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1 INTRODUCTION 

The monitoring and maintenance of structural 
serviceability have increasingly attracted public 
attention in civil, mechanical and aeronautic 
engineering industries due to economic and safety 
reasons. Structural health monitoring (SHM) is of 
vital importance as it continuously examines the 
structural integrity and offers the valuable 
information of damages and material deterioration. 
SHM requires damage detection techniques that 
inspect the performance of individual structural 
components and detect any damage in its early stage. 
In recent decades, different methods (Doebling et 
al., 1996; Doebling et al., 1998; Sohn et al., 2004; 
Carden and Fanning, 2004; Fan and Qiao, 2011) 
have been applied to detect and characterise damage 
for increasing the safety, durability and reliability of 
structures, and also minimising their maintenance 
cost. 

Among these methods, guided wave based ap-
proach has been proven to be one of the promising 
techniques for damage detection (Rose, 1999, 2002; 
Raghavan and Cesnik, 2007; Ostachowicz and 
Radzieński, 2012). This approach is capable of de-
tecting small damages with high efficiency and out-
standing sensitivity. An understanding of guided 

wave propagation and scattering characteristics 
plays one of the important roles in the development 
of damage detection methods.  

Guided wave can propagate in different types of 
structures, which are generally classified into one-
dimensional (1D) waveguide, such as beam-like 
structure, and two-dimensional (2D) waveguide, 
such as plate-like structures (Ng, 2014). Analytical 
solutions of guided wave scattering at damages are 
difficult to obtain due to the difficulties in simulat-
ing its complicated propagation and scattering char-
acteristics at the damages, especially for complex 
structures.  

Numerical methods, such as finite element (FE) 
method (Moser et al., 1999; Hong et al., 2013; Veidt 
and Normandin, 2013), finite difference (FD) meth-
od (Chu and Chaudhuri, 1989; Xu et al., 2003) and 
boundary element (BE) method (Zhao and Rose, 
2003) are suitable for solving wave propagation 
problems in various structural environments but they 
are computationally expensive. Other numerical 
methods, such as finite strip element (FSE) method 
(Liu, 2002; Bergamini and Biondini, 2004), which is 
developed based on low level of discretisation, has 
difficulty in obtaining proper strip stiffness and mass 
matrix. Local interaction simulation approach (LISA) 
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is impractical in constructing the distribution of the 
mass matrix (Delsanto et al., 1992; Delsanto et al., 
1994; Delsanto et al., 1997). The fast Fourier trans-
form (FFT) based spectral finite element (SFE) 
method (Ng et al., 2009; Deepak et al., 2012; Ajith 
and Gopalakrishnan, 2013) were reported to be 
computationally efficient but it is not capable in 
simulating the guided waves in complex structures. 
Specifically, this method assumes that one side of 
the modelled beam must be infinitely long, which is 
impracticable in real applications for monitoring civ-
il and mechanical engineering structural components. 

Among all the numerical methods, the time do-
main SFE method (Kudela et al., 2007; Kudela and 
Ostachowicz, 2009; Rucka et al., 2012; Li et al., 
2012) is one of the computational efficient ap-
proaches and is suitable to simulate the guided wave 
propagation in geometrically complex structures. It 
combines the advantages of FE method and spectral 
method (Boyd, 2001). The SFE method has the same 
flexibility of discretisation as FE method, thus, it can 
be easily implemented for analysis. Furthermore, the 
use of high order Gauss-Lobatto-Legendre (GLL) 
approximation polynomials leads to a diagonal mass 
matrix, and hence, the guided wave propagation 
simulation can be solved efficiently using the explic-
it central difference method. Also, in terms of simu-
lating 1D guided wave propagation in beam-like 
structures, different wave propagation theories have 
been well developed for accounting dispersion ef-
fects of guided wave propagation. In this study, the 
Mindlin–Herrmann rod and Timoshenko beam theo-
ries are considered in the 1D SFE model for ac-
counting lateral contraction, rotating mass inertia 
and shear deformation, respectively. 

Admittedly, the surface cracks are the most com-
monly observed defects in many beam-like compo-
nents, which are asymmetrically located along the 
structural depth direction. The mode conversion ef-
fect of guided waves occurs when the waves inter-
acting with these non-axisymmetric discontinuities. 
This phenomenon has been investigated by a number 
of studies (Lowe et al., 2002; Castaings et al., 2002; 
Shkerdin and Glorieux, 2004; Benmeddour et al., 
2008). Understanding this behaviour is of significant 
importance because it provides more information for 
further improving the performance of damage identi-
fication. Generally, the studies of the mode conver-
sion effect focus on 2D waveguides, which usually 
use 3D or 2D structural models (Benmeddour et al., 
2008; Zhou and Ichchou, 2011; Zhou et al., 2013; 
Xu et al., 2014) but it is computational expensive. In 
order to solve this problem, a 1D spectral cracked 
beam element is developed using Paris’ equation 

(Tada et al., 2000) to study the mode conversion ef-
fect and scattering of guided waves at a semi-
elliptical surface cracks. Different to most of 1D 
crack model, the crack in this SFE model is not 
across the full width of the beam. 

The aims of this paper are to determine the scat-
tering characteristics of guided waves at the cracks 
in the isotropic beam with rectangular cross section 
using 1D SFE method. It is worth mentioned that 
this method can be easily extended to 2D and 3D 
simulations. The 1D spectral crack element is pro-
posed to couple the longitudinal, shear and bending 
displacements, and hence, enabling the prediction of 
mode conversion effects. Different locations, depths 
and widths of the surface cracks are considered in 
this study. In addition, the validity of the 1D SFE 
model will be verified using results calculated by 3D 
explicit FE model. 

The organisation of this paper is presented as fol-
low. The simulation of guided wave propagation us-
ing the proposed SFE method and the formulation of 
the SFE crack element are first described in Section 
2. In Section 3, the verification of the SFE model us-
ing commercial FE software, ABAQUS, is presented 
and the mode conversion effect is then discussed in 
detail. After that, a parametric study is conducted to 
study the scattering characteristics of guided waves 
at the cracks in Section 4. Finally conclusions are 
drawn in Section 5. 

 
 

2 TIME DOMAIN SPECTRAL FINITE 
ELEMENT METHOD 

Guided wave propagation in structures can be ex-
pressed using the dynamic equilibrium equation as 
(Reddy, 2006)  

  (1)   

where M , C and K are the global mass matrix, 
damping matrix and stiffness matrix, respectively. 
F  is the time domain excitation force vector. It is 
assumed that the global damping matrix C  is pro-
portional to the mass matrix as C M , and   is 
the damping coefficient. Q ,  and  are the 
displacement, velocity and acceleration vectors, re-
spectively. 

In equation (1), the global mass matrix M , stiff-
ness matrix K  and force vector F  are determined 
by assembling the element matrix eM , eK  and 

eF . The expressions are similar to the conventional 
FE method (Reddy, 2006) and are defined as 
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where μ , D  and  ip  are the mass density ma-
trix, stress-strain matrix and external force vector, 
respectively.  iN  is the spectral shape function, 
 iB  is the strain-displacement operator and J  is 

the Jacobian functions mapping the element nodes 
from local domain to global domain, which are ex-
pressed in a general form as 

 
1,

n
m

i
m m i i m

 
  




N , ( 1,2,..., )i i n  (5) 

    ,        i

x
and J 




 


B LN   (6) 

where n  is the number of total integrated nodes 
and m  is the order of node considered. L  is the 
differential operator based on wave propagation the-
ories and its formula is given in Section 2.2. The ab-
scissas i  of each integrated GLL node are shown 
in Figure 1, which can be obtained by calculating the 
roots of the following equation (Pozrikidis, 2005) 

   2
11 0nP   , [ 1,1]i     (7) 

where 1nP   is the first derivative of the (n-1)th order 
of Legendre polynomial. The weights iw  corre-
sponding to the abscissa i  can be calculated from 
the following equation (Pozrikidis, 2005) 
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Applying this GLL integration, the spectral shape 
function has the following properties (Ostachowicz 
et al., 2012) 
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where ji  is the Kroneker delta. As shown in Fig-
ure 2 (Kudela et al., 2007), the spectral shape func-
tion is orthogonal, and hence, a diagonal local mass 
matrix eM  can be obtained using this spectral 
shape function. As a result, the explicit time integra-
tion scheme, i.e. central difference method 
(Ostachowicz et al., 2012) can be used to solve the 
dynamic equation (1) efficiently. Furthermore, the 

Runge effect is avoided by the application of this 
GLL-node element (Pozrikidis, 2005). 
 

 
Figure 1. Distribution of GLL nodes and the degrees-of free-
dom at each node 
 

Based on the aforementioned equations, the SFE 
model for wave propagation in beams can be devel-
oped based on the Mindlin-Herrmann rod and Timo-
shenko beam theory. 

 

 
Figure 2. First four 8-node element’s shape functions 

2.1 Mindlin-Herrmann and Timoshenko beam 
theory 

The Mindlin-Herrmann rod theory is used to simu-
late the longitudinal wave propagation in the pro-
posed model, while Timoshenko beam theory is em-
ployed to simulate the flexural wave propagation. 
The Mindlin-Herrmann rod theory introduces the in-
dependent lateral contraction ( )x  to approximate 
the Poisson effect (Mindlin and Herrmann, 1951) 
due to the longitudinal wave propagation, while the 
Timoshenko beam theory considers the effect of 
shear deformation and introduces the independent 
rotation ( )x  as shown in Figure 1. The beam el-
ement has n  nodal points, in which each nodal 
point has four DoFs. The displacement field can be 
expressed as 

     , xu x y u x y    

v x, y   x  y  v x   (10) 

where  v x  is the independent vertical displace-
ment introduced based on the Timoshenko beam 
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theory,  u x  is the longitudinal displacement by 
Mindlin-Herrmann rod theory and y  is the vertical 
distance from neutral axis. 

The governing equations for Mindlin-Herrmann 
rod theory are defined as (Doyle, 1989) 

,   

  (11) 

where  E ,  G ,  A ,  ,   and  I denote the 
Young's modulus, shear modulus, cross-section area, 
Poisson's ratio, mass density and moment of inertia, 
respectively.  ,p x t  is the longitudinal excitation, 
and t  and x  are its temporal and spatial variables, 
respectively.  

The kinetic energy MT  and the strain energy MU  
for Mindlin-Herrmann rod theory can be expressed 
as 
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The governing equations for Timoshenko beam 
theory are defined as (Doyle, 1989) 

,    

  (13) 

where  ,f x t  is the transverse excitation. 
The kinetic energy TT  and the strain energy TU  

for Timoshenko beam theory can be expressed as 
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where 1
MK , 2

MK , 1
TK , and 2

TK  are adjustable 
variables that influence the group velocity of wave 
propagation and they can be determined experimen-
tally (Doyle, 1989). 

2.2 Spectral element modelling 

Considering the Mindlin-Herrmann rod theory and 
Timoshenko beam theory, the strains can be repre-
sented in the following form (Rucka, 2010) 
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where the superscripts M and T denote the Mindlin-
Herrmann rod theory and Timoshenko beam theory, 
respectively. The total strain consists of Mε and Tε , 
which have the following forms 
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ML  and TL  are the differential operators, and Mu  
and Tu  are displacements, they are denoted as 
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The mass density matrix μ  in equation (2) and 
the stress-strain matrix D  in equation (3) are de-
noted as below 
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Based on the number of DoFs considered, the 
spectral shape function has the following expression 
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The element mass matrix eM , stiffness matrix eK  
and external force matrix eF can be obtained by 
substituting equations (19), (20), (21) and (22) 
into (2), (3) and(4). The global matrices can be ob-
tained by assembling the element matrices, and 
hence, the guided wave can be simulated by solving 
equation (1).  

2.3 Crack element modelling 

The crack element contains a single transverse 
opened crack, which is modelled using a two-node 
beam element with three DoFs per node, i.e.  u x ,
 v x , and ( )x . There is no lateral contraction 

considered in this crack element so when the crack 
element is connected to the beam elements, the 
transmitted displacements  x  are assumed to be 
zero. This is because the lateral contraction caused 
by low frequency waveguide (e.g. 100 kHz) in the 
Mindlin-Herrmann rod theory is inconsequential 
compared with the rotation  x  in the Timoshen-
ko beam theory. Hence, there are totally six DoFs 
(i.e. 21 6, ,...,q q q ) in this crack element as shown in 
Figure 3a. In order to account for the presence of the 
crack, the stiffness matrix has been modified simi-
larly using the approach proposed by Darpe et al. 
(2004) with considering the coupled effects for three 
DoFs of each node, i.e., longitudinal, shear and rota-
tion of displacements. It is assumed that the cross 
section of the beam is rectangle in this paper.  

The geometry of the crack element is shown in 
Figure 3b. It has width ( b ), depth ( h ) and length 
( cL ), with a crack located at a distance cx  from the 
left end of the element having width cb  and depth 
d

c
. In addition, each DoF at the first node of the 

crack element is assumed to be loaded with axial 
force 1P , shear force 2P  and bending moment 3P , 
respectively. 

 

 
(a) Schematic diagram of the crack element 

 

 
(b) Crack cross section 

 
Figure 3. Dimensions, nodal displacement and forces details 
 

In order to obtain the modified stiffness matrix for 
the SFE method, the flexibility matrix is first calcu-
lated using Castigliano's theorem 

 , 1,2,3ii
ii

U
q ii

P


 


  (23) 

where iiq  is the displacement of the first node cor-
responded to the iith DoF.  U  is the total strain en-
ergy, which has the following form (Tada et al., 
2000) 

U U u U c   (24) 

where uU  is the elastic strain energy for uncracked 
element while cU  is the strain energy caused by the 
crack. Thus equation (23) becomes 

u c
u c
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U U
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P P
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where u
iiq  and c

iiq  are the displacement of 
uncracked beam and the additional displacement due 
to crack, respectively. 

Considering the action of axial force F, shear 
force V and bending moment M at xc (Figure 3a), the 
uncracked strain energy of the element can be ex-
pressed as 

2 2 21

2
su V F M

U dx
GA EA EI

 
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 
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where 10(1 ) / (12 11 )s      is the shear coeffi-
cient for rectangular cross section (Cowper, 1966; 
Kawashima, 1996).  
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In equation (26), F , V and M  have the fol-
lowing relationships with external nodal forces 

  1F x p ,   2V x p , and   2 3cM x p x p   (27) 

Thus equation (26) can be rewritten as 
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Considering equation (23), the individual displace-
ment of undamaged beam u

iiq  can be expressed as 
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Similarly, the additional displacement c
iiq  due to 

the crack can be obtained using the cracked strain 
energy from equation (23) 

c
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where S A   is the strain energy density function 
and it is defined as 
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where IiiK  and IIiiK  are the stress intensity factors 
(SIFs) for the first and second mode of the crack 
displacement corresponding to iiq . 'E E  for 
plane stress, and 2' / ( )1E E    for plane strain 
situation. The derivation of SIFs is written as follow. 

SIFs for the first mode I (sliding) 
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2 0IK  .  

SIFs for the second mode II (tearing) 
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The function IF  (Newman Jr and Raju, 1981) and 

IIF  (He and Hutchinson, 2000) are the boundary-
calibration factors corresponding to tension and 
shear for 0 1cd b  , 0 1cd h  , 0.5cb b   
and 0    , which have the forms 

2 4

1 2 3
c c

I w

d d
F M M M f gf

h h 
       
  

 
  
   

  (37)  

1 42 2 2

( )cos

sin ( ) cos
II

c

c

m d h

B d h
F



 


  
 (38)

 

where 

1 1.13 0.09M  
 

2

0.89
0.54

0.2
M


  

  

 24

3

1.0
0.5 14 1.0

0.65
M 


   


  (39)

 

 
2

2
1 0.1 0.35 1 sincd

g
h


      

   
  (40) 

The angular function f  for the half elliptical crack 
in function IF  is  

1 42 2 2cos sinf        (41)
 

The finite width calibrated function wf  is  
1 2

sec
4

c c
w

b d
f

b h

  
       

 (42)
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The product of H  and IF  is the boundary-
calibration factor for bending, where H  is ex-
pressed 

   0.2 0.6

1 2 1 sin cd h
H H H H

  
   (43)

 
where 

1 1 0.34 0.11c cd d
H

h h
      
   

2

2 1 21 c cd d
H G G

h h
        
   

 (44)
 

where in 2H  

 1 1.22 0.12G    

0.75 1.5
2 0.55 1.05 0.47G        (45) 

In function IIF  
21m    (46) 

   2) m( Em KB m    (47) 

where the elliptic integrals are 

 
2 2

0
1 sinE m m d


     

 
2

20 1 sin

d
K m

m

 





  (48) 

Substituting these SIFs into equations (31) and 
(32), equation (30) becomes 

 1 1 1 2 3 2
c

c cq PI xP P I       

 2 1 2 2 3 2 3 4
c

c c cq xPI P I xP P xI        

 3 1 2 2 3 4
c

c cq PI xP P I       (49) 

where 

2
2 2 2

1 12 2
0 0

2
8

sin
b

cI b F d db
Eb h Q

 
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2
2 2 2

2 12 3
0 0

2
48

sin
b

cI b HF d db
Eb h Q

 
   ,  

2 2
2 2 2

3 2 2
0 0

28
sin

b
s

c III b F d db
Eb h

  
   ,  

2
2 2 2 2

4 12 4
0 0

2
288

sin
b

cI b H F d db
Eb h Q

     ,  

cd

b
  , (50) 

Hence, the total displacement kq  of the two-
node spectral crack element can be expressed in a 
matrix form as 

   k flex kq P C    ( 1, 2, ,6)k     (51) 

where flexC  is the flexibility matrix and it is defined 
as 

11 12 13

21 22 23

31 32 33

flex

c c c

c cc

c c c

 
   
 
 

C    (52) 

with 

11 1
c

c

L
c I

EA
  ,   

 
3

2
22 3 43

s c c
c c c

L L
c I x I

GA EA

 
    
 

，   

33 5
c

c

L
c I

EI
  , 12 21 2c cc c x I  ，    

13 31 2cc c I   , 
2

23 32 42
c

c c

L
c c x I

EA
      (53) 

The stiffness matrix could be obtained using the 
transformation matrix P  to consider the static equi-
librium of the crack element. 

   2 3 4 5 61 21 3

T T
q q q q q q q q q P   (54) 

where the subscripts of q denote the orders of the 
DoFs of this two-node crack element, and the trans-
formation matrix P  is given by 

1 0 0 1 0 0

0 1 0 0 1

0 0 1 0 0 1

T
cL

 
   
  

P    (55) 

The stiffness matrix of the spectral crack element is 
given as follow 

1c T
flex
K PC P    (56) 

Assembling the spectral crack element stiffness 
matrix cK  with other uncrack spectral element 
stiffness matrices eK , the global stiffness matrix 
K  in equation (1) can be obtained, and hence, the 
axial-flexural coupling effect of the guided wave in-
teraction with cracks is consider in the time domain 
SFE model. 
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3 MODEL VERIFICATION 

3.1 Comparison of SFE and 3D FE results  

The SFE model was verified using a 3D FE model in 
this section. The goal of this verification is to 
demonstrate 1) the accuracy of predicting guided 
wave propagation in the isotropic beam using SFE 
method and 2) the capability of the developed spec-
tral crack element in simulating the guided wave 
scattering and mode conversion at the cracks.  

An aluminium beam with length 1 m, width 0.012 
m and depth 0.006 m was considered in the verifica-
tion. The beam having a crack with width 

0.006cb   m and depth 0.003cd   m located at 
0.25x   m of the beam is shown in Figure 5. It 

should be noted that the crack was modelled asym-
metrically with regard to the depth direction of the 
beam. The Young's modulus E, density ρ and Pois-
son's ratio   are 9200 10  GPa, 7556 kgm-3 and 
0.3, respectively. The excitation signal was a 100 
kHz narrow-band six-cycle sinusoidal tone burst 
modulated by a Hanning window. It was applied as a 
nodal displacement in vertical direction at 0x   m 
to excite the A0 guided wave. The horizontal and 
vertical displacement responses were also measured 
at the same position (i.e. 0x   m).   

3.1.1 Results calculated by SFE method 

The proposed SFE beam model was implemented 
using MATLAB. The beam was modelled using 40 
SFEs, with eight GLL nodes in each element. The 
crack was modelled using the proposed spectral 
crack element. Damping was considered and it was 
assumed that the damping coefficient   is 550 s-1. 
The central difference method was utilised to solve 
the dynamic equilibrium equation (1) and the time 
step t  was 10-7 sec, which ensures the accuracy 
of the simulations. The simulated displacement re-
sponse at 0x   m is shown in Figure 4.  

 

 
Figure 4. Displacement response measured at 0x    m. (S0: 
blue solid line; A0: red dashed line) 

 
The guided wave propagates along the length of 

the beam. When the incident A0 guided wave first 
interacted with the crack located at the middle of the 
beam, the S0 guided wave was generated due to the 
mode conversion effect. In Figure 4, the solid line 
shows the mode-converted 0S  guided waves. The 
first and third wave packs are the mode-converted S0 
guided waves from the crack. The second and fourth 
wave packs are these mode-converted S0 guided 
waves reflected from the crack and the beam end at 

0.5x   m, respectively.  

 
Figure 5. Guided wave propagation in the beam with a crack 
located at 0.5 m. (S0: blue solid line; A0: red dashed line)  

 
The dashed line shows the A0 guided waves. The 

first wave pack is the incident wave. The second 
wave pack is the A0 guided wave reflected from the 
crack. The aforementioned mode-converted S0 guid-
ed wave from the crack reflected from the beam end 
at 0x   m and then propagated toward the crack. 
When the mode-converted S0 guided wave interact-
ed with the crack, it produced the mode-converted 
A0 guided wave, which is the third wave pack of the 
dashed line in Figure 4. The last wave pack is the A0 
incident wave reflected from the beam end at 

0.5x   m. Figure 5 shows the details of the guided 
wave propagations along the beam and the mode 
conversions between A0 and S0 guided waves at the 
crack. 
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3.1.2 Results calculated by 3D FE method and 
comparison 

A 3D FE model was constructed using the commer-
cial software, ABAQUS, to verify the proposed SFE 
model. The FE beam geometry and the excitation 
signal were the same as the SFE model. The 3D ex-
plicit linear brick elements with 8 nodes per each el-
ement and three DoFs per node were used to model 
the beam. Because the amplitude of the guided wave 
was too small to cause large deformation, the geo-
metrical nonlinear phenomena were not considered 
in verifying the SFE model. The 3D stress situation, 
full integration and the second-order accuracy of in-
tegration were considered in the model.  

The crack was modelled using seam crack in the 
ABAQUS and the size of the crack was identical to 
that in the SFE model. A very small mesh size (i.e. 
approximately 0.4 0.4 2mm ) was chosen for 
meshing, and hence, 12 elements along the depth of 
the beam were generated as shown in Figure 6. This 
ensures the accuracy of simulating the 100 kHz A0 
and S0 guided waves (Veidt and Ng, 2011; Ng and 
Veidt, 2011; Ng et al., 2012).  

 

 
 

Figure 6. 3D FE mesh of the beam and the seam crack  
 

A very good agreement was found between the 
FE and SFE results. A comparison between the A0 
guided waves calculated by the FE and SFE method 
is shown in Figure 7a, where the solid line repre-
sents the displacement response obtained from FE 
method and the dashed line was from the proposed 
SFE method. Figure 7a shows that the arrival time 
and the amplitudes of A0 guided waves reflected 
from the crack and beam end at 0.5x   m have a 
good agreement between the SFE and FE method. 
Figure 7b shows the results of the S଴ guided wave. 
A good agreement of the results between the FE and 
SFE method was found from the reflected S0 guided 
waves. Figures 7a and 7b indicate that the proposed 
SFE model is able to simulate the guided wave 
propagation, scattering and mode conversion effect 
at the crack accurately.   

 

 
 

(a) Normalised displacement amplitude of A0 guided wave 
 
 

 
 

(b) Normalised displacement amplitude of S0 guided wave 
 

Figure 7. 3D-FE verification for the SFE model (FE results: 
blue solid line; SFE results: red dashed line)  
 

3.2 Mode conversion effect 

In engineering practice, the mode conversion is of 
great value for damage identification (Ramadas et 
al., 2010). Because different modes of guided waves 
have different properties, understanding the funda-
mental physics of this phenomenon plays an im-
portant role in developing damage detection tech-
niques.  

For example in a cantilever beam, cracks usually 
exist closed to the fixed end of the beam. Identifica-
tion of these cracks using single guided wave mode 
is difficult as the A0 guided wave reflection from the 
crack (e.g. A0-A0) is mixed with the A0 guided wave 
reflected from the beam end as shown in Figure 8. 
However, the generation of the mode-converted S0 
guided wave signal (i.e. A0-S0) clearly reveals the 
existence of the cracks. As shown in Figure 8, the S0 
guided wave pack does not mix with the reflected A0 

guided waves. This is because the group velocity of 
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the converted S0 guided wave is much higher than 
that of A0 guided wave. 

 

 
 
Figure 8. Displacement response measured at the beam end 
( 0x   m) with a crack located at 0.49 m  

 
 

4 PARAMETRIC STUDY 

The proposed SFE model was utilised to investigate 
the low frequency guided wave scattering character-
istics at the cracks with different depths and widths 
in this section. The modelled isotropic beam has 
length 1 m, depth 0.006 m and width 0.012 m. The 
crack was located at the middle of the beam. The re-
flected and transmitted guided wave signals were 
measured at   x  0.24  m and   x  0.76  m, and 
hence, the distances from crack to the both meas-
urement points were 0.26 m. 

Two cases were considered to study the mode 
conversion effect (i.e. A0 to S0 and S0 to A0, respec-
tively). The excitation signal was a 100 kHz narrow-
band six-cycle sinusoidal tone burst modulated by a 
Hanning window, which was applied through the 
nodal deformation in the vertical and horizontal di-
rection at the beam end ( 0x   m), to excite the A0 
and S0 guided wave in these two cases, respectively. 
The wavelengths of the A0 and S0 waveguides at this 
frequency are 19.72 mm and 51.11 mm. 

When the incident guided wave interacts with the 
crack, the reflected and transmitted waves are gener-
ated. The reflected guided wave travels back to the 
measurement point located at  x 0.24 m. For the 
transmitted wave, it propagates toward the meas-
urement point located at  x 0.76 m. It should be 
noted that no baseline signal was applied to extract 
the amplitude of the scattered waves from the crack. 
In this study the measured data was normalised by 
the maximum absolute amplitude of displacement 
measured at the middle of the beam, which has the 
same distance to both measurement points. 

One of the aims in this study is to investigate the 
reflected and transmitted wave amplitudes as a func-

tion of the crack size (i.e. asymmetric crack depth 

cd  and symmetric width cb ). Without loss of gen-
erality, the crack depth dc and width cb  were nor-
malised by the wavelength in  of the incident wave 
as 

/d c inD d  , /b c inD b     (56) 

where dD  and bD  are the crack depth and width 
to wavelength ratios, respectively. 

4.1 Mode conversion from A0 to S0 guided wave  

In this case, the A0 guided wave was excited. Cracks 
with different depths were studied but the width of 
the cracks is a constant at the value of half of the 
beam width, i.e. 0.006 m. Figure 9 shows the nor-
malised amplitude of a crack as a function of dD  
while bD  equals to 0.305. It is shown that the nor-
malised amplitude of the reflected A0 guided wave 
steadily increases and reaches its local maximum at 

0.15dD   where the amplitude of transmitted A0 
guided wave decreases and reaches the local mini-
mum at around 0.2dD  . 

The values of dD  that having the local maximum 
and minimum amplitude of the reflected and trans-
mitted A0 guided wave are not the same. This is 
mainly because part of the incident energy was 
mode converted from A0 to S0 guided waves. As the 
value of dD  increases, the transmitted A0 guided 
wave amplitude increases to reach the local maxi-
mum amplitude and then decreases again whereas 
the reflected wave amplitude behaves the other way 
around. 

Figure 9 also shows that the mode converted 
transmitted and reflected S0 guided waves overlap 
each other and the amplitude increase with the depth 
to crack ratio dD . The amplitude increases almost 
linearly and then starts falling when dD  is around 
0.22. As dD  approaching its upper considered lim-
it, the transmitted A0 and the mode converted S0 
guided wave amplitudes shrank sharply. At the 
meanwhile, the reflected A0 guided wave amplitude 
increases significantly as the depth of the crack al-
most reaches the depth of the beam.  
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Figure 9. Normalised amplitude as a function of ܦௗ	for inci-
dent A0 guided wave. 
 

 
Figure 10. Normalised amplitude as a function of ܦ௕	for inci-
dent A0 guided wave.  
 

Figure 10 shows the normalised amplitude from a 
damaged beam with crack width as a variable but the 
depth remains unchanged at 2 mm. The normalised 
amplitude is thus a function of bD  and dD  is 
fixed at 0.101. The transmitted A0 guided wave am-
plitude gradually decreases with bD , while the re-
flected A0 guided wave and the mode-converted A0 

guided wave signal gradually increases with differ-
ent amplitudes. Also, the mode converted transmit-
ted and reflected S0 guided waves have the same 
amplitude. Generally, the amplitude of reflected A0 
guided wave is larger than the mode-converted S0 
guided wave. 

4.2 Mode conversion from A0 to S0 guided wave 

Different to Section 4.1, the S0 guided wave was the 
incident wave in this section. The aim is to investi-
gate the characteristics of the reflected S0 guided 
wave and mode converted A0 guided wave for dif-
ferent crack sizes. Figure 11 shows the normalised 
reflected and transmitted wave amplitude as a func-
tion of dD  with D

b
 0.12 (i.e. the crack width is 

6 mm). Similarly, as dD  approaching the maxi-
mum value, the amplitude of the transmitted S0 
guided wave decreases but the reflected S0 guided 
wave increases dramatically. They have the same 
amplitude at 0.115dD  .  

The amplitude of the mode converted A0 guided 
wave increases significantly with dD  and then de-
creases after it reaches the maximum value at

0.07dD  . The results show that the amplitudes of 
reflected and transmitted A0 guided waves are iden-
tical. 

 
Figure 11. Normalised amplitude as a function of ܦௗ	for inci-
dent S0 guided wave. 
 
 

 
Figure 12. Normalised amplitude as a function of ܦ௕	for inci-
dent S0 guided wave. 
 

Figure 12 shows the normalised amplitude as a 
function of bD  with 0.04dD   (i.e. the depth of 
crack is 2 mm). It shows that the transmitted S0 
wave decreases with bD . The amplitude of the re-
flected S0 guided wave and mode-converted A0 
guided waves increase with bD . The results show 
that the amplitudes of mode converted A0 guided 
waves have similar values and they are larger than 
the reflected S0 guided waves.  
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5 CONCLUSIONS 

This paper studied the fundamental physical insight 
into the guided wave propagation in an isotropic 
beam using a 4-DoF SFE beam model, which was 
developed based on the Mindlin-Herrmann rod and 
Timoshenko beam theory. A spectral two-node crack 
element with three DoFs per node was developed to 
model the crack. This proposed beam model was 
verified using the 3D explicit FE beam model. A 
good agreement of the wave propagation time histo-
ry was found between the results of the SFE and 3D 
FE methods. This study demonstrated that the pro-
posed computational effective crack element could 
be used to predict the mode conversion effect be-
tween A0 and S0 guided waves accurately. 

Parametric studies of two different damage cases 
were conducted to investigate the guided wave re-
flection and transmission characteristics at the 
cracks with different depths and widths. The results 
show that the normalised amplitudes of A0 and S0 
guided waves were highly dependent on the crack 
sizes. In general, the amplitudes of reflected and 
mode converted guided waves increase for larger 
crack size except that the amplitude of the transmit-
ted guided wave decreases. The results of the para-
metric studies indicate the behaviour of the normal-
ised amplitude as a function of dD  was more 
complicated than that of bD . 
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