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1 INTRODUCTION 

Structural health monitoring (SHM), is the process 
of assembling general information describing the 
current condition of a structure, where the aim is to 
indicate the existence, location, and degree of dam-
age, if damage occurs. Damage might occur in a 
structure after long-term deterioration under service 
loads such as fatigue and corrosion or due to ex-
treme incidents such as earthquakes and impact 
loads. Structural health monitoring is categorized in 
three different general techniques: visual inspec-
tions, local experimental techniques and global 
methods. The local experimental techniques can be 
conducted using different kinds of embedded sen-
sors, radio X-ray, laser scanning, radiographic, ultra-
sonic and thermal field methods etc. (Doebling et al. 
1998). These techniques are generally very expen-
sive, time consuming and ineffective for large and 
complex structural systems while visual inspections 
often miss critical problems in the structure under 
investigation.  

Damage causes changes in structural physical 
properties, primarily: stiffness; mass and damping at 

damaged locations and consequently alters the dy-
namic response behavior of a structure. Therefore, 
monitoring of the changes in structural vibration re-
sponse parameters is an important tool for the as-
sessment of structural integrity and safety, on-time 
decision making regarding maintenance, rehabilita-
tion and replacement requirements. The continu-
ous/periodic monitoring of civil structures is essen-
tial to ensure their safety and acceptable 
performance during their life span and to prevent a 
catastrophe. Hence, estimation of the variations in 
dynamic response characteristics of the structure 
(such as its associated natural frequencies, mode 
shapes, modal damping, frequency response func-
tions, etc.) provides useful information regarding the 
existence, location and severity of structural dam-
age. 

Structural vibration response monitoring methods 
can be classified into two categories:  model-based 
and non model-based methods. Model-based meth-
ods locate and quantify damage by correlating an 
analytical model with test data from the damaged 
structure. These methods provide quantitative in-
formation describing the damage as well as damage 
existence. However, model-based methods are com-
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putationally intensive and require the updating of a 
finite element model. In contrast, non model-based 
methods assess damage by comparing the measure-
ment data from the undamaged and damaged struc-
ture under consideration. These methods are compu-
tationally straightforward. However, generally they 
do not provide quantitative information about struc-
tural damage (Carden and Fanning 2004; Bayissa 
2007; Fan and Qiao 2011). 

In this paper, a model-based damage detection 
approach is introduced and investigated. When ap-
plying model-based methods for damage detection 
in civil structures, a significant amount of uncertain-
ty caused by measurement noise in the response data 
and modelling error in the analytical model can 
arise. Therefore, there is a need for robust methods 
such as those offered by probabilistic frameworks 
rather than commonly used deterministic methods. 
Consequently, a Bayesian probabilistic framework 
representing the inverse problem is introduced. This 
framework is described in terms of updated proba-
bility density function, which can be used for statis-
tical inference such as model characteristic predic-
tions, sensitivity analysis, cost value predictions, 
reliability analysis, and structural health monitoring. 

In the past, damage identification studies which 
were conducted based on power spectral density 
analysis of the structure have dealt mainly with the 
non-model based techniques which cannot be used 
for estimation of damage severity. In this study a 
one stage model-based damage identification tech-
nique is presented which can be used for detection, 
localization and estimation of the severity of damage 
using the mean square value of response power 
spectral density (MSV of response PSD) and a 
Bayesian probabilistic approach. The term one stage 
implies that the investigation for the existence, loca-
tion and damage severity is performed via a one-
stage process while in a two-stage process, the exist-
ence and location of damage are obtained in the first 
stage using a non-model based analysis and the se-
verity is estimated in the second stage using a model 
based analysis. 

The only assumption when computing MSVs is 
that the excitation and response are stationary ran-
dom processes; the system is linear and time-
invariant and the excitation is stationary ergodic 
white noise.  

When updating the underlying finite element 
model, the discrepancy between the two data series 
described by an appropriate objective (or cost) func-
tion should be minimized. The effectiveness of two 
different evolutionary algorithms – a genetic algo-
rithm and a covariance matrix adaptation evolution 

strategy – used as the global optimization procedure 
in this context, is subsequently evaluated. 

Comprehensive numerical simulation experi-
ments using the evolutionary algorithms and a finite 
element update procedure on a beam structure con-
sisting of 10 elements are carried out. A number of 
scenarios are constructed by varying the locations 
and the severity of damage, introducing noise into 
the environment, and by incompleteness of the num-
ber of captured modes and measurement response 
data. The performance of the two algorithms is in-
vestigated and compared using statistical analysis.  

The remainder of paper is organized as follows: 
In section 2, the literatures and problem formulation 
are discussed. The MSV of response PSD and the 
Bayesian probabilistic approach and its application 
in the area of damage identification are described in 
detail. In section 3, the evolutionary algorithms used 
in this study are depicted. In section 4, the method is 
presented, including a description of the beam struc-
ture and scenarios to be investigated. In section 5 
numerical simulation results are given and analysed. 
Finally, in section 6, the results are discussed and 
conclusions drawn. 

 
2 PROBLEM FORMULATION 
 
In the following sub-sections, the formulations of 
the MSV of displacement response PSD for a beam 
structure and the Bayesian probabilistic approach are 
presented.  
 
2.1 Mean Square Value of Response Power Spectral 
Density 
 
Despite the extensive research conducted in the past 
on damage identification using alternative damage 
sensitive parameters and indicators, objective func-
tions and optimization techniques, the search for 
damage sensitive parameters and effective algo-
rithms is still in progress. Damage parameter indica-
tors are usually determined based on the difference 
between healthy and damaged parameters of a struc-
ture under consideration. The sensitivity of damage 
indicators, which have been identified based on dy-
namic characteristic of the structure, varies for dif-
ferent types of damage. Carden and Fanning (2004) 
provided an overview of studies based on frequen-
cies and mode shapes. However, neither frequency 
(Salawu 1997) nor modal response parameters are 
identified as being consistent in providing reliable 
information of a structure under investigation.  

Damage identification techniques which are 
based on power spectral density (PSD) analysis can 



                         Special Issue: Electronic Journal of Structural Engineering 14(1) 2015 
 

3 
 

provide useful information regarding the existence 
and location of damage. Damage-sensitive vibration 
response parameters that utilize broadband frequen-
cy information (as opposed to resonance frequency 
based traditional counterparts (Bayissa et al. 2011) 
have strong physical relationships with structural 
dynamic properties. They can be employed in either 
non-model or model based damage identification 
studies. Additional features of this approach include: 
sensitivity to both local and global damage; low sen-
sitivity to noise and modal truncation errors; identi-
fication of linear as well as nonlinear damage condi-
tions. Moreover, the MSV can be computed either 
from experimental response data analysis or directly 
from an updated finite element model. Furthermore, 
it is a suitable damage parameter due to its computa-
tional simplicity and flexibility (determined from 
experimental modal analysis, time-domain and spec-
tral-domain analysis) and flexibility in its applica-
tions (can be used for input-output as well as output-
only damage identification problems) (Bayissa 
2007). In the past, MSV of response PSD and its de-
rivatives have been effectively used only for investi-
gating the existence and location of damage (Bayissa 
and Haritos 2007). 

For an elastic and isotropic simply supported 
beam, the forced vibration response at any point x 
from the end supports can be defined using superpo-
sition of the natural modes as follows (Newland 
1984): 
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where w(x,t) is the lateral deflection at time t and 

distance x from its end, P0 is the amplitude of the 
harmonic load at grid point l, r  is the mass-

normalized mode shape and r  and r are the natural 
frequency and the damping ratio of the rth mode. 

The MSV which is described as the overall ener-
gy content of the signal and can be obtained from 
continuous or discrete signals in either the time-
domain or spectral-domain, are given in equations 
(2) and (3), respectively as follows (Bayissa 2007): 
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where y(t) is the time series signal, y[tn] is an N 
point sequence, F[fn] is the respective Fourier trans-
form of the N point sequence data series of time 
length T, Syy(ω) is power spectral density and Spp(ω) 
is the excitation PSD. |H(ω)| is the frequency re-
sponse function, ω is the excitation frequency 
(Bayissa 2007). In this study, the MSV parameter is 
determined using spectral-domain analysis (equation 
(3)) for damage identification in structures.  

The effects of the cross-spectral terms on the re-
sponses that result from multiple input excitations 
are not considered since only single excitation input 
is used and finally the MSV of response (PSD) at a 
grid point k and harmonic excitation applied at a grid 
point l can be described as follows:  
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2.2 Bayesian Probabilistic Approach for Structural 
 Damage Identification 
 
Damage identification methods using the Bayesian 
probabilistic framework have been reported in the 
literature. Sohn and Law (2000) formulated a Bayes-
ian probabilistic framework based on modal parame-
ters. Using a large number of experimental data sets, 
they attempted to minimize the relative posterior 
probability function. Yuen and Katafygiotis (2001) 
proposed a Bayesian probabilistic technique using a 
time-domain approach in order to identify the modal 
characteristics of the structure in the condition of 
ambient data and have extended their study (2005) 
using noisy measurement response data without the 
knowledge of the input spectrum and presented that 
the updated probability distribution can be well ap-
proximated by a Gaussian distribution centered at 
the most probable values of the parameters. Fur-
thermore, Guo and Li (2012) conducted a sensitivity 
analysis of frequency index, modal strain energy in-
dex and Bayesian theory, based on the frequency 
and modal strain energy, in a two-stage damage 
identification procedure and have presented that the 
result of using a Bayesian framework is more accu-
rate than just using frequency or modal strain energy 
index based methods. Au and Zhang (2012) per-
formed a similar study on a primary-secondary 
structure using a frequency-domain approach. 

Other studies have also been reported in the liter-
ature of methods which can be used to quantify the 
uncertainties associated with modelling errors and 
process of constructing a mathematical model of a 
structure using Bayesian updating methods (Beck 
and Au 2002; Cheung and Beck 2009). Bayissa 
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(2007) has formulated the Bayesian posterior proba-
bility function considering MSVs response power 
spectral density but did not offer any solution for the 
inverse problem. 

In order to employ the Bayesian probabilistic 
framework, the analytical model is parameterized in 
terms of structural stiffness K as an assembly of el-
ement stiffness matrices assuming that damage af-
fects only the stiffness properties of the structure. 
The overall stiffness matrix K() in terms of Nβ 
number of elements is given as follows:  
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where Ki is the stiffness matrix for the ith element 

(or substructure) and βi  ( 10  i ) is a set of non-

dimensional model parameters that represents the 
contribution of the ith element stiffness to the global 
stiffness matrix. In the case that no stiffness loss has 
occurred, the value of βi is 0 and in situations of 
damage for elements or substructures, it would be 
determined to be greater than 0. Therefore, the value 
of βi is an indicator of the location as well as the 
amount of stiffness loss if any damage has taken 
place. The prediction error of the optimization func-
tion can be determined using the following equation: 
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in which, δK 
p
i  is the predicted damage severity in 

percent; δK 
a
i  is the actual damage severity present in 

the structure and PEi is the prediction error. 
In order to implement Bayes' theorem, all the un-

certain quantities were represented as probability 
distributions and then by creating the posterior con-
ditional probabilities for the different variables of in-
terest, inferences can then be determined. Accord-
ingly, by multiplying the prior distributions and 
likelihood functions, the result of the statistical in-
verse problem is provided by the posterior probabil-
ity distribution.  

A joint posterior distribution for the set of model 
parameters conditioned on the observations can be 
obtained from Bayes’ theorem (Gilks et al. 1996) 
which can be used as a damage indicator and is de-
fined as follows (Sohn and Law 2000; Bayissa 
2007): 
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where D denotes vectors of measured data sets 

from the undamaged and damaged structural condi-
tion states, β=[β1,...., βNβ]T indicates the non-
dimensional model parameters included in the pa-
rameter space, p(β|D,Μ) is the posterior density or 
the updated Probability Density Function (PDF) of 
the unknown parameters after observing the data; 
p(D,β|M) is the joint probability distribution over all 
random quantities; p(β|Μ) is the prior probability 
distribution function (PDF) of the initial model pa-
rameters β for a structural model class M, L(D|β,Μ) 
is the likelihood density, also known as the condi-
tional probability of observing the data D, p(D|Μ) is 
the normalizing factor for the posterior PDF. In 
those situations in which the main sources of uncer-
tainties are from modeling error and measurement 
noise, the measured response value D(s) after con-
sidering measurement noise εN (s), modeling error εM 

(β) and computed response value D(β), is defined as 
follows: 
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The Normal distribution can be used for defining 

a mathematical explanation for the numerical ap-
proximation error εM (β) and measurement noise εN 

(s), as follows (Bayissa 2007):  
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 is the conditional expectation;    is the posi-
tive definite covariance matrix of the approximation 
error that can be obtained using the Inverse-Wishart 
distribution as follows (Gelman et al. 2003): 
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The parameters ߥ଴ and Λ଴	indicate the degrees of 
freedom and the prior covariance matrix for the In-
verse-Wishart distribution. Moreover, ߤ଴ and ߢ଴ are 
the prior mean and the number of prior measure-
ments on the Σ, respectively.  

For an independent and distributed zero mean 
Gaussian noise, the likelihood probability functions 
for the response measurements is the discrepancy 
between the theoretical parameters computed from 
the analytical model and those obtained from meas-
ured response data which can be defined as follows: 

    


  T

MDsDMDL  )()(
2

1
exp,

 

            
 


1

)()(


 MDsD  

 
(14) 

The conditional PDF of the response MSV pa-
rameters for a single data set can be expressed as 
follows: 
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in which,  ML n ,0   is the conditional PDF for the 
MSV determined from the rth frequency bandwidth,

)(0 sr and )(0 r indicate the vectors of the MSV de-
termined from the measured and computed response 
data, respectively. s indicates the observed data set 
number, s = 1, ...,Ns . δr is the frequency bandwidth 

including the rth mode, δr = 1, ..., Nδr. M
  is the ex-

pected value of the modeling error; (.)f is the nor-
malizing factor for the conditional PDFs, given by 
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f , Γ is a matrix that transforms 
the MSVs computed at full model degrees of free-
dom to the measurement grid points. 

The prior PDF is assumed on the model parame-
ters as white noise and the model parameters, β, can 
be described as uncorrelated Gaussian random vari-
ables of equal covariance centered around  , β ~ N(
 , ).  is the best initial estimate of the model 
parameter distribution before any data is obtained 
and   is the covariance of the prior PDF, which 
represents the initial level of uncertainty in the ana-
lytical model. Therefore, the prior PDF on the model 

parameters can be described using a multi-variate 
Normal distribution, as follows: 
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where p(β|Μ) is the prior PDF; (.)f  is the nor-

malizing factor;   expressed the level of confi-
dence in the initial model parameters.  

The joint posterior PDF of the model parameters 
can be computed by substituting the likelihood and 
prior PDFs given in Equation (15) and (16), respec-
tively, into Equation (7), as follows: 
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in which, 1  is the normalizing factor for the pos-

terior PDF of the model parameters. Finally, the pos-
terior PDF can be described in the form: 
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where Q(β) is the objective (or cost-function) and 

states the final objective of the problem. The objec-
tive function for Equation (17) is described as: 
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In order to determine the most probable values of the 
model parameters, some kind of optimization algo-
rithm should be employed. By maximizing the pos-
terior PDF, the maximum a posteriori estimate of 
the parameter of interest can be computed, as fol-
lows (Bayissa 2007): 
 

i̂ ൌ arg max  p(βi |D,M)  (20) 

 
in which,

i̂  is an optimal model parameter that 

represents all the information required for assess-
ment of structural damage. 

 
3 OPTIMIZATION TECHNIQUES 
 

 

In order to obtain the most probable values of the 
model parameters ( i̂ ), the objective function given 
in equation (19) should be minimized using an opti-
mization algorithm. In order to deal with such a 



                         Special Issue: Electronic Journal of Structural Engineering 14(1) 2015 
 

6 
 

complex, high-dimensional, non-linear, non-
differentiable and ill-condition function, some kind 
of global optimization algorithm is required. Two 
evolutionary algorithms are used in this study to 
meet this goal: a genetic algorithm (GA) and a co-
variance matrix adaptation evolution strategy 
(CMA-ES). GAs have been widely used in the area 
of damage identification and CMA-ES is a relatively 
new but previously proven very effective in other 
domains. These two algorithms have been chosen in 
this comparison study to demonstrate the effective-
ness and efficiency of the newly presented CMA-ES 
over GA to the SHM community. In the following 
sub-sections, the algorithms are described in detail. 
This is followed by a description of the parallel de-
ployment of the algorithms. 
 
3.1 Genetic Algorithms 
 
Damage identification problems usually deal with 
non-smooth, noisy stochastic problems and non-
differentiable multi-dimensional functions in which 
“local identifiable” optimization algorithms are not 
capable of locating the global maxima or minima. In 
the past, stochastic methods such as importance 
sampling and Markov chain Monte Carlo (MCMC) 
based methods have been widely used for different 
purposes such as: probability calculations, Bayesian 
computation, image analysis, optimization, solving 
partial differential equations, multidimensional inte-
gration in different areas of study (Gilks et al. 1996). 
However, these methods are not capable of solving 
the problem of global optimization. 

In order to deal with complex high-dimensional, 
non-linear, non-differentiable and ill-condition prob-
lems, stochastic global optimization algorithms are 
typically be required. Genetic algorithms are a popu-
lation based stochastic optimization technique in-
spired by natural evolution principles that can be 
used for discrete as well as continuous optimization 
problems (Goldberg 1989). GAs are global search 
techniques which deal with a large number of varia-
bles. Here, individuals in the population represent 
potential solutions – points in the search space – to 
the optimization problem. An iterative simulated 
evolutionary process creates new points in the search 
space by modifying selected points and continuously 
moving them toward more optimal regions (Reeves 
and Rowe 2002). The effectiveness of GAs in many 
problem domains may be attributed in part to the 
fact that gradient-based information is not a neces-
sary requirement to guide the search; there is a non-
dependency on the initial starting point; the algo-
rithms are capable of handling a large number of pa-

rameters and constraints; it is possible to handle both 
discrete and continuous variables; the algorithms can 
be used to approximate the global minimum value of 
functions with several local minima; and there is a 
possibility to accept failed designs.  

GAs have been widely used to detect the changes 
of frequencies or modal data of the structure under 
different damage conditions (Perera and Torres 
2006; Meruane and Heylen 2011; Putha et al. 2012; 
Varmazyar 2013; Varmazyar et al. 2013). Other 
studies (Koh et al. 2010; Perera et al. 2010; Sandesh 
and Shankar 2010; Hsiao et al. 2012) have combined 
multiple algorithms, for example GAs and particle 
swarm optimization (Seyedpoor 2012), in order to 
detect damage in the structure. Other damage identi-
fication studies using heuristics such as Artificial 
Neural Networks have also been reported in the lit-
erature (Osornio‐Rios et al. 2012).  

Individuals in the GA population (the potential 
solutions) are represented by a chromosome. Each 
chromosome consists of a collection of genes. In a 
real-encoded GA, each gene represents a variable of 
the optimization problem. For instance, the chromo-
some ci = [ci1,ci2,…,cim] contains m genes where ci1 is 
the first gene (variable) of the chromosome ci. Typi-
cally, the initial values of the genes within the chro-
mosomes are randomly generated. The fitness or ob-
jective value of each chromosome c in the 
population set is evaluated. In order to create the 
next generation, the Darwinian principle of natural 
selection is invoked. Fitter individuals have a chance 
to reproduce. Here, “genetic material” is exchanged 
via artificial crossover and mutation operators be-
tween the selected parent individuals. 

Crossover combines different parts of the selected 
parents’ chromosomes. This process basically ex-
changes gene values between the parents, producing 
two new offspring. A mutation operator is usually 
employed to alter the values of a randomly selected 
gene. This process helps to maintain diversity and 
avoid the problems of premature convergence. Mul-
tiple iterations of this selection-evolutionary opera-
tor cycle will hopefully generate new, improved in-
dividuals (solutions to the problem). 

Unfortunately, population-based approaches are 
inherently slow (or low rate of convergence) when 
are faced with very complicated and time-
consuming objective functions. Despite the many 
advantages of meta-heuristics in complex search and 
optimization problems, the computational costs 
when using GAs can be expensive. However, using 
a suitable algorithm with the least number of func-
tion evaluations and parallel deployment of the algo-
rithms provide a viable alternative to address such 
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computational issues (Cantu Paz 2000). Clearly, 
there are many on-gong challenges when identifying 
the most appropriate meta-heuristics to use in dam-
age identification problems. 

In this problem domain, the actual genes cij en-
code values for the model parameters used in the 
Bayesian objective function. Thus, as the population 
evolves, new (and hopefully better) solutions (model 
parameters) will appear in the population. The effec-
tiveness of the GA is typically correlated with the 
value of algorithm parameters: for example, the 
population size; the crossover and mutation rates; 
the chromosome encoding scheme, as well as the ac-
tually implementation of the evolutionary operators.  

 
3.2 Covariance Matrix Adaptation Evolution 
Strategy 
 
The second evolutionary algorithm examined in this 
study, is the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES), first introduced by Os-
termeier et al. (1994), and subsequently revised and 
extended. CMA-ES has been identified as a “local 
identifiable” optimization technique (Hansen and 
Ostermeier 2001; Auger and Hansen 2005a) and is 
well suited to global optimization (Hansen and Kern 
2004; Auger and Hansen 2005b; Hansen 2009).  

A comparison study has been conducted to inves-
tigate the performance of 31 different search algo-
rithms on 24 known test functions (Hansen et al. 
2010) and it has been concluded that for noisy, mul-
ti-dimensional and difficult objective functions, var-
iants of CMA-ES have demonstrated superior per-
formance to other algorithms. In contrast to quasi-
Newton optimization methods, which need approx-
imate gradients of the functions, the CMA-ES ap-
proach does not even require their existence which 
makes it more practical in terms of having non-
smooth, non-continuous and noisy problems.  

The CMA-ES is a stochastic and non-elitist algo-
rithm that adapts a covariance matrix of the distribu-
tion at each iteration based on successful steps and 
new individuals are generated using a multivariate 
Normal distribution (Ostermeier et al. 1994). As was 
the case for the GA, the genes encode values for the 
model parameters used in the Bayesian update. In 
CMA-ES there are typically a number of parameter 
values that can be tuned. However, it is possible to 
simply set the population size parameter and allow 
the algorithm to adapt and/or automatically use de-
fault values for other parameters. An iterative simu-
lated evolutionary process creates new individuals in 
the search space by modifying selected points and 
continuously moving them toward more optimal re-

gions. Multiple iterations of this selection-
evolutionary operator cycle will generate new, im-
proved individuals. These new individuals are sam-
pled according to a multivariate Normal distribution 
in the Թ௡. Individuals with better fitness value are 
selected and the new mean of the search distribution 
is a weighted average of selected points from the 
sample. A step-size is introduced to control the 
overall scale of the distribution (Ostermeier et al. 
1994; Igel et al. 2007).  

There are very few studies reported in the area of 
damage identification using the CMA-ES. Jafar-
khani and Masri (2011) have conducted a research 
study on an experiment, based on the natural fre-
quencies and mode shapes of the structure and the 
CMA-ES technique implemented demonstrated a 
promising performance in this area. 

 
3.3 Parallel Processing of Evolutionary Algorithms 
 
Unfortunately, population-based evolutionary algo-
rithms such as GAs, which need a large number of 
fitness evaluations are inherently slow when they are 
faced with very complicated and time consuming 
objective functions. Taking advantage of parallel 
deployment rather than running in sequential mode, 
has partly solved this problem. There are two types 
of parallelization: first, using multiple populations of 
genetic algorithm known as coarse-grain parallelism, 
which can be applied on one or multiple processors 
and second, applying one population of GAs on a 
number of processors known as micro-grain parallel-
ism (Punch 1998).  

Adeli and Kumar (1995) presented coarse-grained 
effective parallelization strategies on the GA-based 
structural optimization. They employed both a pen-
alty-function and an augmented Lagrangian tech-
nique and concluded that the high scalability of the 
developed coarse-grained method provided a cost-
effective alternative for structural optimization on a 
cluster of workstations. Some improvement was also 
seen in running time of the program in Meruane and 
Heylen’s study (2011); however, there are some lim-
itations in employing a number of processors which 
are equal to the number of populations. While in-
creasing the number of populations, this would in-
versely increase the run-time as the program needs 
more function evaluations to reach the optima.  

On the other hand, different investigations have 
presented conflicting results regarding the speed-up 
of the run-time. Punch (1998) suggested that these 
conflicting reports might be due to the nature of the 
problems. However in the second method, which on-
ly parallelises the objective function, using multiple 
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processors simultaneously can speed up the compu-
tation time. Single population parallel deployment is 
a relatively straightforward task to be implemented 
on the GA and the CMA-ES. The use of a compu-
ting cluster and/or a computer with multiple cores 
will typically significantly decrease the time taken to 
find an optimal solution but will not affect the accu-
racy of the results (Cantu Paz 2000).  

 
 

4 NUMERICAL SIMULATION STUDY 
 
In this paper, a one-stage model-based Bayesian 
probabilistic damage identification approach is im-
plemented.This approach is based on the MSV of re-
sponse PSD of the structure, which can be used to 
detect, localize and estimate the severity of damage 
regions. An evolutionary algorithm is employed to 
minimize the objective function, which represents 
the minimum discrepancy between the two data se-
ries described when updating the finite element 
model.  

To evaluate the efficacy of the proposed approach, 
a series of numerical simulation experiments are 
conducted using a simply supported beam structure 
with 10 elements. The use of a simple rather than a 
complex structure will enable the fundamental study 
of the effects of damage to vibrational characteristics 
without having to deal with the complicated dynam-
ic interactions associated with complex structures. 
Moreover, since most of the existing methods are 
demonstrated on beam-like structures, this provides 
an opportunity to compare the proposed method to 
all existing damage identification techniques. On the 
other hand, beam-like structures are one of the most 
popular structural systems that are employed in vari-
ous types of structures such as bridges, buildings, 
masts and etc. 

The material properties of the beam are mass 
density of 2500 kg/m3, Young’s modulus of 30GPa 
with dimension of 10m x 0.3m x 0.4m. Damage is 
simulated by reducing the Young's modulus and the 
level of severity induced is directly related to the 
percentage reduction in the Young's modulus. Two 
different damage conditions are analyzed: damage 
introduced into a single location; and damage intro-
duced in multiple locations. The locations of damage 
for both the single and multiple damage condition 
are illustrated in Figure 1. The severity of damage at 
given locations is also considered as Table 1. A 
MATLAB toolbox known as CALFEM (Austrell et 
al. 2004), has been used to develop the parameter-
ised FEM (Finite Element Modelling) of the beam. 
Localized damage was simulated by reduction in the 
Young’s modulus of: 5%, 10%, 15% and 20%, and a 

broadband impact hammer excitation simulated us-
ing an impulsive load with a single integration time 
step, has been implemented. A constant modal 
damping ratio of 0.01 was applied and the first 10 
flexural modes determined for computation of the 
response MSVs at each nodal point. Three different 
scenarios are examined in this study: 
(i)  An accurate numerical model and noise-free re-

sponse data (full set of measurement grid points 
and complete set of modes); 

(ii) An approximate numerical model and noisy re-
sponse data (full set of measurement grid points 
but incomplete set of modes); 

(iii) An approximate numerical model and incom-
plete noisy response data (incomplete sets of 
both measurement grid points and modes). 
 

4.1 Scenario (i): An Accurate Numerical Model and 
Noise-Free Response Data 
 

In this scenario, a noise-free measurement response 
data set and an error free numerical model using the 
first 10 flexural modes, a single frequency band-
width, Nδr=1 with a sampling rate of 2500 Hz, are 
applied for damage identification.  is the positive 
definite covariance matrix of the approximation er-
ror which was obtained from the Inverse Wishart 
distribution of the resampled model in this study. 
The value of the transformation matrix for all de-
grees of freedom was considered 1, Γ = [1,....,1]T. 
The number of model degrees of freedom where 
MSVs were computed, was the same as the simulat-
ed measurements points. Finally, the MSVs of PSDs 
response computed from the numerical experimental 
data were used along with the MSVs obtained from 
the FE model to optimize the objective function.  
 

4.2 Scenario (ii): An Approximate Numerical Model 
and Noisy Response Data 
 

In this scenario, a limited number of modal meas-
urements compared to scenario (i) in the presence of 
a noisy measurement response and modelling errors 
are considered. In order to simulate measurement 
uncertainty caused by the vibration noise during data 
acquisition, the time domain response histories ob-
tained at each node were polluted with varying lev-
els of spatially Gaussian random noise 5% and 10%. 
Ensemble averaging using 10 samples was conduct-
ed on the frequency domain data sets. In the case of 
the approximate numerical model, a constant level 
of random noise, up to 1% was introduced to the an-
alytical data. An ensemble averaging of 10 samples 
was used over their transform in the spectral domain. 
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This level of the error obtained was kept the same 
during the optimization.  

The number of model degrees of freedom where 
MSVs were computed, was the same as the simulat-
ed measurements points. A single frequency band-
width, Nδr=1, that included only the first 5 flexural 
modes for both numerical experimental and analyti-
cal models was used. Consequently, the MSVs in 
both sets of numerical experimental data and FE 
model were determined. Finally, an optimization al-
gorithm was used to maximize a posteriori (objec-
tive function), which would inversely detect the lo-
cation and estimate the severity of damage that 
would have been induced for the different damage 
conditions. In this study each gene represents a β 
value and each chromosome indicates an individual 
from the evolutionary algorithm population. Fur-
thermore, a typical response PSD with 10% noise 
level implemented for computation of MSVs and 
subsequent damage identification is presented in 
Figure 2. 

 
4.3 Scenario (iii): An Approximate Numerical Model 
and Incomplete Noisy Response Data 

 
For this scenario, the robustness of the proposed 
method is investigated in a condition of modal in-
completeness and a limited amount of measurement 
data in the presence of noisy response data and mod-
elling error. In order to simulate these complex con-
ditions, firstly, the MSVs are computed at only half 
of the beam nodes (or 5 measurement grid points) 
and secondly, half of the flexural modes (5 modes) 
considered in scenario (i) are taken into account in 
order to calculate MSVs. The simulated measure-
ment data set was polluted with varying levels of 
spatially Gaussian random noise (5% and 10%). In 
the case of the approximate analytical model, a con-
stant level of random noise, up to 1% was intro-
duced to the numerical data. Finally, an optimization 
algorithm was applied to inversely detect, locate and 
estimate the severity of damage and the results are 
discussed in section 5.6. Figure 1(c)–(d) illustrate 
the finite element model nodes, the grid points at 
which MSVs were computed, the location of the in-
duced structural damage and the substructure ele-
ments of the coarse measurement grid points of the 
beam. Therefore, this scenario consisted of not only 
measurement noise and modelling errors but incom-
pleteness in the number of captured modes and 
measurement data. 

 
 
 

5 RESULTS 

5.1 Genetic Algorithms Parameter Setting 
 
A study with different numbers of population 

varying from 10 to 150 has been conducted using re-
al-coded GA. The population was initialized ran-
domly with gene values in the range of 0 to 1 repre-
senting the damage parameters. The performance 
across a number of different population sizes (vary-
ing from 10 to 150) was investigated. Figure 3 plots 
the most interesting results. After all, a population 
size of 120 individuals (chromosomes) was selected. 
A number of empirical trials were then used to de-
termine the best GA parameter settings in the prob-
lem domain based on the given population size.  

Figure 4 plots the results when different combina-
tions of the GA operators were employed and the 
objective function values averaged over running 20 
trials. The best combination of the GA operators (de-
termined by the best value of the objective function) 
were then selected and applied for different situa-
tions of the structure:  Selection – the tournament 
method was chosen for the type of parents’ selection 
for creating the next generation; Crossover – two-
point crossover, with a crossover fraction of 0.8; 
Mutation – adaptive feasible mutation was used for 
the mutation function and in order to scale the raw 
fitness scores to values in the range, the proportional 
fitness scaling function was employed. 
 

Figure 1 FE model of the beam with damage locations and 
simulated measurement grid points indicated: (a) single dam-
age condition (at model element 5); (b) multiple damage condi-
tion (at model elements 3 and 7); (c) single damage condition 
with indicated grid points considered; (d) multiple damage 
condition (at model elements 3 and 7) with indicated grid 
points considered. 
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Figure 2 A typical response PSD plot with incomplete number 
of modes and 10% noise level ensemble averaged over 10 
samples 

 
Table 1 

Simulated structural damage conditions applied to the beam 
Structural damage conditions (%) 

Single damage 
location 

Multiple damage 
locations 

E5 E3 E7 
5 5 5 

10 10 10 
15 15 15 
20 20 20 
- 5 15 

 
 

5.2 Covariance Matrix Adaptation Evolution 
Strategy Parameter Setting 
 
A study with different numbers of population vary-
ing from 10 to 150 has been conducted and Figure 5 
plots the most important ones of CMA-ES and the 
objective function values averaged over running 20 
trials. The population was initialized randomly with 
values in the range of 0 to 1 representing the damage 
parameters. A number of empirical trials were then 
used to determine the best CMA-ES population 
number in the problem domain. The best population 
number of the CMA-ES algorithm determined by the 
best value of the objective function also considering 
the least number of function evaluations, was then 
selected and applied for different situations of the 
structure. In this study, a CMA-ES with a population 
size of 60 individuals was used.  
 
5.3 Parallel Implementation of GA and CMA-ES  
 
In order to investigate the speed-up effects when 
multiple processors are used, a range of simulation 
experiments were carried out using a varying num-
ber of processors for the GA and CMA-ES. Figure 6 
plots the speed-up α (the percentage of the running 
time) when the number of processors was varied 
from 1 to 12. The results of both algorithms are in 
total agreement and seen to be inversely proportional 
to the number of processors, and as the number of 
processors increases, there is a significant improve-
ment in running time. This emphasizes the fact that 
the speed-up effects depend on the type of the objec-

tive function and are not affected by the optimiza-
tion algorithms implemented. In the sections that 
follow, the results are presented using the algorithms 
with 12 processors. Note: a prefix “P” is identified 
with parallel implementation of the evolutionary al-
gorithms in the remainder of the paper.  
  

 
Figure 3 Convergence curve in case of different population 
number averaged over 20 runs for the GA. 
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Figure 4 Convergence curve in case of: top - mutation opera-
tors, middle - selection processes and bottom- crossover opera-
tors. 

 
 

 
Figure 5 Convergence curve in case of different population 
number averaged over 20 runs for the CMA-ES. 

 

 
Figure 6 Time improvement using different number of proces-
sors 

 
5.4 Scenario (i) An Accurate Numerical Model and 
Noise-Free Response Data 
 

Figure 7 plots results of the damage identification 
process for both algorithms for single, multiple and 
irregular locations of damage. The figures clearly 
demonstrate that in the condition of noise free re-
sponse data and an accurate numerical model, the 
proposed method is able to perfectly localize and de-
termine the damage severity introduced into the 
beam, in the case of single, multiple and irregular 

damage locations. Although, the results of damage 
identification given are for 5% to 20% damage se-
verity level, the method is capable of detecting dam-
age even as low as 1% damage severity. 
 

5.5 Scenario (ii) An Approximate Numerical Model 
and Noisy Response Data 
 
The results presented in Figures 8 and 9 and Tables 
2 to 5 are obtained using noisy response data and in-
complete modal data for both PGA and P-CMA-ES 
algorithms. The results obtained for both algorithms 
are very similar and clearly show that the proposed 
methods are capable of locating and estimating the 
stiffness loss in the presence of noise ranging from 5 
to 10% and by considering only 50% of the original 
number of flexural modes for single and multiple lo-
cations of damage. For a single location of damage, 
the maximum error observed is about 14% corre-
sponding to the 15% level of damage and 10% noise 
condition given in Tables 2 and 3.  

In the case of multiple locations of damage, the 
proposed approach could accurately predict the loca-
tion as well as the severity of damage in the condi-
tion of various levels of noise, 5 and 10% for all 
damage levels (regular). The maximum predicted er-
ror observed is in Tables 4 and 5 for 10% damage 
and 10% noise level and is about -28% for the mul-
tiple regular damage condition for both algorithms. 
However, this error level observed may not neces-
sarily reflect the performance of the proposed tech-
nique as the noise level is quite high and the damage 
level is quite small. By increasing the level of dam-
age, the estimated error reduced to only -7% for 
20% damage level for both algorithms.  

Furthermore, the damage identification results for 
cases where irregular levels of damage are applied, 
are presented in Figures 8 and 9. The results show 
that the proposed method is found to accurately pre-
dict the location of irregular damage with the noise 
level ranging from 5 to 10%. The severity of damage 
was predicted with the maximum estimated error of 
-16% for 5% noise and -29% for 10% noise for the 
small damage level and the maximum of -4% for 
15% damage level and 10% noise for both PGA and 
P-CMA-ES algorithms given in Tables 4 and 5. It 
also can be clearly seen that the P-CMA-ES is able 
to estimate the damage with a slightly better approx-
imation than the PGA for multiple damage locations 
(Tables 4 and 5). 
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5.6 Scenario (iii) An Approximate Numerical Model 
and Incomplete Noisy Response Data 

 
In this section, damage identification results of a 
more practical damage scenario are presented in 
Figures 10 to 13 and Tables 2 and 3 using a PGA 
and a P-CMA-ES. The results clearly show that us-
ing both algorithms, the method is capable of both 
locating and estimating the stiffness loss for a single 
location of damage in the presence of significant 
noise levels ranging from 5 to 10% and by consider-
ing only 50% of the original number of both grid 
points and vibration modes. In the case of 5% noise 
level, the method could perfectly indicate the loca-
tion of damage which was in the middle of the beam. 
However, in the case of 10% noise, a false identified 
location is seen in element 10 for all damage extents. 
The prediction error for estimated severity is de-
creased by increasing the level of damage. There-
fore, the maximum error observed using a PGA is 
about -15% and -19% for 5% and 10% noise and 
about -21% and -16% using the P-CMA-ES corre-
sponding to the 5% level of damage. However, this 
error level observed may not necessarily reflect the 
general performance of the proposed technique as 
the noise level is quite high and the damage level is 
quite small.  

In the case of multiple locations of damage and 
for high levels of noise; 5 and 10%, and a low level 
of damage, the proposed method is found to have 
limitations in predicting the location as well as the 
extent of damage for both regular and irregular mul-
tiple damage conditions. However, for 5 and 10% 
noise, both algorithms failed to predict the exact lo-
cations and severity of damage (Figures 10 to 13).  

Comparing the results of the PGA in this scenario 
and considering the number of populations in both 
algorithms, it is revealed that the results are slightly 
more accurate using the P-CMA-ES and the algo-
rithm can overcome the problem of local optima bet-
ter to progress the process of optimization and to re-
turn a more accurate solution than otherwise. 

 
 

   
 

 

   
 

                        

Figure 7 Damage identification using the Bayesian approach of 
MSV response PSD in the case of a PGA or a P-CMA-ES: top-
single, middle-multiple, bottom- multiple irregular in a noise 
free environment (Scenario (i)). 

 
 

 
 

 
 

 
Figure 8 Damage identification using the Bayesian approach of 
MSV response PSD, a PGA or a P-CMA-ES: top-single, mid-
dle-multiple, bottom- multiple irregular with 5% noise for re-
sponse data (Scenario (ii)). 
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Figure 9 Damage identification using the Bayesian approach of 
MSV response PSD, a PGA or a P-CMA-ES: top-single, mid-
dle-multiple, bottom- multiple irregular with 10% noise for re-
sponse data (Scenario (ii)). 

 
 
 

 

 
 

 
 
Figure 10 Damage identification using the Bayesian approach 
of MSV response PSD and a PGA: top-single, middle-multiple, 
bottom- multiple irregular with 5% noise for response data 
(Scenario (iii)). 
 
 

 

 
 

 
 

 
 

Figure 11 Damage identification using the Bayesian approach 
of MSV response PSD and a PGA: top-single, middle-multiple, 
bottom- multiple irregular with 10% noise for response data 
(Scenario (iii)). 
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Figure 12 Damage identification using the Bayesian approach 
of MSV response PSD and a P-CMA-ES: top-single, middle-
multiple, bottom- multiple irregular with 5% noise for response 
data (Scenario (iii)). 

 
 

 
 

 

 
Figure 13 Damage identification using the Bayesian approach 
of MSV response PSD and a P-CMA-ES: top-single, middle-
multiple, bottom- multiple irregular with 10% noise for re-
sponse data (Scenario (iii)). 
 
5.7 Comparative study 
 

In this section, a series of comparative studies be-
tween the GA and CMA-ES are carried out to identi-
fy the more effective solution technique considering 
the accuracy of the results, the number of fitness 
function evaluations and using different statistical 
tests. 

In the preceding sections, the performance of the 
PGA and P-CMA-ES applied to the Bayesian objec-
tive function are investigated and the results demon-
strated that both algorithms were capable of detect-
ing the location and estimating the degree of damage 
reasonably accurately as a damage identification 
process. However, the CMA-ES algorithm deals bet-
ter with the condition of multiple locations of dam-
age and incomplete noisy response data. Moreover, 
the CMA-ES exhibits superior performance, over-
coming the problem of local optima, returning an 
improved (lower) value for the objective function.  

Despite the significant performance capabilities 
of the evolutionary algorithms in this domain, they 
were found to be computationally intensive and re-
quired a large number of fitness evaluations. An al-
gorithm that produces a (near) optimal result in the 
least number of function evaluations should be pre-
ferred over the other algorithm. Therefore, in the 
next stage of analysis, the number of fitness evalua-
tions required to reach the optima is examined close-
ly. Figures 14 and 15 plot the results averaged over 
running 5 trials. The population size is fixed at 120 
individuals for the GA and 60 individuals for the 
CMA-ES. 
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Table 2 

Single damage (element 5) identification results of averaged over 5 runs by the PGA 

Case Noise Degree of damage (%) Predicted damage (%) Generation No. Predicted Error (%) 

Scenario 
(ii) 

5% 

5 5.07 1493 +1.46 
10 10.36 1865 +3.64 
15 15.85 1743 +5.64 
20 20.52 4033 +2.59 

Scenario 
(ii) 

10% 

5 5.41 2498 +8.26 
10 11.11 1943 +11.14 
15 17.08 1010 +13.86 
20 21.22 3358 +6.12 

Scenario 
(iii) 

5% 

5 4.25 1496 -15.05 
10 9.76 2209 -2.44 
15 15.56 1821 +3.72 
20 19.78 1218 -1.09 

Scenario 
(iii) 

10% 

5 4.05 1428 -19.01 
10 9.03 1362 -9.65 
15 16.13 11559 +7.54 
20 19.56 1000 -2.21 

 
 

 
Table 3 

Single damage (element 5) identification results of averaged over 5 runs by the P-CMA-ES 

Case Noise Degree of damage (%) Predicted damage (%) Iteration No. Predicted Error (%) 

Scenario 
(ii) 

5% 

5 5.10 205 +2.10 
10 10.39 170 +3.90 
15 15.87 184 +5.82 
20 20.54 191 +2.70 

Scenario 
(ii) 

10% 

5 5.44 186 +8.85 
10 11.15 184 +11.45 
15 17.10 214 +14.03 
20 21.24 212 +6.21 

Scenario 
(iii) 

5% 

5 3.96 205 -20.84 
10 9.77 232 -2.29 
15 15.59 312 +3.95 
20 19.80 226 -1.02 

Scenario 
(iii) 

10% 

5 4.22 221 -15.66 
10 9.04 206 -9.55 
15 16.41 243 +9.41 
20 20.06 198 +0.32 

 
Table 4 

Multiple damage (elements 3, 7) identification results of averaged over 5 runs by the PGA 

 
 
 
 
 
 
 
 
 
 

Case Noise 
Degree of damage   

at elements 3, 7 (%) 
Predicted damage at 
elements 3, 7 (%) 

Generation 
No. 

Prediction Error 
(%) 

Scenario 
(ii) 

5% 

5 5 4.49 4.81 1736 -10.19 -3.82 
10 10 9.01 9.80 2685 -9.95 -1.98 
15 15 13.40 14.59 3229 -10.67 -2.70 
20 20 19.64 19.85 2933 -1.82 -0.74 
5 15 4.19 14.71 2535 -16.19 -1.97 

Scenario 
(ii) 

10% 

5 5 4.24 4.42 1598 -15.14 -11.57 
10 10 7.15 9.48 2618 -28.48 -5.17 
15 15 12.21 14.06 2960 -18.60 -6.27 
20 20 18.67 19.43 3119 -6.67 -2.84 
5 15 3.55 14.40 1512 -29.02 -4.03 
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Table 5 
Multiple damage (elements 3, 7) identification results of averaged over 5 runs by the P-CMA-ES 

 

 
 
 

Figure 14 Convergence curve for the CMA-ES with 60 number 
of populations and the GA with 120 number of populations. 

 

 
 

 

Figure 15 Convergence curve for the CMA-ES and GA in 
terms of number of function evaluations 

 
It can be clearly seen from the graphs that both 

algorithms improve (decrease the objective function 
value) with increasing number of genera-
tions/iterations but the CMA-ES compared to the 
GA reaches the optima in a significantly fewer num-
ber of generations/iterations and lower number of 
function evaluations. 

The first statistical analysis between the two algo-
rithms is conducted using a t-test. The t-test is a sta-
tistical test with a null (or H-naught) hypothesis. H 
and P are two outputs of the t-test in which the H-
value either accepts the hypothesis with the value of 
0 or rejects it with the value of 1. The P-value indi-

cates the significance of the difference; the smaller 
the P-value, the more significant the difference be-
tween the two data series (Milton and Arnold 1995).  

A number of statistical tests were then carried out 
to determine if there was a significant difference be-
tween the algorithms examined. The null hypothesis 
tested was that there was no significant difference 
between the values of objective function by each al-
gorithm. Consequently, a t-test in Microsoft Excel 
was conducted. For an equal number of data sets of 
50 for each series and unequal variance, the null hy-
pothesis is rejected which means there is a signifi-
cant difference between the two data series (p-value 
= 9.96E-17). This indicates that the means of both 
data series are significantly different and these two 
series are not to be treated the same. The mean value 
of the GA is much larger than the CMA-ES consid-
ering the variances of the two data samples. Since 
the goal is to minimize the objective function, the 
CMA-ES is then selected as the one with the lowest 
objective function values.  

The second statistical test has been conducted to 
compare the performance of the two algorithms 
(Milton and Arnold 1995). In this comparison study 
between the GA and CMA-ES, the best values of 
objective functions from the GA trials are labeled as 
Yi and the CMA-ES trails are considered Yi’ where i 
= 1 to n, and n is the number of trials equal to 30. 
The performance difference of the two algorithms is 
specified as Zi = Yi – Yi’. The associated mean and 
quasi-variance are computed based on the following 
equations respectively: 

 

ܼሺ݊ሻ ൌ
∑ ܼ௜௜

݊
 (21)

ܵଶሺ݊ሻ ൌ
∑ ሾܼ௜ െ ܼሺ݊ሻሿଶ௜

݊ െ 1
	 (22)

 

The lower and upper limits of the mean value of 
Z can be obtained as follows: 
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Case Noise 
Degree of damage  

at elements 3, 7 (%) 
Predicted damage at 
elements 3, 7 (%) 

Iteration 
No. 

Prediction Error 
(%) 

Scenario 
(ii) 5% 

5 5 4.51 4.80 185 -9.80 -4.00 
10 10 9.02 9.80 194 -9.80 -2.00 
15 15 13.40 14.61 196 -10.67 -2.60 
20 20 19.68 19.86 195 -1.60 -0.70 
5 15 4.21 14.72 164 -15.80 -1.87 

Scenario 
(ii) 10% 

5 5 4.26 4.41 172 -14.80 -11.80 
10 10 7.19 9.49 146 -28.10 -5.10 
15 15 12.20 14.07 149 -18.67 -6.20 
20 20 18.66 19.56 132 -6.70 -2.20 
5 15 3.56 14.41 145 -28.80 -3.93 
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ܼሺ݊ሻ േ	ݐ௡ିଵ,ଵିఈ/ଶඨ
ܵଶሺ݊ሻ

݊
 (23)

 

The number of populations for both algorithms is 
analogous to the number of iterations in CMA-ES. 
The number of 50 trials has been conducted and the 
best 30 trials are selected to compare the perfor-
mance. The objective function values are compared 
using Equations 21 to 23 and are reflected in Table 
6. From Table 6, it can be seen that the fitness func-
tion improves with more function evaluations and 
finally at a generation/iteration number of 300, the 
best (minimum) objective function value can then be 
obtained. 

In the case that the upper and lower limits of ܼ௜ 
are positive, the GA fitness function is greater than 
CMA-ES for a confidence interval of 95% (ߙ ൌ
0.1), indicating that the CMA-ES is performing bet-
ter for minimization of the problem. As in no cases, 
is the upper and lower limits of ܼ௜ negative, it can be 
concluded that CMA-ES outperforms the GA in all 
cases even with increasing number of genera-
tions/iterations. 

 
6 DISCUSSION AND CONCLUDING REMARKS 

 
In this paper, a one-stage model-based damage iden-
tification technique using the MSV of response PSD 
and a Bayesian probabilistic approach has been pre-
sented. An evolutionary algorithm is then employed 
to update the finite element model. A GA and a 
CMA-ES were implemented on a Bayesian probabil-
istic objective function to solve an inverse problem 
which takes into account modelling and measure-
ment uncertainties and the subsequent investigation 
of the existence, location, and estimation of structur-
al damage severity. 

A 10 element beam structure was investigated to 
evaluate the performance of the proposed approach. 
A range of different damage scenarios was consid-
ered: both single location and multiple damage loca-
tions; varying damage severity; the introduction of 
noise and modelling errors and incompleteness in 

the number of captured modes and measurement re-
sponse data. The results obtained clearly show that 
the proposed approach is able to accurately detect 
the severity, as well as the location of damage, 
through a one-stage model-based damage identifica-
tion process using both P-CMA-ES and PGA algo-
rithms. However, in some cases when multiple dam-
age locations are considered, the accuracy of 
location and severity of damage found is affected by 
high levels of noise in the condition of incomplete 
response data. Problems such as multi-
dimensionality, ill-conditioning and non-linearity 
were overcome via employment of the one-stage 
damage identification approach, which highlights 
the outstanding features of the proposed damage de-
tection technique. Furthermore, the performance of 
the covariance matrix adaptation evolution strategy 
has been compared with the genetic algorithm in 
terms of number of function evaluations and using 
different statistical tests and the CMA-ES demon-
strated a superior performance in the area of damage 
identification that needs a lower number of generat-
ed function evaluations to obtain optima. 

The results also indicate that the MSV of re-
sponse PSD is sensitive to structural damage exist-
ence, location and damage severity. Moreover, the 
parallel deployment of the CMA-ES and GA has 
been investigated and the results demonstrate signif-
icant improvement in speeding up the optimization 
process. 

In this study, the effectiveness of the proposed 
method was limited to an investigation on a beam 
structure. In future work, it would be beneficial to 
conduct further studies on plate structures. It will al-
so be useful to implement real experimental data 
from a structure to further demonstrate the effective-
ness of the proposed method.  

 
 
 
 
 
 

 

 
Table 6 

Comparison of GA and CMA-ES 

Populations 
Generations/ 
  Iterations 

ܼሺ݊ሻ ሺ݊ሻ ܵଶሺ݊ሻ ܮܷ ܮܮ  Conclusion 

  60               50 58.18 30 3350.58 +76.13 +40.22    CMA-ES is better 

  60              150 5.09 30 3.12 +5.64 +4.54    CMA-ES is better 

  60              200 3.13 30 1.10 +3.46 +2.81    CMA-ES is better 

  60              300 1.40 30 0.34 +1.59 +1.22    CMA-ES is better 
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