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ABSTRACT
In this study a combination of helical springs and fluid dampers are proposed as isolation and energy
dissipation devices for bridges subjected to earthquake loads. Vertical helical springs are placed between
the superstructure and substructure as bearings and isolation devices to support the bridge and to
eliminate or minimize the damage due to earthquake loads. Additionally, horizontal helical springs are
placed between the abutments and bridge deck to save the structure from damage. Since helical springs
provide stiffness in any direction, a multi-directional seismic isolation system is achieved which includes
isolation in the vertical direction. To reduce the response of displacement, nonlinear fluid dampers are
introduced as energy dissipation devices. Time history analysis studies conducted show that the proposed
bridge system is sufficiently flexible to reduce the response of acceleration. The response of displacement
due to provided flexibility is effectively controlled by the addition of energy dissipation devices.
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1. Introduction
Seismic isolation reduces the response of a structure during an earthquake by introducing
flexibility and energy dissipation capabilities. Generally, horizontal inertia forces cause the
most damage to a structure during an earthquake. Since the magnitude of the vertical ground
acceleration component is usually less than the horizontal ground acceleration component,
vertical seismic loads are not considered in the design of most structures. The vertical
acceleration is typically taken as two thirds of the horizontal acceleration component for the
same response spectral curve.

However, recent observation and analysis of earthquake ground motion have shown that the
vertical motion in bridges should not be completely ignored. Researchers compiled records and
photographs of damage and failures of buildings and bridges due to high vertical motion.
Ratios of peak vertical-to-horizontal acceleration have been recorded as high as 1.6, while the
conventional design assumption is 0.67 [1]. Damage from Kalamata, Greece (1986),
Northridge, CA (1994), and Kobe, Japan (1995) due to purely vertical effects is reported, along
with the high vertical -to-horizontal acceleration ratios.

Not many researchers address vertical motion in their studies. Among the few who have, Button
et al. [2] investigated the effect of vertical ground acceleration on six bridge types and they
recommended criteria for inclusion or exclusion of vertical ground motion in the design and
analysis of bridges. Their study was limited to bridges with no base isolation and energy
dissipation devices. Waisman and Grigoriu [3] studied the influence of the vertical seismic
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component on a friction-pendulum type base-isolated bridge.  Their model was limited to a
single span, and single degree-of-freedom system. Saadeghvaziri and Foutch [4] investigated
the behavior of reinforced concrete highway bridges that were not isolated and were subject to
combined vertical and horizontal earthquake motions. They concluded that it is important to
include the vertical component of ground acceleration motion in the design of highway bridges.

Most research studies in bridge isolation, where the vertical ground motion is neglected,
include theoretical and experimental analysis of various active and passive isolators (for
horizontal plane motions) that are not multi-directional and are complex in some cases.  Among
such recent studies, Xue et al. [5] proposed a new system termed the Intelligent Passive
Vibration Control (IPVC), which contains both passive (isolation) and intelligent, or active
(damping) elements. During small earthquakes, only the passive system is utilized. During large
earthquakes, the active system is triggered by displacement limitations. Further experimental
and analytical results on passive/active control of a bridge, which employs sliding bearings with
recentering springs for isolation, and servo-hydraulic actuators activated by absolute
acceleration records, are reported by Nagarajaiah et al. [6].  This system allows for a sliding
system with higher friction to be implemented without fear of high acceleration response. Yang
et al. [7] presented analytical models for rubber and sliding bearings coupled with actuators for
bridges.

The vertical motion in the bridge is crucial.  The uplift from the vertical motion may cause loss
of contact followed by impact, which is likely to lead to higher mode response and large axial
forces in the piers.  Existing bridge bearings including elastomeric bearings and lead rubber
bearings among others are designed to only provide isolation in the horizontal plane. For
instance, in some cases, using only horizontal isolation may provide sufficient protection
against an earthquake. However, in certain other cases, where vertical ground acceleration is
significant, a multi-directional isolation system, which possibly employs helical springs may be
required.

This study involves novel bridge bearings consisting of helical springs and viscous dampers to
achieve a multi-directional seismic isolation system, which also provides controlled flexibility
in the vertical direction.  In the proposed configuration of the isolated bridge (Fig.1), the deck
and girders can be considered to be floating on helical spring bearings.  Helical springs, which
have both vertical and shear stiffness, are designed to support vertical loads, including the self-
weight of the bridge, providing the mechanism to accommodate movement in all directions.  To
protect the bridge deck and abutment from damage by an earthquake in the longitudinal
direction, helical springs are also installed between the deck and abutments.  Additionally, fluid
dampers are added vertically at the locations of the interface between the superstructure and its
supporting pier and abutment to control the response of displacement during an earthquake.
The combination of helical springs and fluid dampers is expected to provide an efficient
flexible seismic isolation and energy dissipation device that reduces the response of the system.

The following sections discuss the mathematical models for the damper and helical spring of
the bridge model. A numerical analysis study for the vertical response of the bridge with the
proposed isolation system, is then presented followed by the conclusions.

2. Characterization of elements in proposed isolation system
Two fundamental isolation and energy dissipation elements presented in this section include the
helical spring and the fluid damper, respectively.  The helical spring possesses stiffness in all
directions.  Its stiffness can be customized according to design requirements. Compared to a
non-isolated bridge, a spring-supported bridge is relatively flexible in the vertical direction,
allowing vibration in the vertical direction with no damage to the structure. The helical spring
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can greatly reduce the relative response of acceleration. Other advantages of using helical
springs include high load carrying capacity, linear load versus deflection curve, nearly
unlimited lifetime service (if provided with suitable corrosion protection), and constant
properties with time [8]. These combined properties make the helical spring a very suitable
elastic element with a restoring force. However, the helical spring has little damping effect [9].
If additional damping is required for practical purposes, supplemental damping devices can be
combined with the springs or used separately.

The helical spring follows a linear relationship where elastic force is proportional to relative
deformation.  The relationship between static force and relative deformation of a helical spring
is:

,vkF vv = (1a)

where kv is the vertical stiffness of spring, and v is the relative deflection in vertical direction.
The shear stiffness is taken as 40% ~ 50% of the vertical stiffness [8,10].  In the shear
direction, a similar relationship is taken as:

,ukukF vss η== (1b)

where ks is the shear stiffness of helical spring, u is the relative deflection in shear direction,
and η  is the ratio coefficient and is equal to 40% 50%~ .  The spring stiffness is linear for
static or dynamic analysis, which is a significant simplifying factor for the numerical analysis.

Fluid dampers have been used or proposed for structures as energy dissipation devices during
the past three decades. Taylor and Constantinou [11] reported multiple episodes of high
capacity fluid damping devices being used in buildings, bridges and related structures, which
were originally invented and developed to attenuate the shock and blast effects in military
equipment. Constantinou et al. [12] studied the effect of various passive energy dissipation
systems used in buildings.

The fluid damping level can be up to 20%~50% of critical, thus greatly decreasing the response
of displacement [11,13].  The output force of the fluid damper is insensitive to temperature.
This property allows greater versatility in the application of these devices.  In addition, there
are also noteworthy advantages in installation, operation and maintenance of the fluid dampers
and they have been proven to be reliable and cost effective.

The output force of the fluid damper at any time is typically represented as:
,r

d uCP != (2)

where !u is the velocity of the piston rod, Cd is the damping coefficient, and r is the exponent
coefficient, ranging from 0.1 to 1.8 as manufactured [14]. The piston rod stroke and the
damping output force are mechanical characteristics of the fluid damper. The piston rod
movement is limited to its stroke. Therefore, the displacement of the damped system should not
be greater than the maximum stroke of the fluid damper. The fluid damper can provide damping
in its axial direction only.  To eliminate the damage caused by non-axial forces to the damper, a
roller is placed at the end of the piston rod.

Damping ratio is used as a measure to evaluate the damping level of a multi-mode damped
system, and can be obtained for any mode as:

,
si

di
i E

E
π

ξ = (3)

where ξ i is the damping ratio of the ith mode, Edi is the total energy dissipated by the fluid
damper per cycle, and Esi is the total elastic energy of the system per cycle for the ith mode.
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For a structure subjected to dynamic loading, the equivalent damping ratio throughout the
complete duration t0  of the loading is:

∑

∑
=

0

0

t

j
jj

t

j
jj

DF

DP

π
ξ (4)

where Pj is the damping force, Fj is the elastic force, and Dj is the response of displacement at
any jth time step.

Equation (4) will be used in this study as the basic formula to evaluate the damping ratio, which
will be an approximation if the forces and displacements are solved numerically. Harmonic
motion is a special case of Equation (4). It is noted that for a linear fluid damper, the damping
ratio is independent of amplitude of motion.  For a non-linear case, the damping ratio generally
reduces with increasing amplitude of motion.

Structural system damping is another factor that affects the dynamic performance of the
structure.  This damping is defined as the resistance to motion provided by the internal friction
of the materials.  The friction develops as the molecules forming the materials are forced across
one another when the structure moves relatively. However, evaluation of system damping
cannot be easily performed in practice.  Usually, some percentage of critical damping is taken
instead [15].

3. Modeling of bridge
For dynamic analysis, the isolated bridge (Fig.1) can be modeled as a continuous beam for
simplicity. Since this model is flexible in the vertical direction, it cannot be considered as a
rigid block in that direction. The entire vertical load is carried by helical spring bearings.  Fluid
dampers are placed at the location of the bearings and do not support the vertical load.  Their
functions are to dissipate seismic energy, suppress possible resonance, and limit displacements.
If a group of springs and dampers is employed at one location of the bridge, the resultant
stiffness as well as the damping of the springs and dampers need to be calculated for a
particular direction.  Fluid dampers provide damping in only one direction, while helical
springs have stiffness in all directions.

longitudinal

vertical

pier
abutmentabutment

damper
isolator

damper

Figure 1.  Two-Span Box Girder Bridge Prototype

The displacement method is used to construct the relationship between the force and
deformation of a deformable body.  The derivation follows the typical procedure of matrix
structural analysis for the bridge model [16,17].  In this model, the total stiffness matrix Kc is
found by adding the supporting spring stiffness to the diagonal element of  the global stiffness
matrix at the corresponding degrees-of-freedom.
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A consistent approach for mass accounts for translational, as well as rotational degrees-of-
freedom, while the lumped mass approach only considers the translational degrees-of-freedom.
Since the rotational component of earthquake ground motion is not considered in most cases,
the motion in rotational degrees-of-freedom would not be excited. Additionally, in the lumped
mass bridge model, the amount of rotations compared to translations are insignificant.  Hence,
the rotational degrees-of-freedom are excluded from the stiffness matrix.

The static stiffness equation, which is F K c= ∆  in matrix form, is partitioned as:

,








=

















θθθθ

θ

θ F
Fv

KK
KK v

v

vvv
(5)

where v  and θ  represent translation and rotation, respectively.

If F 0θ =  in Equation (5), then θ θθ θ= − −K vv
1 K .  Substituting into the first submatrix in

Equation (5) yields:

vvvvv FvKKKK =− − )( 1
θθθθ  or ,vFKv = (6)

where K= vvvvv KKKK θθθθ
1−− is the translation stiffness matrix. Only those degrees-of-

freedom related to translation are retained. Therefore, the condensed matrix becomes
compatible for use with the diagonal lumped mass matrix M.

The system damping matrix is expressed as:
),]([)][( 11 MMcMMC TT

m
T

s φφφφφφ −−= (7)

where φ  is the modal shape matrix and cm is the generalized modal damping matrix.

The diagonal damping matrix when fluid dampers are placed at the bearings in the
vertical direction is represented by dC .  The damping forces of fluid dampers are
determined by the damping coefficient, the damping exponent, and the velocity of the
piston.

The dynamic equation of the base-isolated bridge model in the vertical direction has the
following nonlinear form:

,gds WMKWWCWCWM !!!!!! −=+++ r (8)

where !!Wg is the acceleration of the earthquake ground motion, W W W, ! , !! are the vector of
vertical displacement, velocity and acceleration, respectively.

Among numerous direct integration methods to solve for the nonlinear response in Equation
(8), the Newmark integration method appears to be the most effective with the  smallest
numerical errors. In the Newmark method, the acceleration is assumed to be linear for the time
t  to t t+ ∆ .  For the time interval ,t∆  following relations are assumed:

 ])1[( ttttttt ∆+−+= ∆+∆+ WWWW !!!!!! ββ and (9a)

,])[( 2
2
1 tt ttttttt ∆+−+∆+= ∆+∆+ WWWWW !!!!! αα (9b)

where α  and β  are parameters used to achieve the integration accuracy and stability.  In the

case of α = 1
4  and β = 1

2 , the constant-average-acceleration method will yield unconditional
stability in the iteration procedure.
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From Equations (9a) and (9b), !Wt t+∆  and !!Wt t+∆  can be solved in terms of Wt t+∆ as follows:

!! ( ) ! ( ) !!W W W W Wt t t t t t tt t+ += − − − −∆ ∆∆ ∆
1 1 1

2
12α α α

 and
(10a)

.)1( tttttt tt ∆+∆+ ∆+−∆+= WWWW !!!!!! ββ (10b)

To obtain the solution for displacement, velocity and acceleration at time t t+ ∆ , the
equilibrium Equation (8) is rewritten as:

.)( tttt
r

tttttt ∆+∆+∆+∆+∆+ −=+++ gds WMKWWCWCWM !!!!!! (11)

Since C Wd
!

t t
r
+∆  is a nonlinear term, substituting Equations [10a] and [10b] into Equation [11]

will not yield linear simultaneous equations with respect to Wt t+∆ .  Hence Wt t+∆  cannot be
solved directly.  To avoid using the iteration technique to solve the displacement vector at each
time step, the nonlinear term !Wt t

r
+∆  is expanded at time t  by a  Taylor series as shown in the

following equation:
),)(( 1

ttt
r
t

r
t

r
tt diagr WWWWW !!!!! −⋅+= ∆+

−
∆+

(12)

where it is assumed that the high order terms can be neglected without loss of acceptable
accuracy and diag  is an operator to diagonalize a vector to a matrix.

By substituting Equations (10a), (10b), and (12) in Equation (11), a linear equation with respect
to Wt t+∆  at each time step is obtained as:

,~~
tttt ∆+∆+ = PWK (13)
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After Wt t+∆  is solved from Equation (13), !!Wt t+∆  and !Wt t+∆  can be obtained from Equations
(10a) and (10b), respectively. Since the velocity and acceleration at time t t+ ∆  have been
expressed in terms of their previous values at time t  after the displacement at time t t+ ∆  is
known, the iteration procedure can be performed step-by-step with any given initial conditions.

In the above analysis, it can be shown that the nonlinear problem has been simplified to be an
approximately linear problem by employing a Taylor series expansion to the nonlinear term of
the damping force at each time step. Next the displacements at each time step are solved
directly, and therefore the step-by-step direct integration method can be implemented.

4.  Description of the proposed bridge model
A flexible system will be less susceptible to damage when subjected to an earthquake
excitation. However, there is concern over the issue of isolation for an ideally flexible system.
In practice, the bridges need to be designed with sufficient amount of strength and stiffness to
resist the service load. The basic factors including the spring stiffness involved in engineering
design are taken into consideration for the two-span bridge model in this study. The span length
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is based on the continuous beam model. Once the span length is decided, the size of the cross
section can be calculated by applying traffic load as a live load plus the dead load of the bridge
model, assuming the material is concrete. Note that the deflection under normal bridge loading
must be controlled and can be the determinant for the bridge stiffness. From the point of
seismic isolation, the bearings are expected to be as flexible as possible. Since the large
displacement due to flexibility can be effectively reduced by fluid dampers, the spring stiffness
will be mainly determined by operational loading. The stiffness of the springs can be calculated
based on the reaction at the bearing and the static settlement limit (fluid dampers are not
accounted for carrying the load).  Also the kinetic deflection change between traffic load on
and off the bridge should be considered as a factor to determine the spring stiffness.

Based on the above analysis, a two-span continuous concrete slab and box girder bridge
illustrated in Fig.1 is employed as a model to demonstrate the isolation effects of helical springs
and fluid damper systems. This bridge is supported and isolated by helical springs positioned in
the vertical direction as bearings. Helical springs are also installed longitudinally at both ends
between the abutment and the deck to protect the bridge from impact load. Fluid dampers are
located between the superstructure and substructure in the vertical direction where necessary.
The length of the bridge model is 58.5 m (192 ft) for each span.  AASHTO HS20-44 truck
loading is used for the live load.  The dead weight of the bridge superstructure is estimated to
be 2.138x104 kg/m (14.357 kip/ft). The typical cross-section of the bridge box girder has a
width of 12.95m (42.5 ft) and a height of 2.36 m (7.75 ft). The moment of inertia in the vertical
direction is 66.4 m4 (1.594x108 in4). Under the presumed total load, the maximum deflection of
the bridge is approximately 100 mm (4 in), and the deflection change between traffic on and off
the bridge is limited to less than 6 mm (0.24 in). The stiffness of the helical springs is defined
by the following, where the shear stiffness is assumed to be 40% of the vertical stiffness:
Vertical stiffness of the spring placed at end bearing 4.9 104× kN m/  (32. 905 kip ft/ ).
Vertical stiffness of spring placed at the middle bearing is 14 7. ×104 kN m/  (98.716 kip ft/ ).
Vertical stiffness of the spring placed at the abutment is 103 kN m/  (0. 672 kip ft/ ).

Fig.2 illustrates this two-span bridge, which is simplified as a five-lumped-mass model when
analyzed numerically.  The appropriate damping force relation, in accordance with the
manufacturer provided data for the damper, is selected as (Fig.3)

75.01000VP = (14)

where V  is the velocity of the piston rod [18]. Fig.4 gives the diagram of the damping force-
displacement relationship for the case of harmonic motion with period π  and 2π . The
enclosed loop areas are the total energies that can be dissipated by the damper in one cycle of
harmonic motion.  For different periods, the damper has a different area. When the system is
subjected to the earthquake motion, the loops will not be symmetrical shapes. However, the
energy dissipation capability indicated by the diagram could be useful in selecting the
parameters for the fluid damper.
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Figure 4.  Harmonic Damping Force-Displacement Relationship

5.  Vertical response of the bridge
Among the software tools to perform the required numerical analysis for structures with
protective devices against earthquakes, the 3-D BASIS by Nagarajaiah et al. [19] is noteworthy.
This tool has the capability to analyze various hybrid isolation configurations for three-
dimensional seismic motion. Although this numerical analysis software covers modeling of
various combinations of isolators and energy dissipation devices, it assumes the isolation
devices are rigid in the vertical direction. This model of isolation devices is more applicable for
approximation of elastomeric bearing behavior, which is almost incompressible, and has large
vertical stiffness, while the shear stiffness is not more than one percent of the vertical stiffness.

In our study, the MATLABTM software package is employed to obtain the responses of the
bridge model illustrated in Fig.1. The bridge is subjected to the vertical components of the
Northridge and El Centro earthquakes. Initially, isolated systems with various damping ratios
are considered to observe the effect of damping level on the system.  During the next step,
vertical response of the isolated and undamped, isolated and damped, and non-isolated bridge
models are compared to observe the isolation effect of coil springs in the bridge model with or
without dampers.

In the bridge model, the natural frequency of the first mode in the vertical direction is 1.56 Hz .
The Northridge vertical ground motion, with peak acceleration of 0.799 g , and El Centro
vertical ground motion with peak acceleration of 0.210 g  are used as input excitations (Fig. 5).
The system damping ratio is assumed to be two percent of the critical.
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Initially, the effect of fluid dampers placed at the bridge bearing on the vertical response of the
isolated bridge system was studied. Maximum responses and damping level of all the
undamped and damped cases for Northridge and El Centro earthquakes are compared in Table
1. For the Northridge earthquake, the undamped responses at mid-span of the bridge model are
illustrated in Fig.6. The maximum response of acceleration at mid-span is 0.796 g  and the
dynamic deflection is over 78 mm  (3 in ). To reduce the displacement response, fluid dampers
are used for the bridge model. For the damped case with one fluid damper placed at each
bearing, responses of the bridge model are shown in Fig.7.  The maximum response of mid-
span displacement in the damped case reduces 40.5% from 78. 6 mm (3 in ) to 46. mm (1.84 in )
of the undamped case. The maximum response of mid-span velocity and acceleration also
decreases 23.7% and 34.3%, respectively, when the fluid damping level is 9.16%. Fluid
dampers exhibit excellent damping effects for the bridge model. The damping force versus
displacement loop of the damper at the middle bearing is illustrated in Fig.8.  Unlike the curves
in Fig.3, the shape of the loop is not symmetric. The acceleration versus displacement
hysteresis of the lumped mass at mid-span of damped case bridge model is shown in Fig. 9.
The maximum response of displacement is reduced to 46.8 mm  (1.84 in ) and the maximum
response of acceleration is also as small as 0.523 g .

Table 1   Maximum Vertical Responses of the Bridge Model

Earthquake Location Damping Displacement
(mm)

Velocity
(mm/s)

Acceleration
(g)

Fluid
Damping (%)

Northridge Undamped 76.3 700.4 0.749 0
End bearing 1 damper 44.8 521.6 0.503 9.16

2 dampers 32.3 432.4 0.463 19.35
Undamped 78.6 727.9 0.796 0

Mid-span 1 damper 46.8 555.3 0.523 9.16
2 dampers 36.1 504.7 0.473 19.35
Undamped 75.9 696.6 0.748 0

Center bearing 1 damper 45.2 546.0 0.541 9.16
2 dampers 36.5 515.0 0.603 19.35

El Centro Undamped 23.0 233.1 0.225 0
End bearing 1 damper 10.7 109.0 0.128 13.30

2 dampers 7.6 75.5 0.115 28.36
Undamped 23.7 239.5 0.240 0

Mid-span 1 damper 11.9 118.0 0.139 13.30
2 dampers 9.0 101.5 0. 153 28.36
Undamped 22.8 233.1 0.223 0

Center bearing 1 damper 11.9 120.3 0.147 13.30
2 dampers 9.3 96.0 0.163 28.36
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Figure 6.  (a)  Displacement; (b) Velocity; (c) Acceleration Responses at Mid-Span

(Northridge, Undamped)
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Figure 7.  (a)  Displacement; (b) Velocity; (c) Acceleration Responses at Mid-Span
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Figure 8  Damping Force-Displacement Loop at Middle Bearing (Northridge)
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Figure 9  Damping Force-Displacement Loop at Middle Bearing (Northridge)

The damping ratio is increased by placing two fluid dampers at each bearing.  The reduction in
response is minimal when the number of dampers was doubled.  The fluid damping ratio for
this case is 19.35%.  Therefore, to reduce the response by adding more fluid dampers to the
system is almost of no use when damping ratio has reached a certain value.  The reduction of
responses cannot be solely achieved by dampers.

The analysis for the case of the El Centro vertical component leads to similar phenomena.  The
only difference is that the maximum responses are less significant due to the smaller peak
ground acceleration. The maximum undamped response of displacement at mid-span is
23.7 mm  (0.93 in ) and the acceleration is 0.240 g . The response of displacement, velocity and
acceleration for the case with one damper placed at each bearing decreases by 49.8%, 50.7%,
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and 42.1%, respectively, where the fluid damping level is 13.3%. When two dampers were used
at each bearing, the response of displacement and velocity at mid-bearing had minimal
reduction while the acceleration at mid-bearing slightly increased. This result is expected, since
damping is effective in reducing the displacement. As a trade-off, the response of the
acceleration would increase with a decrease in displacement.

As mentioned previously, damping is more efficient in reducing the displacement of an
undamped system.  For the damped system, using more than one damper decreases the response
of displacement very little and even increases the response of acceleration.  Therefore, to
achieve an ideal effect one can use a more flexible system such as helical springs in
combination with dampers to reduce the response.

Of particular interest is the response at the mid-span of the bridge subjected to vertical
earthquake ground motion. Conventional bearings have too much stiffness in the vertical
direction and cannot resist vertical motion.  The vertical response of acceleration at mid-span
would be significant, especially in the event of the Northridge earthquake with its large vertical
ground acceleration. The spring bearings show the promise of providing the flexibility needed
in the vertical direction.

Next, to show the isolation effects of the spring bearing, the isolated and non-isolated responses
at the center bearing and at the mid-span of bridge model subjected to Northridge and El Centro
vertical ground acceleration are compared in Table 2. In the non-isolated case, the bridge girder
becomes flexible relative to the rigid supports. There is a significant difference between the
response of acceleration at the bearing and at the mid-span. For the non-isolated case, the
response of the acceleration can be over 2g for the bridge when subjected to a strong ground
motion such as the Northridge earthquake. In addition, the maximum acceleration at mid-span
is also larger than the undamped isolated acceleration response. Even in the event of an
earthquake with small peak vertical ground acceleration, such as El Centro, the acceleration at
the bearing is as low as 0.2 g  while the acceleration at the mid-span is over 0.5 g .

Table 2.    Maximum Vertical Responses of Isolated and Non-Isolated Bridge Model

Equake Location Damping Displacement
(mm)

Velocity
(mm/s)

Acceleration
(g)

Fluid
Damping

(%)
Northridge isolated+undamped 76.3 700.4 0.749 0.00

Bearing isolated+damped 45.2 546.0 0.541 9.16
non-isolated 0.0 0.0 0.792 0.00
isolated+undamped 78.6 727.9 0.796 0.00

Mid-span isolated+damped 46.8 555.3 0.523 9.16
non-isolated 7.8 451.0 2.300 0.00

El Centro isolated+undamped 23.0 233.1 0.225 0.00
Bearing isolated+damped 11.9 120.3 0.147 13.30

non-isolated 0.0 0.0 0.208 0.00
isolated+undamped 23.7 239.5 0.240 0.00

Mid-span isolated+damped 11.9 118.0 0.139 13.30
non-isolated 1.9 127.9 0.560 0.00

Therefore, if the bridge is not flexible enough in the vertical plane, the response of acceleration
can be greater than the ground acceleration, even though the response of displacement at mid-
span is negligible.  For the isolated undamped case, the acceleration responses are reduced over
50% at mid-span of the bridge compared to the non-isolated case for both earthquakes, resulting
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in reduced inertia force on the bridge structure. The isolated damped case is of more practical
significance as the response of displacement and velocity due to the increase in the flexibility
from the isolation device can be reduced over 50%.  This is done by the addition of over 10%
damping ratio without causing over-damping as may be the case in a linear damped system.

For the isolated cases, the maximum response of acceleration throughout the bridge span is
limited to 0.54 g  for Northridge and 0.2 g  for El Centro. Hence, the bridge is protected from
vertical ground motion by introducing spring bearings which result in a more flexible bridge
system. The large response of displacement due to spring flexibility can effectively be reduced
by damping.

Fig.10 illustrates three cases of maximum vertical dynamic deflection shape throughout the
bridge model occurring at the same time. It can be observed that the vertical deflection
throughout the span length of isolated bridge model has less variation than the non-isolated one,
and that the relative deflection is reduced which is likely to result in reduction of stresses.
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Figure 10.  Vertical Deflection of Bridge Model Throughout Span

6. Conclusions
In order to achieve better protection for the bridge subjected to strong vertical ground motion,
helical springs are used as bearings with fluid dampers as energy dissipators.  The bridge model
is supported on spring bearings in lieu of conventional rigid bearings.  The spring-supported
bridge is modeled to be much more flexible in the vertical direction.  It is concluded that the
response of acceleration in an isolated damped bridge model, particularly at the mid-span, has
been greatly reduced up to 75% compared to the non-isolated case.  Therefore, the inertia
forces induced by acceleration response in the bridge structure are also reduced which in turn
benefits the structural design.  In addition, the damage from the deflection gap between the in-
span and bearing is alleviated because of the flexibility due to the spring bearings.

The larger response of displacement of the bridge throughout the span, as a tradeoff of the
flexible spring bearings, can be effectively reduced by adding fluid dampers to the isolation
system.  In general, bridge structures have damping levels less than 10% critical. The damping
level of a structural system isolated by fluid dampers could be over 20% with more energy
absorbed, offering a dramatic reduction in deflection at no cost of increase in base shear.

It is noted that extra damping becomes less efficient at higher damping levels.  Reduction of
response will hardly be achieved by only adding more dampers, especially in a less flexible
bridge system. The stiff system is more sensitive to the ground acceleration excitation and the
response of acceleration is greater than the flexible system.  Use of helical springs as bearings
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will certainly provide additional flexibility for the bridge structural system in which the
displacements are controlled by dampers.  The proposed bridge system is effective in greatly
reducing the structural responses and relative deflection.
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