boundary 
conditions as can be seen in Table 4. It is clearly in-
dicated that the method is efficient and accurate to 
produce satisfactory results for the vibration analysis 
of thin circular cylindrical shells.
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Table 4. Differences (%) of  frequency parameters (Ω) between the present study and the re-
sults obtained by Loy et al. (1997) and Zhang et al. (2001) as shown in Table 3. 

S-S C-C C-S 

Circumferential 

Wave,  

n 

Loy et 

al. 

(1997) 

Zhang 

et al. 

(2001) 

Loy et 

al. 

(1997) 

Zhang 

et al. 

(2001) 

Loy et 

al. 

(1997) 

Zhang 

et al. 

(2001) 

1 0.000 0.000 -1.627 4.183 -0.763 2.281 

2 0.053 0.053 -0.423 0.434 -0.134 0.363 

3 0.014 0.014 0.000 0.233 0.009 0.121 

4 0.005 0.005 0.002 0.151 0.005 0.069 

5 0.003 0.003 0.001 0.104 0.001 0.046 

 
Table 5. Vibration frequencies (Ω) of the uncracked circular cylindrical shell [h=0.05m, R=1m, ν=0.3, E=206832.4MPa and 
ρ=7826.4 kg/m3]. 

Boundary  
Conditions Circumferential Wave Number, n 

  L/R 1 2 3 4 5 

S-S 1 0.59162 0.67687 0.54120 0.49575 0.54518 

5 0.18639 0.08695 0.12019 0.21609 0.34506 

10 0.05911 0.04454 0.11105 0.21127 0.34087 

15 0.02795 0.04016 0.11009 0.21053 0.34013 

20 0.01610 0.03916 0.10980 0.21027 0.33986 

S-C 1 0.87647 0.70554 0.58744 0.55390 0.60122 

5 0.21242 0.11133 0.12736 0.21817 0.346000 

10 0.08009 0.05022 0.11181 0.211513 0.34099 

15 0.04065 0.04165 0.11028 0.21060 0.34017 

20 0.02416 0.03979 0.10988 0.21031 0.33990 

C-C 1 0.91126 0.74475 0.64739 0.62386 0.66854 

5 0.24179 0.13627 0.13703 0.22099 0.34714 

10 0.10117 0.05825 0.11294 0.21181 0.34114 

15 0.05451 0.04408 0.11055 0.210684 0.34022 

20 0.03343 0.04067 0.10998 0.21034 0.33992 

C-F 1 0.56254 0.35805 0.27078 0.28971 0.38879 

5 0.07649 0.04885 0.11140 0.21093 0.34012 

10 0.02243 0.03966 0.10981 0.21014 0.33963 

15 0.01031 0.03897 0.10962 0.21002 0.33957 

20 0.00590 0.03882 0.10952 0.20994 0.33953 

 
5.3 Vibration analysis of uncracked cylindrical 
shells 

The vibration analysis program developed for this 
study has been used to determine the fundamental 
circumferential mode frequencies of different shell 
models. The data furnished by this model has been 
compared with the ones by the cracked shell models 
to determine the effect of the circumferential surface 
crack upon the fundamental circumferential mode 
frequencies of the specific shell system.  

In Table 5 different combinations of boundary 
conditions have been analysed with different cir-
cumferential wave numbers (n) to show the gradual 
changes in natural frequency in the shell system. The 
shells are analysed with different length-to-radius ra-
tios (L/R), a shell thickness of h=0.05m and a shell 

radius of R=1m. The boundary conditions that have 
been used for the analysis are simply supported (S-
S), simply support-clamped (S-C), clamped-clamped 
(C-C) and clamped-free (C-F). From Table 5 it is 
observed that the frequencies of circular cylindrical 
shells are affected by different length-to-radius ratio 
(L/R), the circumferential wave number (n) and 
boundary conditions. The frequencies decrease with 
the increase of the length-to-radius (L/R) ratio and 
increase with the increase of the circumferential 
wave number (n). Different combinations of bounda-
ry conditions also affect the frequencies. It can be 
seen from Table 5 that shells with clamped-clamped 
(C-C) boundary condition has higher frequencies 
than the ones with other boundary conditions. How-
ever, the boundary condition effect diminishes with 
the increasing circumferential wave number (n).  
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5.4 Vibration analysis of cracked cylindrical shells 

The above model is used for modelling the surface 
cracks on the shell. The different damage severities 
are simulated by varying the rotational spring stiff-
ness. The program has been developed with an op-
tion to change the line spring’s position along the 
length of the cylindrical shell. In Table 6 the natural 
frequency parameters (Ωcr) of cracked circular cy-
lindrical shells with different combinations of 
boundary conditions, length-to-radius ratio (L/R) and 
Cs values are presented. The crack has been simulat-

ed by line spring connections along the circumfer-
ence in the middle (0.5L) of the shell. From Table 6 
it can be observed that the change in the natural fre-
quency parameters (Ωcr) of the cracked cylindrical 
shells is very small even though the length-to-radius 
ratio (L/R) is 15. The change is almost negligible 
when the length-to-radius ratio is smaller than 15 (1 
to 10). But some abrupt changes are observed for 
clamped (C-C) and simply support-clamped (S-C) 
cylindrical shells when the length to radius ratio L/R 
is 20.  

 

 
Table 6. Natural frequency parameters (Ωcr) of cracked circular cylindrical shells with different values of Cs; crack position in the middle 

(0.5L) of the shell. 
 [h=0.05m, R=1m, ν=0.3, Cuvw=107, n=1, E=206832.4 MPa and ρ=7826.4 kg/m3] 

    Rotational Spring Stiffness Parameter, Cs 

Boundary 
Conditions 

L/R 10-3 10-2 10-1 1 10 102 103 104 105 106 107 

 S-S 1 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 0.59157 

5 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 0.18638 

10 0.05911 0.05911 0.05911 0.05911 0.05911 0.05911 0.05911 0.05911 0.05911 0.0591 0.05911 

15 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 0.02795 

20 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 

C-C 1 0.88208 0.88218 0.88315 0.89019 0.90528 0.91052 0.91117 0.91124 0.91125 0.91125 0.91125 

5 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 0.24114 

10 0.10022 0.10022 0.10022 0.10022 0.10024 0.10025 0.10026 0.10026 0.10026 0.10026 0.10028 

15 0.05395 0.05395 0.05395 0.05395 0.05395 0.05396 0.05397 0.05397 0.05397 0.05397 0.05397 

20 0.03314 0.03314 0.03314 0.03314 0.03314 0.03315 0.0331505 0.03315 0.03315 0.14350 0.10429 

S-C 1 0.86005 0.86011 0.86070 0.86490 0.87332 0.87609 0.87643 0.87646 0.87646 0.87646 0.87646 

5 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 0.21199 

10 0.07967 0.08010 0.07965 0.07964 0.07964 0.07968 0.07970 0.07958 0.07954 0.07963 0.07964 

15 0.04071 0.04060 0.04021 0.04032 0.04062 0.04047 0.04043 0.04054 0.04040 0.04097 0.04046 

20 0.02035 0.02483 0.02389 0.02238 0.02309 0.02208 0.02190 0.02456 0.02243 0.02245 0.02270 

C-F 1 0.56182 0.56182 0.56184 0.56201 0.56235 0.56248 0.56249 0.56250 0.56250 0.56250 0.56250 

5 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 0.07608 

10 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 0.02230 

15 0.01027 0.01027 0.01027 0.01027 0.01027 0.01028 0.01028 0.01028 0.01028 0.01028 0.01028 

20 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00586 0.00586 0.00586 0.00586 0.00586 

 
To determine a meaningful scale for the rotational 

spring stiffness parameter Cs, an analysis is conduct-
ed for the Cs parameter, and the results are listed in 
Table 7. For different boundary conditions, the natu-
ral frequency parameter gradually changes as the ro-
tational spring stiffness parameter varies. The rota-
tional spring stiffness parameter values are between 
10-3 and 107. As seen from Table 7, the natural fre-
quency parameter remains unchanged when the rota-
tional spring stiffness parameter value is between 
102 and 107. It is indicated that any value from 102 to 
107 can be selected for the rotational spring stiffness 
parameter Cs for simulating different damage severi-
ties because it is assumed that in real cases damage 

will cause more rotation in the radial direction of the 
cylindrical shell without changing its natural fre-
quency much. 

By setting the rotational spring stiffness coeffi-
cient (Cs) to zero, it represents a case where there is 
no resistance between the rotations of the two seg-
ments. Table 8 lists the hinged vibration frequency 

and effects of different locations, for all shell sys-
tems analysed in this study. It is clearly shown from 
Table 8 that except for simply supported shells the 
hinged vibration frequencies are always less than the 
uncracked vibration frequencies of the circular cy-
lindrical shell. 
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Table 7. Natural frequency parameters (Ωcr) of cracked shell subjected to different boundary conditions and with different spring 
stiffness parameter [n=1, L=2m, h=0.005m, R=0.1m, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107, polynomial terms=6 and 
crack position=0.5L]. 

Rotational Spring Stiffness Parameter, Cs 

Boundary 
Conditions 

10-3 10-2 10-1 1 10 102 103 104 105 106 107 

S-S 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 

C-C 0.03314 0.03314 0.03314 0.03314 0.03314 0.03315 0.03315 0.03315 0.03315 0.03315 0.03315 

S-C 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 0.02407 
C-F 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00586 0.00586 0.00586 0.00586 0.00586 

 
 
Effect of crack and its location on natural frequency 
of circular cylindrical shell  

To study the effect of the crack and its location on 
the fundamental mode frequencies of the circular cy-
lindrical shell, the shell is analysed with an interme-
diate rotational spring stiffness parameter value of 
Cs=103. The results of the analysis are shown in Ta-
ble 9. From the results it is obvious that the crack 
doesn’t have any significant effect on the fundamen-
tal mode frequencies of the simply supported cylin-
drical shell as the difference in frequency parameters 
for all crack locations is 0.00%. For clamped (C-C), 

simply supported-clamped (S-C) and clamped-free 
(C-F) cylindrical shells the cracked frequencies are 
always smaller than the uncracked fundamental 
mode frequencies.  

The frequency changes due to the introduction of 
the crack on the shell surface is too small to be used 
as a tool for detecting the damage position as can be 
observed from Tables 8 and 9. However, it still pro-
vides evidence of the presence of an imperfection in 
the system. Because natural frequencies are insensi-
tive to crack damage, a special focus has been given 
on mode shape analysis for damage detection for cy-
lindrical shells. 

 
Table 8. Effect of hinge connections upon the uncracked fundamental mode frequency of various shell systems [n=1, L=2m, 
h=0.005m, R=0.1m, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107 and Cs=0]. 

Boundary Conditions Uncracked Frequency(Ω) Hinge Location 

    0.1 0.2 0.3 0.4 0.5 

S-S 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 

0.00% 0.00% 0.00% 0.00% 0.00% 

C-C 0.03343 0.03317 0.03313 0.03313 0.03314 0.03314 

-0.78% -0.90% -0.90% -0.87% -0.87% 

S-C 0.02416 0.02415 0.02413 0.02411 0.02409 0.02407 

-0.04% -0.12% -0.21% -0.29% -0.37% 

C-F 0.00587 0.00584 0.00584 0.00584 0.00585 0.00585 

-0.51% -0.51% -0.51% -0.34% -0.34% 

Note: Frequency parameter (frequency change in percentage) 
 
Table 9. Effect of crack upon the uncracked fundamental mode frequency of various shell system [n=1, L=2m, h=0.005m, R=0.1m, 
ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107 and Cs=103]. 

Boundary Conditions Uncracked Frequency(Ω) Crack Location 

    0.1 0.2 0.3 0.4 0.5 

S-S 0.01610 0.01610 0.01610 0.01610 0.01610 0.01610 

0.00% 0.00% 0.00% 0.00% 0.00% 

C-C 0.03343 0.03318 0.03313 0.03314 0.03315 0.03315 

-0.75% -0.90% -0.87% -0.84% -0.84% 

S-C 0.02416 0.02415 0.02413 0.02411 0.02409 0.02407 

-0.04% -0.12% -0.21% -0.29% -0.37% 

C-F 0.00587 0.00584 0.00584 0.00585 0.00585 0.00586 

-0.51% -0.51% -0.34% -0.34% -0.17% 

Note: Frequency parameter (frequency change in percentage) 
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6 DAMAGE DETECTION USING WAVELET 
ANALYSIS 

A mode shape is a specific pattern of vibration of a 
structural system at a specific frequency. In this 
analysis the eigenvectors associated with the first vi-
bration mode is used to determine the first mode 
shape. The mode shape has been used as the ana-
lysed signal for the wavelet analysis for locating the 
damage position. The parameters used in the analy-
sis are: circumferential wave number n=1, shell 
length L=2m, shell thickness h=0.005m, shell radius 
R=0.1m, Poisson’s ratio ν=0.3, modulus of elasticity 
E=206832.4 MPa, material density ρ=7826.4 kg/m3, 
rotational spring stiffness parameter Cs=10-3 to 
104and spring stiffness parameter Cuvw=107. The ro-
tational spring stiffness parameter has been varied 
up to a certain limit to examine its sensitivity on the 
wavelet analysis. The reason for the selection of ro-
tational spring stiffness parameter Cs =104 is to cre-
ate a larger difference in the stiffness of the continui-
ty condition and rotation of the circular cylindrical 
shell. For wavelet analysis the daubechies wavelet 
(db-10) is used to find the discontinuity in the shell 
system. 

 
6.1 Simply supported shell with one crack 

For the wavelet analysis the mode shape has been 
used as the analysed signal for all the cases 
presented here. The daubechies wavelet (db-10) has 
been used for finding the discontinuity in the shell 
system. The rotational spring stiffness parameter 
(Cs) is varied from 10-3 to 104 to simulate different 
crack severity on the circular cylindrical shell at the 
position of 0.3L. It can be seen from Figure 2 that 
the wavelets can identify the damage position in the 
simply supported shell system by analyzing its mode 
shape at different rotational spring stiffness (Cs) val-
ues. 

 
Figure 2. Wavelet analysis of simply supported shell with a 
crack at 0.3L with different Cs values. 

6.2 Clamped shell with one crack  

To verify the effectiveness of wavelet transform in 
the detection of the damage location in the shell sys-
tem, in this section a crack has been simulated in the 
clamped shell at the position of 0.3L. From Figure 3 
it is quite clear that wavelet transform is capable of 
detecting the damage in the clamped shell when the 
damage is located at the 0.3L position of the shell. 
The jumps in the graphs in all the cases prove that 
different values of rotational spring stiffness pa-
rameter (Cs) have no effect on the wavelet trans-
form.  

 
Figure 3. Wavelet analysis of clamped shell with a crack at 
0.3L with different Cs values. 

 
6.3 Clamped-free shell with one crack 

 
Figure 4. Wavelet analysis of clamped-free shell with a crack 
at 0.3L with different Cs values. 
 
Similarly wavelet analysis is also conducted for 
clamped-free boundary condition with a crack at 
0.3L in the circular cylindrical shell with the same 
parameters as in the case of simply supported and 
clamped shells.  The results are presented in Figure 
4. It is clearly seen that for the crack position of 0.3L 
in the circular cylindrical shell the crack location can 
be identified by the wavelet transform for all Cs val-
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ues. The crack location is barely identifiable when 
the Cs value is 103 and the crack location cannot be 
identified for a Cs value of 104. Thus the clamped-
free shell shows a similar behaviour as the simply 
supported shell when the crack damage is presented 
at 0.3L in the circular cylindrical shell. 

  
6.4 Simply supported and clamped shells with two 
cracks 

To check the effectivity of the method for the shell 
system with multiple cracks, the shell has been 
analysed with two cracks. By using the same 
parameters as discussed in the previous sections, the 
shell has been analysed for both simply supported 
and clamped conditions with only a rotational spring 
stiffness (Cs) parameter value of 103. The results are 
demonstrated in Figures 5 and 6. It is clearly seen 
from the figures that there are two peaks in the shell 
system at the crack positions. It is proved that the 
method is applicable for the shell system with 
multiple cracks.  

 
Figure 5. Wavelet analysis result for simply supported cylin-
drical shell with two cracks at 0.3L and 0.6L positions. (L=2m, 
h=0.005m, R=0.1m, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, 
Cuvw=107 and Cs =103). 

 
Figure 6. Wavelet analysis result for clamped cylindrical shell 
with two cracks at 0.3L and 0.6L positions. (L=2m, h=0.005m, 
R=0.1m, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107 
and Cs =103). 

 

6.5 Wavelet analysis with noise 

Considering the practical condition of vibration 
measurements the shell is also analysed with noise. 
White noise is added to the calculated responses of 
the shell to simulate the polluted measurements. The 
wavelet analysis is then carried out with the simulat-
ed noisy measurements to see the effect of both the 
crack and noise on the effectiveness of the wavelet 
transform. For simulating the noise the formula used 
is (Zhu and Law, 2006) 

)( calculatedoisepcalculated wNEww      (33)  

where w is the polluted displacement, Ep is the noise 
level, Noise is a standard normal distribution vector 
with a zero mean value and a unit standard devia-
tion,	ݓ௖௔௟௖௨௟௔௧௘ௗ  is the calculated displacement, and 
-௖௔௟௖௨௟௔௧௘ௗሻ is the standard deviation for the calݓሺߪ
culated displacements. The noise level Ep has been 
taken as 0.01% in this study as higher noise level 
makes the wavelet transform insensitive to the dam-
age.  
 

 
Figure 7. Wavelet analysis result with noise for simply sup-
ported cylindrical shell with a crack at 0.3L. (L=2m, h=0.005m, 
R=0.1m, ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107, 
Cs =103, Ep =0.01% and wavelet coefficient scale =64) 

 
The rotational spring stiffness parameter Cs is 

taken as 103. The results of the wavelet analysis with 
noise of simply supported and clamped shells with a 
crack located at 0.3L are shown in Figures 7 and 8. 
The wavelet coefficient of the displacement (w) of 
the circular cylindrical shell with a scale of 64 are 
used for all the cases. As can be seen from Figures 7 
and 8, wavelet transform of the displacement (w) of 
the circular cylindrical shell can detect the damage 
position successfully with a noise level of 0.01%. 
The distinctive peak on the curve is the damage lo-
cation for the shells. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

x 10
-7

Length of shell (x)

W
av

el
et

 c
oe

ff
ic

ie
nt

 (
re

al
 p

ar
t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

1.5
x 10

-7

Length of shell (x)

W
av

el
et

 c
oe

ff
ic

ie
nt

 (
re

al
 p

ar
t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Length of shell (x)

W
av

el
et

 c
oe

ff
ic

ie
nt

 (
re

al
 p

ar
t)



                         Special Issue: Electronic Journal of Structural Engineering 14(1) 2015 
 

73 
 

 
Figure 8. Wavelet analysis result with noise for clamped cylin-
drical shell with a crack at 0.3L. (L=2m, h=0.005m, R=0.1m, 
ν=0.3, E=206832.4 MPa, ρ=7826.4 kg/m3, Cuvw=107, Cs =103, 
Ep =0.01% and wavelet coefficient scale=64) 

 
 

7 CONCLUSIONS 

A model based damage detection method for circular 
cylindrical shells has been proposed based on the 
Ritz method. The crack on the shell surface has been 
modelled by the line spring. Natural frequency and 
mode shape have been analysed with different com-
bination of boundary conditions to assess the effect 
of circumferential surface crack on these modal pa-
rameters. The natural frequency changes with differ-
ent position of the circumferential crack along the 
shell length are very minimal and cannot be used for 
damage detection. Wavelet analysis has been carried 
out to determine the discontinuities of the mode 
shape with different crack positions along the shell 
length direction. From the results of the wavelet 
analysis it can be concluded that damage in the cir-
cular cylindrical shell can be detected successfully 
by the proposed model based damage detection 
method. 
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