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1 INTRODUCTION 
 
Considering an arch dam to be adequately massive 
and stiff, while the foundation is relatively soft, the 
motion at the base of the structure may be signifi-
cantly different from the free-field surface motion. 
However, it is apparent that the most of interaction 
effects occurs near the structure and at some finite 
distance from the base of the structure. Therefore, 
the field behavior converges back to the free field 
state. 

During the past decades, various methods have 
been developed to analyze concrete gravity and arch 
dams with different assumptions and complexities 
concerning on the interaction effects of reservoir and 
foundation of the system. There are several investi-
gations in the frequency domain in which the effect 
of the foundation is taken into account. The comput-
er program, EAGD-84 is one of the most well-
known software that is based on the finite element 
method and has the capability to analyze the coupled 
system of concrete gravity dams in 2D space includ-
ing the foundation interaction effect (Fenves and 
Chopra, 1984). The effect of foundation interaction 

in this program is accounted using the impedance 
matrix of the foundation medium. EACD-3D (Fok et 
al., 1986) is the well-known code in analyzing con-
crete dams in 3D space. Tan and Chopra used the 
boundary element method to compute the impedance 
matrix and they analyzed the dam-reservoir founda-
tion in the frequency domain (Tan and Chopra, 
1995). 

The above procedures are applicable in frequency 
domain analyses, which are used for linear problems. 
Therefore, an appropriate procedure in time domain 
must be represented to account for the interaction ef-
fect of the foundation on the seismic response of 
dam-reservoir-foundation system. For the dam prob-
lem, the influence of the reservoir on the dam re-
sponse is also very important. Some outstanding 
work on reservoir-dam-foundation problem interac-
tion in the frequency domain or the indirect time 
domain has been carried out by Chopra and his co-
workers which some of them were pointed out. The 
reservoir-dam-foundation interaction problem has 
been studied in the time domain by Antes and Es-
torff (1987) using the full space transient Green’s 
functions for wave propagation in both the founda-
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tion and the reservoir. In the work presented by 
Gaun et al. (1994), an efficient numerical procedure 
has been described to investigate the dynamic re-
sponse of a reservoir-dam-foundation system directly 
in the time domain. The dam has been modeled by 
the finite element method and the dynamic soil-
structure interaction has been included by computing 
the impedance of the half-space.  The reservoir in-
fluence on the dam was applied using the added 
mass approach. Mirzabozorg et al. (2003) presented 
a paper in which the linear behavior of the dam-
reservoir system is modeled using finite element me-
thod in 3D space. Ghaemian et al. (2006) studied the 
effects of the foundation shape and mass on the li-
near seismic response of arch dams using finite ele-
ment method including structure-reservoir interac-
tion.  

For modeling the nonlinear behavior of the mass 
concrete, various numerical models have been de-
veloped during recent years. In this regard, theories 
based on plasticity and fracture mechanics approach-
es are developed and used in most of engineering 
analyses. Kuo (1982) suggested interface smeared 
crack approach to model the contraction joints for 
dynamic analysis of arch dams. Dungar (1987) used 
a bounding surface model for static analysis of an 
arch dam. Cervera et al. (1995) utilized a continuum 
damage model to analyze Talvacchia arch dam in It-
aly. Noruziaan (1995) applied bounding surface and 
orthogonal smeared crack models for compressive 
and tensile regions of stresses, respectively in arch 
dams. Hall (1998) proposed a simple smeared crack 
model for modeling the contraction and construction 
joints in dynamic analysis of arch dams. Espandar 
and Lotfi (2002) employed non-orthogonal smeared 
crack approach and elasto-plastic models on the non-
linear analysis of Shaheed-Rajaee arch dam in Iran. 
In 2004, Mirzabozorg et al. utilized the damage me-
chanics approach to conduct the seismic nonlinear 
analysis of concrete gravity dams in 2D space in-
cluding the dam-reservoir interaction effects. In the 
same line of thought, Mirzabozorg and Ghaemian 
(2005) developed a model based on the smeared 
crack approach in 3D space. Ardakanian et al. (2006) 
considered the nonlinear seismic behavior of mass 
concrete in 3D space which is based on an anisotrop-
ic damage mechanics model. Finally, an approach 
based on the fracture mechanics is developed so that 
the cracking within an element is non-uniform and 
candidate elements crack in Gaussian points (2007).  

In the present paper, appropriate 3D infinite ele-
ments are utilized to model the radiation damping on 
the far-end boundary of the foundation medium. The 
smeared crack approach presented in (Mirzabozorg 
et al., 2007) is utilized to model the nonlinear beha-
vior of the mass concrete. The staggered displace-
ment method is used to solve the coupled problem of 
the dam-reservoir-foundation system and the devel-

oped numerical algorithm is utilized to simulate the 
nonlinear behavior of arch dams including the 
massed foundation, semi infinite medium at the far 
end boundary of the foundation and the compressible 
reservoir upstream of the dam body. 

2 FOUNDATION INTERACTION AND WAVE 
PROPAGATION 

 
One of the main aspects in the seismic loading and 
wave propagation within the semi-infinite medium 
such as rock underlying structures is preventing the 
wave reflection from the artificial boundary of the 
infinite medium in the finite element analysis. One 
of the most promising procedures in 3D problems is 
infinite elements. Using the infinite elements, the 
stiffness and the damping pertinent to the semi-
infinite medium via the artificial boundary of the 
structure are accounted for in the analyses. The basic 
idea in utilizing infinite elements is to use the ele-
ments with the special shape functions for the geo-
metry at the far-end truncated boundary. Therefore, 
there will be two sets of shape functions, the stan-
dard shape function, Ni, and a growth shape func-
tion, Mi. The growth shape function, Mi, grows 
without limit as the coordinate of i

th
 node approach-

es infinity, and is applied to the geometry. The stan-
dard shape functions Ni are applied to the field va-
riables (Ross, 2004). A classic example is the line 
element which is depicted in Figure 1.  

 

1 2 3

ξ=-1 ξ=0 ξ=+1  
Figure 1. Line Element with Node 3 at Infinite 

 
The geometric properties within the element are in-
terpolated as: 
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where, xi is the coordinate of the i

th
 node in global 

coordinate system and ξ is the coordinate in local 
system. The formation of the property matrices (i.e. 
the stiffness matrix) proceeds in the standard me-
thod, except the mapping function M1 and M2 are 
used to form the Jacobian matrix, [J]. According to 
Bettes in 1992, the growth shape functions, Mi, and 
their derivatives are presented in Table 1 for a 20-
node solid element with a face in the infinity (Figure 
2).  
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Figure 2. Solid Element with One Face in Infinity 

 
The procedure for the formation of the stiffness ma-
trix is as follows:  

 Form the Jacobian matrix, [J], with the rela-
tive growth shape functions and their deriva-
tives as given in Equation (1),  
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 (3) 

 
where X, Y and Z are nodal coordinate vectors of the 
element. 

 Invert [J] to achieve [J]
-1

. 
 Use the parent finite element shape functions, 

Ni, to obtain the matrix [B],  
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1

N
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 (4) 

 

where [B] is the matrix transforming the nodal dis-
placement of the considered element to the Gaussian 
point strains within the element. 

 Form the stiffness matrix of the element, [K] 
Finally, the effect of semi-infinite medium via the 
far-end boundary of the foundation is taken into ac-
count when obtained stiffness matrices and their re-
lated proportional damping matrices are assembled 
into the global stiffness matrix and the global damp-
ing matrix of the system. 

3 CONSTITUTIVE LAW FOR MASS 
CONCRETE 

 
The numerical model used for the nonlinear seismic 
analysis of the mass concrete in the present study can 
be found in (Mirzabozorg et al., 2007) in detail. The 
utilized approach is able to simulate the behavior of 
the mass concrete during the following phases: 

 Pre-softening behavior 
 Fracture energy conservation 
 Non-linear behavior during the softening 

phase 
 Crack closing/reopening behavior. 

In the utilized numerical model, the uni-axial strain 
energy is used as the softening initiation criterion. In 
addition, the effect of loading rates on the apparent 
stress-strain curve is applied by a dynamic magnifi-
cation factor, DMFe, which is used on the strain 
energy as reported in (Mirzabozorg et al., 2007). 

During the softening phase, the elastic stress-
strain relationship is substituted with an anisotropic 
modulus matrix, which corresponds to the stiffness 
degradation level in the three principal directions. In 
this study, the secant modulus stiffness approach 
(SMS) is unitized for the stiffness formulation in 
which the constitutive relation is defined in terms of 
total stresses and strains as presented in Figure 3.

 
 
Table 1. Growth Shape Functions and Their Derivatives for One Face in Infinity 

node i Mi ∂Mi/∂ξ ∂Mi/∂η ∂Mi/∂ζ 

1 -(1-η)(1-ζ)(2+ξ+η+ζ)/2(1-ξ) -(1-η)(1-ζ)(3+η+ζ)/2(1-ξ)2 (1-ζ)(1+ξ+2η+ζ)/2(1-ξ) (1-η)(1+ξ+η+2ζ)/2(1-ξ) 

2 (1+ξ)(1-η)(1-ζ)/4(1-ξ) (1-η)(1-ζ)/4(1-ξ)2 -(1+ξ)(1-ζ)/4(1-ξ) -(1+ξ)(1-η)/4(1-ξ) 

6 (1+ξ)(1+η)(1-ζ)/4(1-ξ) (1+η)(1-ζ)/4(1-ξ)2 (1+ξ)(1-ζ)/4(1-ξ) -(1+ξ)(1+η)/4(1-ξ) 

7 -(1+η)(1-ζ)(2+ξ-η+ζ)/2(1-ξ) -(1+η)(1-ζ)(3-η+ζ)/2(1-ξ)2 -(1-ζ)(1+ξ-2η+ζ)/2(1-ξ) (1+η)(1+ξ-η+2ζ)/2(1-ξ) 

8 (1-η)(1+η)(1-ζ)/(1-ξ) (1-η)(1+η)(1-ζ)/(1-ξ)2 -2η(1-ζ)/(1-ξ) -(1-η)(1+η)/(1-ξ) 

9 (1-η)(1-ζ)(1+ζ)/(1-ξ) (1-η)(1-ζ)(1+ζ)/(1-ξ)2 -(1-ζ)(1+ζ)/(1-ξ) -2ζ(1-η)/(1-ξ) 

12 (1+η)(1-ζ)(1+ζ)/(1-ξ) (1+η)(1-ζ)(1+ζ)/(1-ξ)2 (1-ζ)(1+ζ)/(1-ξ) -2ζ(1+η)/(1-ξ) 

13 (1-η)(1+ζ)(-2-ξ-η+ζ)/2(1-ξ) (1-η)(1+ζ)(-3-η+ζ)/2(1-ξ)2 -(1+ζ)(-1-ξ-2η+ζ)/2(1-ξ) (1-η)(-1-ξ-η+2ζ)/2(1-ξ) 

14 (1+ξ)(1-η)(1+ζ)/4(1-ξ) (1-η)(1+ζ)/4(1-ξ)2 -(1+ξ)(1+ζ)/4(1-ξ) (1+ξ)(1-η)/4(1-ξ) 

18 (1+ξ)(1+η)(1+ζ)/4(1-ξ) (1+η)(1+ζ)/4(1-ξ)2 (1+ξ)(1+ζ)/4(1-ξ) (1+ξ)(1+η)/4(1-ξ) 

19 (1+η)(1+ζ)(-2-ξ+η+ζ)/2(1-ξ) (1+η)(1+ζ)(-3+η+ζ)/2(1-ξ)2 (1+ζ)(-1-ξ+2η+ζ)/2(1-ξ) (1+η)(-1-ξ+η+2ζ)/2(1-ξ) 

20 (1-η)(1+η)(1+ζ)/(1-ξ) (1-η)(1+η)(1+ζ)/(1-ξ)2 -2η(1+ζ)/(1-ξ) (1-η)(1+η)/(1-ξ) 
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Figure 3. SMS Formulation of the Stiffness Modulus Matrix 

 
The stiffness modulus matrix obtained using the 
smeared crack propagation model is given in Equa-
tion 5:  
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where; 

 

 2

1 2 3

2 2 2 311

1 2 2 3 1 3 1 2 3

1

1 2

E
D

   

         




   
 

(6) 

 2

2 1 3

2 2 2 322

1 2 2 3 1 3 1 2 3

1

1 2

E
D

  

         




   
 

 2

3 1 2

2 2 2 333

1 2 2 3 1 3 1 2 3

1

1 2

E
D

  

         




   
 

 
1 2 3

2 2 2 312

1 2 2 3 1 3 1 2 3

1

1 2

E
D

 

         




   
 

 
2 3 1

2 2 2 323

1 2 2 3 1 3 1 2 3

1

1 2

E
D

  

         




   
 

 
1 3 2

2 2 2 313

1 2 2 3 1 3 1 2 3

1

1 2

E
D

 

         




   
 

44 12
D G  

55 23
D G  

66 13
D G  

 
in which, E, υ, η1, η2 and η3 are initial Young's mod-
ulus in isotropic mass concrete, Poisson’s ration of 
mass concrete, the ratios of the softened Young's 
modulus in the three principal directions to the ini-
tial isotropic elastic modulus and β12, β23 and β13 are 
the shear stiffness factors corresponding to the prin-
cipal directions given as:  

 

 
 

3 1 2 3 21 1 2 2

1 2 1 2 3

1 2 1 2

2 2 2 312

1 2 2 3 1 3 1 2 3

1 2

1 2

      
    

   


         

 
    
  
 

   
 

 
 

 1 2 3 1 22 2 3 3

2 3 1 2 3

2 3 2 3

2 2 2 323

1 2 2 3 1 3 1 2 3

1 2

1 2

      
     

   


         

 
    
  
 

   
 

 
 2 1 3 2 21 1 3 3

1 3 1 2 3

1 3 1 3

2 2 2 313

1 2 2 3 1 3 1 2 3

1 2

1 2

      
    

   


         

 
    
  
 

   
 

 
                     (7) 
The constitutive matrix in Equation 5 is transformed 
to the global co-ordinate system as following: 

 

   
T

G GG nst
D T D T        (8) 

 
where [T] is the strain transformation matrix in 3D 
space. Based on the maximum strain reached in each 
principal direction, the secant modulus matrix is de-
termined. Increasing the normal strain in each prin-
cipal direction leads to the reduction of the corres-
ponding softened Young's modulus. Finally, when 
the maximum strain reaches the fracture strain, the 
considered Gaussian point within the element is fully 
cracked and its contribution in the stiffness matrix of 
the element is eliminated in the corresponding direc-
tion. It is worth noting that the proposed model falls 
into Co-axial Rotating Crack Model (CRCM) cate-
gory in which the local axes of the obtained modulus 
matrix, Equation 5, is always kept aligned with the 
directions of principal strains in the considered 
Gaussian point. 

4 FLUID- STRUCTURE INERACTION AND 
THE COUPLED PROBLEM  
 

The governing equation in the reservoir medium is 
Helmoltz equation from the Euler’s equation given 
as (Mirzabozorg et al., 2003):  

 
2

2

2 2

1 p
p

C t


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
 (9) 

 
where p, C and t are the hydrodynamic pressure, 
pressure wave velocity in the liquid and time, re-
spectively. Boundary conditions required to apply on 
the reservoir medium to solve Equation 9 are ex-
plained in (Bettess, 1992). These boundaries are 
schematically demonstrated in Figure 4. 
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Figure 4. Reservoir boundary conditions 

 
The equations of the dam-foundation (as the struc-
ture) and the reservoir take the form: 
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(10) 

where [M], [C] and [K] are the mass, damping and 
stiffness matrices of the structure including the dam 
body and its foundation media and [G], [C′] and [K′] 
are matrices representing the mass, damping and 
stiffness equivalent matrices of the reservoir, respec-
tively. The matrix [Q] is the coupling matrix; {f1} is 
the vector including both the body and the hydrostat-
ic force; {P} and {U} are the vectors of hydrody-
namic pressures and displacements, respectively and 
{Ǖg} is the ground acceleration vector. A detailed 
definition of matrices and vectors used in Equation 
10 has been provided in (Mirzabozorg et al., 2003). 
The coupled equations (12) are solved using the 
staggered displacement method in which the direct 
integration scheme is used to determine the dis-
placement and hydrodynamic pressure at time in-
crement i+1. The α-method is utilized for discretiza-
tion of both equations (implicit–implicit method). In 
this method, the velocity and displacement at time 
step i+1 can be written as: 
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where, γ and β are the integration parameters. The 

similar equations can be written for determining 
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1
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i
P


. The terms with super-

script p represent displacement, velocity and pres-

sure quantities at time step i+1 which are obtained 

using the pertinent quantities at time step i. 

The governing field equations at time i+1 can be 
written as:  
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where, α is related to the numerical damping of the 
solver algorithm. The coupled field equations 13 and 
14 are solved using the staggered displacement solu-
tion scheme (Mirzabozorg et al., 2003). In this me-
thod, equation 13 is approximated as:  

 

          

      

*

1 1 11 1

1
1

p p

i i ii

p

i i

M U F Q P C U

K U K U 

  



  

  
 (15) 

 
Combining equations 13 and 15 using equations 11 
and 12 gives: 

 

        
       

* 2

1 1 1

2

1 1
1

i i i

i i

M U M U t Q P

t C U t K U



  
  

 

  

    

 

(16) 

The lumped mass results in a diagonal mass matrix. 
This property is utilized in modifying equation 16 
such that:  

 

        
* 2

1 1 1i i i
M U M U t Q P

  
    (17) 

 
Substituting equation 17 into equation 14 then: 
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*
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  (18) 

 

In equation 18, the right hand side terms are known; 

thus,  
1i

P


 is obtained. In order to correct the ap-

proximation made in equation 17,  
1i

P


 is substi-

tuted in equation 13 to calculate  
1i

U


 and its de-

rivatives. The procedure of the staggered 

displacement method is summarized by the follow-

ing steps: 

 Step 1: Knowing the displacement, velocity 

and pressure at time i,  
*

1i
U


 is obtained 

from equation 15.  

 Step 2:  
*

1i
U


 is introduced in equation 18 to 

calculate  
1i

P

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 Step 3:  
1i

P


 is substituted into equation 13 

to calculate  
1i

U


 and its derivatives. 

5 FINITE ELEMENT IMPLEMENTATION AND 
NUMERICAL SOLUTION  
 

The 20-node iso-parametric “brick” finite elements 
are implemented to model the structure, mathemati-
cally. The requirement for integration and generation 
of the mass, stiffness and damping matrices for this 
type of element is 27 Gaussian points in 3*3*3 order 
within each element. Figure 5 shows the ordering of 
the Gaussian points within the elements. It is worthy 
to note that in the smeared crack approach, cracking 
process is applied on each Gaussian point within the 
elements (Mirzabozorg et al., 2007). 
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Figure 5. Ordering of 3*3*3 Gaussian Points within 20-Node 
Solid Elements 

 
Based on the implemented algorithm, strains are 

computed and the cracking initiation criterion is 
checked in each Gaussian points. Cracking in each 
Gaussian point is simply modeled by adjusting the 
modulus stiffness matrix contribution of the consi-
dered point in the element stiffness matrix which is 
co-axial with the principal strain directions.  

The foundation in the near field is modeled using 
20-node solid elements and the infinite elements 
with one face at the infinity are used to simulate the 
semi-infinite medium via the far-end boundary of the 
foundation model. Finally, the fluid domain is mod-
eled using 8-node fluid elements in which the DOF 
at their nodes is the hydrodynamic pressure.   

KARADJ dam, located in Iran, is selected to ob-
tain the effects of the foundation interaction on the 
seismic response of the structure. The dam is double 
curvature arch dam with the height of 168m and its 
crest length is 390m. The dam structure is modeled 
with 72 iso-parametric 20-node elements and its 
foundation medium surrounding the dam body is si-
mulated using 980 elements in which the number of 
the infinite elements at the far-end boundary of the 
foundation is 240. Note that the depth of the founda-
tion FE is about twice of the dam height in the three 
global directions.  

The fluid is modeled using 1024 iso-parametric 8-
node fluid elements and is extended about twice of 
the height of the dam body in the upstream direction. 
Figure 6 illustrate the finite element model of the 
dam body, foundation and the reservoir, respectively. 

 

 
Figure 6. Finite element model of the dam body, the surround-
ing foundation and the reservoir  

 
The modulus of elasticity, Poisson’s ratio, the unit 
weight, the true tensile strength and the ratio of the 
apparent to the true tensile strength, the specific frac-
ture energy and the dynamic magnification factor 
applied on both the tensile strength and the specific 
fracture energy are 26GPa, 0.17, 24.027kN/m

3
, 

3.662MPa, 1.35, 150N/m and 1.20, respectively. For 
the foundation medium, the modulus of elasticity, 
Poisson’s ratio and the unit weight are taken as 
16.3GPa, 0.15 and 29.400kN/m

3
. The velocity of 

wave propagation and the unit weight of water in the 
reservoir are assumed 1436m/s and 9.807kN/m

3
, re-

spectively. The wave reflection coefficient of the re-
servoir bottom and sides is given as 0.8, conserva-
tively.  

The stiffness proportional damping is used in the 
conducted analyses in which the damping ratio for 
the fundamental mode is considered 10%. Applied 
loads on the system are the self weight, the hydros-
tatic pressure and the seismic load. The values of the 
integration parameters in the α-method are taken as 
α=-0.2, β=0.36 and γ=0.7. The quasi-linear damping 
mechanism is used for the structure in the dynamic 
analysis in which the stiffness proportional damping 
is updated during the element cracking within the 
dam body. 

Figure 7 shows three components of the ground 
motion recorded at the Ab-bar station during Manjil 
earthquake on 20 June 1990 which is chosen for the 
analyses. This record is normalized and filtered for 
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the KARADJ dam site. The horizontal and vertical 
PGA’s at maximum credible level (MCL) are 0.43g 
and 0.33g at the dam site, respectively. It is required 
to mention that all the components are multiplied by 
1.5 to cause crack profiles within the dam body. 
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(c) 

Figure 7. Components of the Manjil Earthquake on June 20, 
1990, (a) US/DS component; (b) Cross-stream component; (c) 
Vertical component  

6 RESULTS OF LINEAR MODEL  
 

The three conducted analyses are; FE model of dam-
reservoir-foundation assuming mass-less foundation; 
FE model of dam-reservoir-foundation assuming 
massed foundation and viscous boundary on the far-
end truncated boundary of the foundation; and final-
ly, FE model of dam-reservoir-foundation assuming 
massed foundation and implementing infinite ele-
ments for modeling the semi-infinite medium via the 
far-end truncated boundary of the foundation. 
Figure 8 shows the crest response of the dam body in 
upstream/downstream (US/DS), cross-stream and 
vertical direction. It can be observed that considering 
infinite elements and viscous boundary (Ghaemian 
et al., 2006) on the far-end boundary of the founda-
tion region decrease the crest response of the system 
in comparison with the system with mass-less foun-
dation. However, there is not any noticeable differ-
ence between the results obtained from various con-

ditions of the foundation in the cross stream direc-
tion. 

Figures 9 and 10 illustrate contours of the canti-
lever and arch stresses in upstream and downstream 
faces of the dam body. As shown, the stresses ob-
tained from the linear model with the massed foun-
dation are less than the arch and cantilever stresses 
when the foundation is assumed mass-less. It is wor-
thy to note that, when the far-end boundary of the 
massed foundation is modeled using viscous boun-
dary (Ghaemian et al., 2006) or infinite elements, the 
obtained stress distribution within the dam body are 
the same.   

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 8: Crest Displacement of the Crown Cantilever; Linear 
analyses, (a) US/DS component; (b) Cross-stream component; 
(c) Vertical component 

 
Table 2 presents the summary of the maximum 

tensile stresses resulted from the seismic analyses. 
The effect of massed foundation on cantilever 
stresses is much more than those on the arch 
stresses. The results obtained from the two models 
of massed foundation are approximately the same. 
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When the semi infinite medium via the far-end 
boundary of the foundation is modeled using infinite 
elements, the maximum arch and cantilever stresses 
are reduced 5.2% and 47.5%, respectively, in com-
parison with the model using mass-less foundation. 

These reductions reach to 7.4% and 44.1%, respec-
tively, when the far-end boundary of the foundation 
is constrained for the case of the viscous boundary.  

 

 

   

(a) Upstream; Mass-less Foundation 
(c) Upstream; Massed Foundation; 

Viscous Boundary 

(e) Upstream; Massed Foundation, In-

finite element 

   

(b) Downstream; Mass-less Founda-

tion 

(d) Downstream; Massed Foundation; 

Viscous Boundary 

(f) Downstream; Massed Foundation, 

Infinite element 

Figure 9. Foundation Mass effect on Seismic Arch Stress Contours (MPa)  

 
 

   

(a) Upstream; Mass-less Foundation 
(c) Upstream; Massed Foundation; 

Viscous Boundary 

(e) Upstream; Massed Foundation, In-

finite element 

   

(b) Downstream; Mass-less Founda-

tion 

(d) Downstream; Massed Foundation; 

Viscous Boundary 

(f) Downstream; Massed Foundation, 

Infinite element 

Figure 10: Effect of Foundation Mass on Seismic Cantilever Stress Contours (MPa)  

 
 

 
 
 
Table 2. Maximum Tensile Dynamic Stresses 

Stress  

direction 
Foundation state 

Value 

 (MPa) 

Arch 

Mass-less Foundation 5.842 

Massed Foundation- Viscous 

Boundary 
5.440 

Massed Foundation-Infinite 

Element 
5.541 

Cantilever Mass-less Foundation 5.856 

Massed Foundation- Viscous 

Boundary 
3.275 

Massed Foundation-Infinite 

Element 
3.073 

 
 
 

7 RESULTS OF NONLINEAR MODEL  
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Based on the results obtained from conducted nonli-
near analyses, at the first load step, there is not any 
cracked Gaussian point due to the self-weight and 
the hydrostatic load. At the second load step, the sys-
tem is excited simultaneously in the three directions 
using the components shown in Figure 7.  

Figure 11 compares the time history of the crown 
crest displacement in the three directions. It can be 
observed that the model with massed foundation and 
infinite elements gives a lower response in compari-
son with the model assuming mass-less foundation.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 11: Crest Displacement of the Crown Cantilever; Nonli-
near analysis, (a) US/DS component; (b) Cross-stream compo-
nent; (c) Vertical component 

 
It should be mentioned that the response of the 

two analyzed systems during the application of the 
self weight and the hydrostatic loads are linear and 
the Figure 11 does not include the static response of 
the two systems. 

Figures 12 presents the crack profiles at the three 
layers of the Gaussian points through the thickness 
of the dam body when the foundation medium is as-
sumed to be mass-less and Figure 13 shows the re-
sults when the massed foundation and infinite ele-
ments are used for modeling the near field of the 
semi-infinite medium.  

 
Figure 12: Cracked Profiles within the Dam Body; Mass-less Foundation 

 

 



                         Electronic Journal of Structural Engineering 12(1) 2012 
 

72 
 

Figure 13: Cracked Profiles within the Dam Body; Massed Foundation Using Infinite Elements 

 

 
Comparing the crack profiles shown in Figures 12 

and 13, using massed foundation and infinite ele-
ments leads to less cracked Gaussian points which is 
a realistic conclusion. It is worth noting that in the 
model with mass-less foundation, the first crack oc-
curred at 3.39s. However, the first crack in the 
second model (massed foundation including infinite 
elements) initiates at 6.855s. In fact, it makes sense 
because of larger response of the structure with 
mass-less foundation. 

8 CONCLUSION  
 
In the present paper, the FE model of the dam body, 
the reservoir and the foundation is excited using the 
three components of the earthquake recorded in Ab-
bar station in Iran. The nonlinear behavior of the 
mass concrete is modeled using the smeared crack 
approach and the reservoir is assumed to be com-
pressible. The three sets of models are analyzed to 
consider the effect of massed foundation on the 
seismic response of the system; the system with 
mass-less foundation, the system with massed foun-
dation and applying viscous boundary on the far-end 
truncated boundary of the FE model of the founda-
tion; and finally, the system with massed foundation 
utilizing infinite elements to simulate the effect of 
semi-infinite medium via the far-end truncated 
boundary of the foundation.  

Based on the conducted analyses; modeling the 
foundation as a massed medium leads to less re-
sponse with respect to the FE model with mass-less 
foundation. In linear analyses, cantilever stresses are 
reduced more than 40% when the foundation is as-
sumed massed. However, this reduction in arch 
stresses within the dam body is less. In addition, the 
crack profiles within the dam body decreases in-
tensely when the semi infinite medium via the far-
end truncated boundary of the foundation is modeled 
using infinite elements. 

It is worthy to note that one of the main problems 
in safety evaluation of concrete dams is larger esti-
mation of the system response resulted from numeri-
cal methods than the real response of the system and 
the FE modeling of the foundation is one of the 
sources of these miss leading results. As shown, the 
proposed numerical algorithm is stable during the 
seismic analyses and can be utilized for seismic safe-
ty evaluation of concrete arch dams. 
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