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1. INTRODUCTION 

Bridges are essential components of any transporta-
tion infrastructure, which requires timely decision-
making for maintenance, repair and rehabilitation 
(MR&R) operations. For effective asset manage-
ment, many bridge authorities have implemented 
bridge management systems (BMSs) to manage their 
routine inspection information and to establish 
MR&R strategies. To ensure such successful out-
comes, BMSs must (1) contain reliable, consistent 
and accurate condition data from routine bridge in-
spections; and (2) encompass reliable deterioration 
modelling that overcomes the shortcomings of the 
lack of historical bridge inspection records. Howev-
er, without consistent and accurate bridge condition 
data, reliable BMS outcomes cannot be expected re-
gardless of the superiority of the asset management 
techniques. Routine bridge inspections are a conven-
ient way of evaluating the overall safety and perfor-
mance of a bridge and a significant practice to relia-
bly operate BMSs, because the success of a BMS is 
highly dependent on the quality of bridge inspection 
records. To evaluate the bridge condition status, in-
spections are regularly scheduled and performed 

visually by qualified bridge inspectors with a mini-
mum amount of equipment. 

Although current routine inspections are required 
to be carried out by certified inspectors to provide 
condition assessment, some major issues have been 
identified: (i) visual inspections are subjective and 
not always reliable (Phares et al. 2004; Moore et al. 
2001). Routine inspections are operated by qualified 
bridge inspectors to assess the condition ratings un-
derneath the bridge by measuring its deterioration 
status. The reliability of the degree of defects is 
completely dependent on the inspector's knowledge 
and experience. For this reason, the bridge condition 
assessment outcomes are occasionally error-prone 
and have wide variations amongst inspectors. Thus, 
it is difficult to objectively assess the deterioration 
status of a bridge through standard visual inspection. 
This in turn increases the degree of temporal uncer-
tainty in predicting long-term bridge element per-
formance; (ii) the entire manual inspection process is 
time-consuming and costly (Chase and Edwards 
2011; Sanford et al. 1999), especially when the 
bridge is extremely long or spans a substantial area, 
which substantially increases the total inspection 
cost. It should also be noted that the cost to change 
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the current inspection method, which has been used 
for around 15-20 years and has already produced 
massive amounts of historical condition rating rec-
ords, is expensive. Any change to the inspection 
method will also create data incompatibility issues; 
and (iii) a number of safety risks are associated with 
bridge inspectors (Lim et al. 2011). A bridge inspec-
tion is performed directly on the bridge, thus con-
ducting visual inspections of a bridge deck contains 
risks with passing traffic. In practice, some bridge 
elements also have accessibility issues. Therefore 
the inspector may need to be stationary on a tempo-
rary platform on an inspection vehicle in order to ac-
curately judge the bridge element conditions; (iv) 
bridge inspections require highly experienced and 
trained personnel, which is now a challenging issue 
for most bridge authorities as there is a shortage of 
the required level of inspectors (Zhu et al. 2010). 
Moreover, insufficient training, vision problems, ac-
cessibility and location can cause inconsistencies in 
visual inspections (Sterritt 2009). These limitations 
can cause further unreliable predictions of long-term 
bridge performance on the basis of the deterioration 
model in a BMS. 

In order to minimise the aforementioned limita-
tions, a feasibility study has been performed to en-
hance the current visual inspection method using op-
tical image processing techniques. However, the 
method developed is not fully capable of addressing 
the challenges in automatic crack detection. These 
challenges include variable lighting conditions, ran-
dom camera/view angle, and random resolution of 
bridge images. This paper thus proposes a new 
bridge inspection approach employing wavelet-
based image features along with SVMs for automat-
ic detection of cracks in bridge images. A two-stage 
approach is followed, whereby in the first stage, up-
on initially analysing the characteristics of the pixel 
values in ‘R’, ‘G’ and ‘B’ channels, the image is 
identified as either a ‘complex’ or a ‘simple’ image. 
If the image is identified as a ‘complex image’ then 
a pre-processing step is executed otherwise the im-
age is directly processed for feature extraction. Us-
ing a non-overlapping sliding window, texture anal-
ysis–based features are extracted from the image re-
gion beneath the sliding window. Later in the se-
cond stage, the extracted features are passed on to a 
SVM classifier to decide whether the region beneath 
the sliding window contains a crack or not. The out-
come of the proposed method indicates that an over-
all accuracy of 92% is obtained even when undertak-
ing experiments with noisy and complex bridge im-
ages. 
 

2 RELATED WORKS ON CRACK DETECTION 

Outlined herein are some of the research efforts 
made on automated crack detection of bridge images 
using image processing and pattern recognition 
techniques. 

Ehrig et al. (2011) introduced three different crack 
detection algorithms namely template matching, 
sheet filtering based on hessian eigenvalues, and 
percolation based on the phenomenon of liquid per-
meation. Their study focused on determining the 
suitability of each for crack detection. Subsequently, 
the percolation algorithm was modified using em-
ploying a sheet filter approach for application to 
three-dimensional images. It should be noted that the 
template matching technique was used to detect cer-
tain patterns. The latter was based on the physical 
model of liquid permeation, with each pixel consid-
ered to be either a crack or otherwise. As a result, 
the modified percolation algorithm, called ‘Hessian-
driven percolation’, verified its effectiveness in 
crack detection. It was found, however, that the Hes-
sian-driven percolation was not suitable for thin 
cracks. 

Abdel-Qader et al. (2003) compared edge-
detection algorithms in the context of bridge crack 
detection. Collections of 50 concrete bridge images 
were used. Four techniques were also employed for 
comparative analysis: fast Haar transform (FHT), 
fast Fourier transform (FFT), Sobel edge detection, 
and Canny edge detection. The output images were 
judged as containing cracks or no cracks based on a 
threshold, which was determined by the average 
value of the intensity of all pixels in the images. The 
conclusion drawn was that the FHT performed sig-
nificantly better than the other algorithms. 

Jahanshahi and Masri (2011) presented a feasibil-
ity study on a novel crack detection methodology for 
condition assessment of concrete structures. Such an 
assessment was performed in three steps including: 
(a) image acquisition; (b) image processing (seg-
mentation and feature extraction); and (c) pattern 
recognition (classification). After the target images 
were collected, morphological operation and Otsu’s 
thresholding method were adopted to the segmenta-
tion process. The purpose of the segmentation pro-
cess was to reduce unnecessary data in the original 
image. The appropriate structure element size (in 
pixel) was also determined for a morphological op-
eration based on camera focal length, the distance 
from the object to the camera, camera sensor resolu-
tion and size, as well as crack thickness. Following 
the process of image processing, five features were 
selected to feature extraction based on the Linear 
Discriminant Analysis (LDA). For comparative 
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analysis in the classification process, Neural Net-
work, Support Vector Machine and Nearest Neigh-
bour were used. Analysis results suggested that, 
Neural Network was better than the other tech-
niques. 

Mohajeri and Manning (1991) established a 
recognition system for segmented concrete crack 
images. The system uses directional filters to identi-
fy cracks in concrete. The crack can be identified to 
be longitudinal if there is a high concentration of ob-
ject pixels in a narrow interval of x (transverse) co-
ordinates, and to be transverse if there is a large 
number of object pixels in a narrow interval of y 
(longitudinal) coordinates. However, this system has 
been found to have difficulties in collecting accurate 
segmented crack images. 

Tong et al. (2011) developed a new method of 
crack image processing for concrete bridges in order 
to collect high quality images. Their work recog-
nised that images introduce noise such as irregular 
illumination, presence of moisture on concrete sur-
faces and shading. These problems induce unreliable 
outcomes of concrete crack detection. To minimise 
these problems, their method involves a pre-
processing phase and then separates crack pixels 
from the background of the image through manipu-
lation of grey level correction. However, this method 
is highly dependent on light conditions and it re-
quires changing the average grey level of images. 

A review of literature indicates that the above-
mentioned methods do not consider the images with 
difficult visual and are unable to process the bridge 
images with variable lighting conditions, random 
camera/view angle, and random resolution. Apply-
ing automatic visual bridge inspection method usual-
ly encounters difficulties in terms of the qualities of 
bridge images. How to automatically process the 
low quality bridge images and achieve reliable crack 
detection outcomes are vital in bridge condition as-
sessment. 
 
3. IMAGE ACQUISTION AND DATASET DE-
TAILS 

In the present study, the photography equipment 
used for capturing bridge images comprises a Canon 
5D Mark II camera with Canon 24–70 mm and 70–
200 mm lenses. The captured colour images have a 
resolution of 5616 × 3744 (21 megapixels). With 
these settings, the proposed system is capable of tak-
ing images of a 561.6 × 374.4 mm area and detect-
ing Condition State 1 (a crack width of less than 0.1 
mm). A total of 50 images of different concrete 
bridge elements are collected. The images are taken 
with different backgrounds and on different surfaces 

and light exposure conditions. In total, 1,369 “win-
dow” regions of type ‘crack’ and ‘non-crack’ are ob-
tained from the collected 50 images. 
 
4. THE PROPOSED AUTOMATIC CRACK DE-
TECTION SYSTEM 

In order to analyse the bridge image locally, a slid-
ing window strategy is deployed. For better compu-
tational efficiency, a non-overlapping 30 × 40 pixel 
window is glided over the entire image and the re-
gion beneath each window called ‘window regions’ 
is classified into a ‘crack’ or ‘non-crack’ region by a 
SVM classifier (refer to Section 4.3). The size of the 
sliding window is set after empirically experiment-
ing on the images. It is noted that the cracks in the 
images are at most 25 pixels in width. As such, a 
‘crack’ region is assumed to contain a crack with the 
background component, whereas a ‘non-crack’ re-
gion should cover the background element only. 

During the initial research, it was noted that the 
features (refer to Section 4.2) were capable of per-
forming well when the images consisted of a near 
consistent background with a high contrast between 
the foreground and the background, which can be 
termed as a ‘normal’ image. The feature was not 
performing well with ‘complex’ images, which had 
sudden changes in intensities in both the foreground 
and background, or when the images are dull in na-
ture (where the background gets fused with the fore-
ground). It is noted that for ‘normal’ images, the 
values of the ‘R’, ‘G’ and ‘B’ channels for a pixel 
are very similar to each other (low standard devia-
tion for all three values) and the range of these val-
ues are quite wide. However for ‘complex’ images, 
the values of the ‘R’, ‘G’ and ‘B’ channels for a pix-
el are quite different from each other (high standard 
deviation for all three values) with relatively small 
range. Using this heuristic information, all input im-
ages can broadly be clustered into two groups – 
‘complex’ and ‘normal’. Examples of ‘complex’ and 
‘normal’ bridge images are shown in Figure 1. 

After an image is categorised as ‘complex’, fur-
ther processing is required so that the crack mark 
becomes prominent with respect to its surroundings. 
After undergoing a series of colour space conver-
sions and filtering of values in various colour space 
channels, an equivalent grey scale image of the 
complex image was obtained. Furthermore, if the 
grey scale equivalent image of the ‘complex’ images 
can be processed by a contrast stretching algorithm, 
then the same features become effective. To achieve 
this, a two-stage approach is taken to deal with the 
process. The first stage is to decide whether an im-
age is of the type ‘complex’ or ‘normal’. For a 
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‘complex’ image, the pre-processing method (refer 
to Section 4.1) is undertaken for the whole image 
and then the processed results are forwarded to the 
feature extraction phase. For a ‘normal’ image, the 
pre-processing method is not required and instead 
the image can be directly used to extract features. It 

should be noted that the proposed approach, in its 
present form, is unable to procure a large number of 
bridge images. In view of this, a five-fold cross-
validation scheme is implemented instead of divid-
ing the entire corpus into training and test subsets. 

 
   

 
(a) Two ‘complex’ images 

 
(b) Two ‘normal’ or ‘standard’ images 

Figure 1. ‘Complex’ and ‘normal’ bridge images. 
 

 
The features extracted from all ‘crack’ and ‘non-

crack’ windows are combined and all the feature 
vectors are subsequently divided into five sets: four 
for training and the remaining one for testing. The 
process is repeated four more times so that each of 
the remaining four sets in the last training set can be 
employed for testing. It is noted that if the five-fold 
cross-validation scheme involving feature vectors 
from both ‘complex’ and ‘normal’ images are simul-
taneously implemented, then the accuracy can be 
diminished. Further investigation results indicate 
that mostly feature vectors from ‘complex’ images 
were incorrectly classified. Even by tuning the val-
ues of the SVM parameters, the situation did not 
change. Only after removing all feature vectors that 
belonged to the ‘complex’ image category, did the 
accuracy improve. However, upon implementing a 
five-fold cross-validation scheme, the feature vec-
tors obtained exclusively from the ‘complex’ imag-
es, exhibit similar accuracy to those obtained on 
‘normal’ images. It is worth mentioning here that the 
optimised parameters for feature vectors from two 
different image types are quite different. 
 
4.1 Pre-processing method 

Only those images that have been identified as a 
‘complex’ type image in the first stage will be exe-
cuted through pre-processing. Figure 2 is example 
for applying pre-processing method. The images are 
originally in RGB format, and are then transformed 
to a HSV colour space. The reason behind this is that 
in HSV space the image intensity can be separated 

from the colour information. Also such a transfor-
mation for ‘complex’ type images can ensure ro-
bustness against lighting changes, and shadows. In 
the HSV colour space, ‘Hue’ defines the colour 
component and ranges between 0-1.0, and ‘Satura-
tion’ describes how white the colour is, whereas the 
‘Value’ defines the lightness component in a pixel (0 
means white and 1 means complete black). During 
the initial research, it was noticed that highlighting 
the crack in an image could be achieved by analys-
ing the Hue and Saturation channel values, which 
can subsequently be manipulated to the desired val-
ues. If in a pixel the Hue value is >=0.9 and the cor-
responding Saturation value is <= 0.2, then it can be 
assumed that Hue = 0.6, Saturation= 1.0 and Value 
(intensity/brightness) = 0.1; otherwise the saturation 
is set to 0.2 and the remainder of the two channel 
values were kept intact. With the former case, ensur-
ing that the crack pixels present a proper blue colour 
with dark shade (see Figure 2(b), in the Hue axis 0.6 
resembles blue and Saturation 1 ensures that the pix-
el can be visually perceived as the true blue, the low 
intensity value ensures darkness with respect to the 
surroundings). With the latter case, the remaining 
pixels must be ensured to have more of a grey-like 
shade by applying a low saturation value. From the 
final output image presented in Figure 2(f), it is 
clearly evident that the pre-processing steps can 
easily convert a ‘complex’ image type as shown in 
Figure 2(a) to appear the same as a ‘normal’ image. 
Upon comparison of Figure 2(b) and Figure 2(f), it 
is evident that they appear visually similar. 

The pre-processing steps can be outlined as fol-
lows: 
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(a) Transform RGB to HSV colour space; 
(b) Check the range of Hue and Saturation values 

in a pixel and set the values of all H, S, V chan-
nels accordingly; 

(c) Conversion to RGB; 
(d) Convert the RGB to Grey scale; 

(e) Perform contrast stretching on the grey scale 
image; 

(f) Undertake final filtering on grey scale values 
(fix all grey scale values above a threshold to one 
particular high grey scale value) to obtain the de-
sired output image. 

 

     
(a) (b) (c) (d) (e) (f) 

Figure 2. (a) Extreme left an original input image; (b)-(e) same image in various intermediate stages; (f) extreme right correspond-
ing to the final output image after pre-processing. 

 
4.2 Feature extraction method 

A comparative analysis between different texture 
analysis-based methods is conducted for the purpose 
of crack detection. All the different features are ex-
tracted from the sliding window that glides over the 
whole image. Three different texture-analysis based 
features, such as Zernike moment features, Gabor 
filter features and Daubchies Wavelet features, are 
investigated. Consequently, the performance of 
wavelet features is proven to outperform the other 
two features during experimentation. Details of this 
comparative analysis are outlined below. 

Zernike moments Zernike moment features are ro-
tation invariant in nature. Two dimensional Zernike 
moments can be computed using the formula: 

Amn 
m1


f (x, y)[Vmn (x, y)]

y

 * dx dy
x

  (1) 

where, x2  y2 1and m n  even, n  m  
 
In Eq. (1), m = 0, 1, 2… ∞ defines the order and 

f(x, y) is the function being described and * denotes 
the complex conjugate. n is an integer implying the 
angular dependence. For a discrete image pixel P(x, 
y), the integrals are changed to summation, and Eq. 
(1) is transformed to the following: 

Amn 
m1


P(x, y)[Vmn(x, y)]*

y


x

  (2) 

where, x2  y2 1 

For the proposed study, the idea is to map the im-
age of the size-normalised image patches (the area 
beneath the sliding window) to the unit disc using 

polar coordinates, where the centre of the image is 
the origin of the unit disc. Those pixels falling out-
side the unit disc are not used in the proposed com-
putation. More details of the Zernike moment fea-
tures can be found in (Khotanzad and Hong 1990). 

Gabor filter Gabor filters are capable of repre-
senting signals in both a frequency and a time do-
main. A two-dimensional Gabor filter in a spatial 
and frequency domain can be defined by the follow-
ing formula: 

G(x, y,,,, , )

 exp{( x 2  2 y 2 ) / 2 2}cos(2 x /  )
 (3) 

where, x´= xcos θ + ysinθ; y´= -xsin θ + ycos θ 

In Eq. (3), the wavelength of the cosine factor is 
represented by λ, θ represents the orientation of the 
normal to the parallel stripes of a Gabor function, ψ 
denotes the phase offset, the sigma of the Gaussian 
envelope is represented by σ and γ represents the 
spatial aspect ratio that specifies the ellipticity of the 
support of the Gabor function. A combination of dif-
ferent values of these parameters has been tested, 
and the optimised results are achieved when the spa-
tial frequency is set to 21/2, and δ set to 2*π. 

Wavelet features wavelet transform is a useful 
technique in analysing non-stationary signal in time-
frequency domain. Initially, the Haar-wavelet trans-
form and Daubechies wavelet transform features 
were investigated, with Daubechies wavelet provid-
ing better test outcomes. Daubechies wavelets are a 
family of orthogonal wavelets defining a discrete 
wavelet transform. This consists of four scaling 
function coefficients and four wavelet function coef-
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ficients. The former coefficients presented below are 
used by the proposed test: 

1 3

4 2
,
3 3

4 2
,
3 3

4 2
,
1 3

4 2
  

After connected-component labelling is done on 
the binary image, the bounding box of all character-
components is obtained. The input grey images 
within the bounding box are copied. The features are 
extracted after size normalizing each such grey scale 
image of the sliding windows to 32 × 32 dimensions. 
Details of the feature can be found in (Daubechies 
1990). 
 
4.3 Support vector machine (SVM) classifier 

SVMs are employed as the classifier in this study. 
SVMs are defined for two-class problems and search 
for an optimal hyper plane, which maximizes the 
distance and the margin between the nearest exam-
ples of both classes, namely vectors (SVs). Given a 
training database of M data: {Xm|m=1,..., M}, the 
linear SVM classifier is then defined as: 

f (x)   j

j

 yj x j  x  b (4) 

where, {xj} are the set of SVs and the parameters αj 
and b are determined by solving a quadratic problem 
(Burges 1998). The linear SVM can be extended to 
various non-linear variants, and details can be found 
in (Burges 1998; Vapnik 1995). According to the 
test results, it is noted that the Gaussian kernel SVM 
outperforms the other non-linear SVM kernels. 
Hence, the Gaussian kernel, presented in the follow-
ing form, is employed to report the recognition re-
sults. 

[k(x, y)  exp(
x  y

2 2

2

)] (5) 

The best kernel parameters are selected by means of 
a series of validation experiments. The best opti-
mized results are obtained when (1/2σ2) is set to val-
ues such as 80.00 (while dealing with ‘normal’ im-
ages) and 9.00 (while dealing with ‘complex’ 
images) with the penalty multiplier value set to 1. 
 
5. RESULTS AND DISCUSSION 

Further analyses have been conducted according to 
the results obtained to provide more insights to the 
proposed method. When five-fold cross validation is 
implemented separately on feature vectors from 
‘complex’ and ‘normal’ images, higher accuracy can 
be achieved as compared to when implementing 
five-fold cross validation on feature vectors for both 
image types. Here, the accuracy employing only 

wavelet features is reported, which is depicted in 
Table 1. As the table shows, 81% of accuracy is ob-
tained when feature vectors are considered from 
both ‘complex’ and ‘normal’ images. Similarly 
while considering feature vectors from only ‘nor-
mal’ images, 93% of accuracy can be achieved (873 
correctly classified considering 936 samples from 
‘normal’ images during a five-fold cross validation) 
whereas while considering feature vectors from only 
‘complex’ images (388 correctly classified consider-
ing 433 samples during cross validation), an accura-
cy of 90% can be obtained. Thus the average accu-
racy achieved by the proposed approach becomes 
92%. The distribution of the confidence score during 
the classification process (cumulatively for ‘com-
plex’ and ‘normal’ images) is described in Section 
5.1 confirming the overall accuracy of the approach. 
In Section 5.2, the performance of the proposed ap-
proach is inspected by training it using feature vec-
tors exclusively obtained out of one particular image 
type (‘complex’/‘normal’) and testing it on the other 
image type. Sections 5.3 and 5.4 are dedicated to 
comparative analysis of three different features and 
error analysis, respectively. 
 
Table 1. Effect of training image types on accuracy. 

Training set type Accuracy 

Complex image and normal image 81% 

Normal image 93% 

Complex image 90% 
Average 92% 

 
5.1 Distribution of confidence score on top-choice 
classification  

The confidence score implies the probability estima-
tion of the recognized class. It is noticed that a large 
section of the correct classifications have a confi-
dence score in the range of 0.8-1.0. This is depicted 
in Figure 3. A large percentage of correct classifica-
tion with high confidence score indicates that our 
wavelet-based features are robust in nature. 
 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Confidence score distribution. 
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5.2 Effect on performance due to complex (normal) 
images in training (test) set 

As mentioned in earlier experiments, this study in-
volves two different types of images: ‘complex’ and 
‘normal’. It is interesting to investigate when only 
training the classifier with feature vectors of “crack” 
and “non-crack” image regions obtained from all 
‘complex’ (‘normal’) regions and testing them with 
these regions obtained from all ‘normal’ (‘complex’) 
images. According to the results of the earlier exper-
iments, the highest accuracy is obtained while using 
wavelet features. These results are presented in Ta-
ble 2 and it can be concluded that ‘normal images’ 
are much better for use in the training set and pro-
vide a more generalised learning model. 
 
Table 2. Effect of training image types on accuracy. 

Training set type Test set type Accuracy 

Complex image Normal image 79% (739 out of 936) 

Normal image Complex image 87% (377 out of 433) 

 
5.3 Comparison with other texture analysis based 
features 

Table 3 compares three different feature extraction 
methods. Note that the accuracy is reported while 
dealing with all feature vectors simultaneously irre-
spective of the image types (complex/normal). The 
highest accuracy is obtained with wavelet features, 
outperforming the other two feature extraction 
methods. 
 

Table 3. Comparison between three different features. 

Feature used Accuracy 

Zernike moments 61% 

Gabor filter 74% 

Wavelet 87% 

 
5.4 Error analysis 
Upon analysing the errors, it is noted that most of 
the time ‘window regions’ with a blurred appearance 
are misclassified to the wrong class. This happened 
to ‘window regions’ obtained from both ‘complex’ 
and ‘normal’ image types where the foreground el-
ement is not prominent compared to the background 
element in the images and that they tend to fuse with 
each other. Nevertheless it is worth mentioning here 
that in such images our contrast stretching algorithm 
does not perform very well, which is one of the rea-
sons for not recognising the cracks. An example of 
such an image is shown in Figure 4. It should be 
noted that the region marked within the rectangular 
area highlights a crack mark, which is almost invisi-

ble there, however the crack mark is more visible in 
regions above the rectangular area. 

 
 
 
 
 
 
 
 
 
 

Figure 4. An invisible crack mark within the rectangular re-
gion. 
 
6. CONCLUSION 

The problems of automatic bridge crack detection 
have been investigated employing real-world bridge 
images. The proposed method has demonstrated its 
capabilities to deal with all the images collected 
from bridge inspections including both ‘normal’ and 
‘complex’ images. The pre-processing procedure of 
the proposed method was employed to handle the 
‘complex’ images and three different features (Zer-
nike moments, Gabor filter and Wavelet) were used 
to automatic detect the images with or without 
cracks. The comparison results indicated that the 
Wavelet-feature method could provide most accurate 
results by achieving an average accuracy of 92% 
even when dealing with very complex bridge image 
types. Such a high accuracy achieved in this phase 
of the study will enhance the accuracy of the crack 
width measurement and in turn improve the reliabil-
ity of the automated bridge inspection system.  

Future work includes autonomous image data ac-
quisition using devices such as robots or unmanned 
aerial vehicles (UAVs). Obtaining an image at a 
specific position in high precision is not a trivial 
task, when using an autonomous device. Various 
sensors, such as optical, acoustic and magnetic sen-
sors, may aid in this task. Multiple sensors, based on 
individual specialties, are commonly used in order to 
complement limitations imposed by certain sensors 
and thus enriching the perception of single sensors. 
It should be noted however that, it is challenging to 
integrate the heterogeneous types of sensory infor-
mation and produce useful results. A pilot study of 
the likelihood-based data fusion system has been 
implemented for robot positioning (Jo and Tsunoda 
2013; Jo et al. 2013). This system integrates a light 
detection and range (Lidar), a vision sensor (a 
webcam) and an inertial measurement unit (IMU). 
The implementation results have already shown 
promising results (Jo and Tsunoda 2013). 
 
 



                         Special Issue: Electronic Journal of Structural Engineering 14(1) 2015 
 

48 
 

7. ACKNOWLEDGEMENT 

The resources used for the present study were pro-
vided by the Department of Engineering Services, 
Gold Coast City Council (GCCC), Australia, which 
enabled the preliminary study to be successfully 
completed. The authors would like to thank Mr. 
Randall Scott, Ms. Yvonne Ulas, and Mr Bill Zhang 
from the GCCC for their assistance with the data 
collection process. 
 
8. REFERENCES 
 
Phares, B.M., Washer, G.A., Rolander, D.D., 

Graybeal, B.A. and Moore, M. “Routine high-
way bridge inspection condition documentation 
accuracy and reliability,” J. of Bridge Engineer-
ing, 9 (4), 2004, 403–413. 

Moore, M., Phares, B., Graybeal, B., Rolander, D. 
and Washer, G. “Reliability of visual inspection 
for highway bridges,” Volume I: Final Report 
and, Volume II: Appendices, U.S. Department of 
Transportation, Washington, D.C, FHWARD-
01-020 (021), 2001. 

Chase, S. and Edwards, M. “Developing a tele-
robotic platform for bridge inspection,” Univer-
sity of Virginia, USA, 2011. 

Sanford, K.L., Herabat, P. and Mcneil, S. “Bridge 
management and inspection data: leveraging the 
data and identifying the gaps,” Transportation 
Research Board 8th International Bridge Man-
agement Conference, Denver, Colorado, 1999. 

Lim, R.S., La, H.M., Shan, Z. and Sheng, W. “De-
veloping a crack inspection robot for bridge 
maintenance,” IEEE Conference Publication, 
2011, pp. 6288-6293. 

Zhu, Z., German, S. and Brilakis, I. “Detection of 
large-scale concrete columns for automated 
bridge inspection,” Journal of Automation in 
Construction, 19 (8), 2010, 1047-1055. 

Sterritt, G. “Review of Bridge Inspection Compe-
tence and Training. Project Report,” 
www.bridgeforum.org/bof/projects/bict/Bridge
%20Inspector%20Training%20and%20Compete
nce%20Phase%201%20Report%20Final.pdf 
(2009, accessed 23 January2012). 

Ehrig, K., Goebbels, J., Meinel, D., Paetsch, O., 
Prohaska, S. and Zobel, V. “Comparison of 
crack detection methods for analysing damage 
processes in concrete with computed tomogra-
phy,” Proceedings of International Symposium 
on Digital Industrial Radiology and Computed 
Tomography, Berlin, Germany, P2, 2011. 

Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. 
“Analysis of edge-detection techniques for crack 
identification in bridges,” Journal of Computing 
in Civil Engineering, 17(4), 2003, 255-263. 

Jahanshahi, M.R. and Masri, S.F. “A novel crack de-
tection approach for condition assessment of 
structures,” ASCE International Workshop on 
Computing in Civil Engineering, Miami, Flori-
da, 2011, pp. 388–395. 

Mohajeri, M.H. and Manning, P.J. “ARIA: An oper-
ating system of pavement distress diagnosis by 
image processing,” Transportation Research 
Record, 1991, No 1311, 120–130. 

Tong, X., Guo, J., Ling, Y. and Yin, Z. “A new im-
age-based method for concrete bridge bottom 
crack detection,” Image Analysis and Signal 
Processing, Hubei, China, 2011, pp. 568–571.  

Khotanzad, A. and Hong, Y.H. “Invariant image 
recognition by Zernike moments,” IEEE Trans-
actions on PAMI, 12(5), 1990, 489–497. 

Daubechies, I. “The wavelet transform, time-
frequency localization and signal analysis,” 
IEEE Transactions on Information Theory, 
36(5), 1990, 961-1005. 

Burges, C. “A tutorial on support vector machines 
for pattern recognition,” Data Mining and 
Knowledge Discover 2, 1998, pp. 121-167. 

Vapnik, V. “The nature of statistical learning theo-
ry,” Monograph 2nd ed. 2000, XIX, 1995, 314p. 

Jo, J.H. and Tsunoda, Y. “A data fusion model based 
on ROI and Likelihood for the integration of 
multiple sensor data,” Accepted and will appear 
in the Proceedings of the 2nd International Con-
ference on Robot Intelligence Technology and 
Applications 2013, Springer, Germany.  

Jo, J.H., Tsunoda, Y., Sullivan, T., Lennon, M. and 
Jo, T. “BINS: Blackboard-based Intelligent Nav-
igation System for multiple sensory data integra-
tion,” The 17th International Conference on Im-
age Processing, Computer Vision, & Pattern 
Recognition, Nevada, 2013, USA.  


